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ABSTRACT
Microbes ubiquitously inhabit animals and plants, often affecting their host’s pheno-
type. As a result, even in a constant genetic background, the host’s phenotype may
evolve through indirect selection on the microbiome. ‘Microbiome engineering’ offers
a promising novel approach for attaining desired host traits but has been attempted only
a few times. Building on the known role of the microbiome on development in fruit
flies, we attempted to evolve earlier-eclosing flies by selecting onmicrobes in the growth
media. We carried out parallel evolution experiments in no- and high-sugar diets by
transferring media associated with fast-developing fly lines over the course of four
selection cycles. In each cycle, we used sterile eggs from the same inbred population,
and assayed mean fly eclosion times. Ultimately, flies eclosed seven to twelve hours
earlier, depending on the diet, but microbiome engineering had no effect relative to
a random-selection control treatment. 16S rRNA gene sequencing showed that the
microbiome did evolve, particularly in the no sugar diet, with an increase in Shannon
diversity over time. Thus, while microbiome evolution did affect host eclosion times,
these effects were incidental. Instead, any experimentally enforced selection effects were
swamped by uncontrolled microbial evolution, likely resulting in its adaptation to the
media. These results imply that selection on host phenotypes must be strong enough
to overcome other selection pressures simultaneously operating on the microbiome.
The independent evolutionary trajectories of the host and the microbiome may limit
the extent to which indirect selection on the microbiome can ultimately affect host
phenotype. Random-selection lines accounting for independent microbial evolution
are essential for experimental microbiome engineering studies.

Subjects Developmental Biology, Entomology, Evolutionary Studies, Microbiology
Keywords Microbiome, Nutrition, Experimental evolution, Microbiome engineering, Eclosion,
Diet, Experimental design, Phenotype

INTRODUCTION
Communities of microbes living on or in multicellular host organisms interact with their
hosts in diverse ways that often influence host phenotype and fitness (Zilber-Rosenberg &
Rosenberg, 2008). Such host-microbe interactions have traditionally been investigated by
experimentally comparing hosts raised without a microbiome (axenic) to hosts inoculated
with known components of the microbiome (gnotobiotic) or that receive microbiome
transplants composed of complex communities (Turnbaugh et al., 2009). Observations of
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atypical phenotypes in axenic organisms indicate hosts are dependent on their microbiome
and cannot function normally without it (Shin et al., 2011; Theis et al., 2016; Rosenberg &
Zilber-Rosenberg, 2018). The integral role of the microbiome in shaping host phenotype
suggests that desirable host traits can be indirectly selected throughmicrobiome engineering
(Mueller & Sachs, 2015; Gopal & Gupta, 2016; Oyserman, Medema & Raaijmakers, 2018).
To achieve this, microbes or microbial communities correlated with desired host traits
are selected, but selection success is evaluated by measuring host traits (Mueller et al.,
2019). This novel approach has numerous practical applications, such as better probiotic
design and improved crop yields, without requiring selection on genetically diverse hosts
or otherwise altering hosts through genetic engineering.

While applying or administering specific bacterial strains or communities
(i.e., probiotics) to achieve a desired host effect is now widespread, true microbiome
engineering studies remain rare. Diverse examples of successful probiotic studies include:
increased biomass and antioxidant capacity in plants inoculated with Agrobacterium
(Chihaoui et al., 2015), reduced white pox disease in corals that received a probiotic
cocktail of 13 bacterial strains isolated from coralmucus (Alagely et al., 2011), and intestinal
epithelial cells with increased ability to keep pathogens from escaping the intestinal tract in
mice that were administered Lactobacillus strains (Mack et al., 2003).While often successful,
probiotic approaches typically rely on relatively simplemanipulations of themicrobiome by
introducing known and culturable bacterial species. Additionally, probiotic studies usually
take advantage of some prior knowledge of host-microbe interactions involving the host
or microbe(s) of interest. However, microbiomes as communities are more complex than
what is generally applied experimentally (Qin et al., 2010) and can elicit greater magnitude
and more specific responses (Sheth et al., 2016) than synthetically prepared treatments. In
contrast to probiotics, microbiome engineering leverages complex microbial communities
by modifying and transferring entire microbiomes, including unknown or unculturable
bacterial strains, without prior knowledge of host-microbe interactions by selecting
microbiomes based on host phenotype (Mueller & Sachs, 2015).

As complex dynamic interactions amongmicrobes in an in-situmicrobial community are
difficult to manipulate, only a few studies have so far tried to engineer native microbiome
communities. Swenson, Wilson & Elias (2000) first engineered the Arabidopsis thaliana
rhizosphere microbiome to increase and decrease shoot biomass by inoculating fifteen
successive Arabidopsis selection rounds with the microbiome of plants with the highest
or lowest above-ground biomass in the preceding round (Swenson, Wilson & Elias, 2000).
Panke-Buisse et al. (2015) expanded this application by selecting on late and early flowering-
time under nutrient stress and demonstrating that the engineered microbiomes could
influence flowering-time in additional Arabidopsis strains, as well as another related plant.
Importantly, Panke-Buisse et al. (2015) evaluated microbiome composition through 16S
rRNA amplicon sequencing, clearly illustrating that the microbiome evolved in response
to host selection. However, Mueller & Sachs (2015) proposed the use of random-selection
lines—where the propagated microbiome is randomly chosen from replicates—as the
gold standard for experimental controls in microbiome engineering experiments, even
while admitting that they greatly increase experimental effort. Previous microbiome
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engineering studies relied on sterile media transfers as negative controls, although Mueller
et al. (2019) also incorporated a fallow-soil control for the presence of naturally occurring
microbes. Notably, none of these studies used random-selection controls, which account
for independent microbial evolution that may otherwise confound results. Furthermore,
microbiome engineering experiments have, to the best of our knowledge, not yet been
attempted with animal models.

In this study, we performed a microbiome engineering experiment incorporating
random-selection lines the first time in an animal model for. We chose the fruit fly,
Drosophila melanogaster, as a model for microbiome selection because of its relatively quick
generation times (Trinder et al., 2017) and its simple core gut microbiome community
(<30 major species), which are largely commensals acquired from the environment
and transmitted between flies (Erkosar et al., 2013; Blum et al., 2013). Furthermore, the
microbiome has been implicated in a wide range of host-associated functions (Wong, Ng
& Douglas, 2011; Ridley et al., 2012; Broderick & Lemaitre, 2012; Engel & Moran, 2013); for
example, fly development (or eclosion time, May, Doroszuk & Zwaan, 2015), immunity,
mating, response to external infection, and aging (Charroux & Royet, 2012; Gould et al.,
2018).

Taking advantage of the fact that the microbiome affects fly development time
i.e., emergence of adult flies from pupae (Shin et al., 2011; Ridley et al., 2012), we attempted
to select for a microbiome that speeds up fly eclosion in sugar-starved flies and flies fed a
high-sugar diet. Over the course of four selection cycles, we propagated the microbiome
from vials with fast-eclosing flies and saw a significant decrease in fly eclosion times.
However, there was no difference between fly eclosion times in selected treatments
and random-selection controls. Rather, the phenotypic changes were a byproduct of
microbes adapting to the media instead of the applied selective pressure. Our results
emphasize the need for proper controls in microbiome evolution experiments and suggest
that independent selection pressures on the microbiome may sometimes dominate in
microbiome selection experiments.

MATERIALS AND METHODS
Fly maintenance and phenotyping
The Drosophila melanogaster strain, Canton S, was used in this experiment because it
has been kept inbred since its collection in the early 20th century (Stern, 1943) which
minimizes potential for host evolution over repeated experimental cycles, e.g., due to drift
or selection pressures acting on the stock population (Emborski & Mikheyev, 2019). Stock
flies were reared on standard media (4% yeast, 8% dextrose, 1% agar, 0.4% propionic
acid, 0.3% butyl p-hydroxybenzonate) at 25 ◦C and 60% relative humidity under 12 hr:12
hr light/dark schedule. The flies have been maintained in the standard diet for 10 years.
For the no-sugar diet, sugar and cornmeal were removed, whereas in the high-sugar diet
was prepared with an additional 16% sugar. These diets represented different ecological
conditions (‘famine vs. feast’). Fresh media was prepared for each experimental cycle and
25 ml aliquots were distributed to sterile flat bottom vials (23 mm in diameter) for fly
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rearing. Three-day old stock flies were mated in egg collection cages with grape juice agar
and yeast for 24 h. The agar-media was changed after 24 h (Koyle et al., 2016), and fly eggs
were collected 8 h after the change in the media, to ensure that eggs were laid within eight
hours of each other. The eggs were surface-sterilized by gently rinsing 2x with a solution
of double distilled water and 50% bleach for 30–120 s (Newell & Douglas, 2014; Obadia et
al., 2018).

As most fly eclosions from pupae occur during the day, the developmental time of the
flies was assessed by recording the number of newly-eclosed flies every hour during the 12
hr light period, from 9:00 AM to 9:00 PM, and discarding them before they could mate
with other newly-eclosed flies. Eclosion times were recorded for three days, starting from
the eclosion of the first fly. Overall, 10,850 flies were phenotyped in the experiment.

Indirect selection of the microbiome
We used the experimental protocol suggested by Mueller & Sachs (2015) for one-sided
artificial selection on microbiomes (Fig. 1). A number of studies have shown interactions
between the fly microbiome and fly developmental time and metabolism under varying
different nutrient conditions (Broderick, Buchon & Lemaitre, 2014; Ridley et al., 2012;
Jehrke et al., 2018). As a result, we ran the experiment in parallel with two different media
types, one without any added sugar and one with fewer carbohydrates (i.e., no cornmeal)’’.
As a result, the experiment was effectively run twice, but in different media. Stock flies
that were 24 hr old were collected from stock diet vials (60 females and 40 males in each
stock vial) and incubated in fresh no-sugar and high-sugar diet vials (step 1 of Fig. 1) for
3 days to ensure that all flies developed into sexually mature adults and that females had
mated The three-day-old adult flies were transferred to fresh treatment media for 24 h to
lay eggs and to establish the original microbiome community in high-sugar and no-sugar
treatment diets.

Each treatment (selection/high-sugar, selection/no-sugar, no-selection/high-sugar,
no-selection/no-sugar) was initiated with 10 replicate lines, each of which was split into
three sub-replicates at each selection cycle (30 vials per treatment). For selection treatments,
the microbiome from the sub-replicate with the shortest mean eclosion time was selected
to inoculate each of the three sub-replicates for that line in the next selection cycle (step 3 of
Fig. 1). For no-selection treatments, sub-replicates were randomly chosen for microbiome
propagation to the next selection cycle. Microbiome transfer was accomplished by passing
the top layer (∼1mm) of the fly foodmedia through a 70µm-mesh-size cell strainer (Fisher
Scientific, cat no. 08-771-19) to remove any dead flies, unfertilized eggs or larvae and then
equally distributing the strained media to the food surface in the three sub-replicate vials of
the corresponding line in the next selection cycle. The top 1 mm of media was chosen as it
is most likely to consist of native fly microbiome from the parent feces (Wong et al., 2015).
Autoclaved spatulas were used for each food transfer to prevent any cross-contamination
between lines. To ensure that the host genotype remained constant and only themicrobiome
evolved, a spatula of surface-sterilized stock fly eggs was aseptically transferred to each vial
using a fresh autoclaved spatula (step 4 of Fig. 1). A spatula of media from vials chosen for
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Figure 1 Schematic of experimental design for indirect selection of trait-associated microbiome in
fruit flies. Following the experimental design suggested byMueller & Sachs (2015), stock flies laid eggs in
either high-sugar or no-sugar diets (step 1) and the microbiome from the fastest eclosing flies was prop-
agated to the next selection cycle (steps 2–4). There were replicate ten selection lines in each treatment,
which were split into three sub-replicates during each cycle, which were phenotyped (step 2). To keep host
genotype constant, sterile eggs from stock flies were used in each selection cycle (step 4). There were ten
parallel lines in each treatment, which were split into three sub-replicates at each selection cycle. Random-
selection lines were simultaneously maintained in high- and no-sugar media as experimental controls.

Full-size DOI: 10.7717/peerj.9350/fig-1

propagation to the next cycle was stored at −80 ◦C for 16S rRNA gene sequencing. The
selection and no-selection procedures were repeated for a total of four selection cycles.

16S rRNA gene analysis
DNA was extracted from media collected from the sub-replicate vials chosen for
propagation in both selection and no-selection treatments for all rounds and diets.
Extractions were performed using the DNeasy Blood and Tissue kit (QIAGEN, Hilden,
Germany) following manufacturer’s protocols. Library preparation was done using the
‘‘16S Metagenomic Sequencing Library Preparation’’ protocol (Illumina) targeting 16S
rRNA gene V3 and V4 regions using Illumina general primer pair. 5% PhiX control was
added as an internal control for low diversity libraries. The libraries were sequenced by the
Okinawa Institute of Science and Technology (OIST) sequencing section on the Illumina
MiSeq platform with 2x250-bp v2 chemistry. The reverse read quality was too poor to
join paired-end reads, however, and analysis was carried out on demultiplexed single-end
sequences in QIIME 2 (v2017.11, Bolyen et al., 2018). The Divisive Amplicon Denoising
Algorithm (DADA) was applied through the DADA2 plug-in for QIIME 2 to quality-filter
sequences, remove chimeras, and construct the Amplicon Sequence Variant (ASV) feature
table (Callahan et al., 2016a). We chose to analyze ASVs instead of Operational Taxonomic
Units (OTUs) because ASVs are reproducible and reusable across studies, whereas OTUs
are study specific (Callahan, McMurdie & Holmes, 2017). Taxonomic assignments were
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given to ASVs by importing SILVA 16S rRNA representative sequences and consensus
taxonomy (release 128, Quast et al., 2013) to QIIME 2 and classifying representative ASVs
using the naive Bayes classifier plug-in (Bokulich et al., 2018). The feature table, taxonomy,
and phylogenetic tree were then exported from QIIME 2 to the R statistical environment
(R Core Team, 2013) and combined into a Phyloseq object (McMurdie & Holmes, 2013).
To reduce the effects of uncertainty in ASV taxonomic classification, we conducted the
analysis at the microbial ‘genus’ level. Prevalence filtering was applied to remove low-
prevalence ASVs with less than 1% prevalence in order to decrease the possibility of data
artifacts affecting the analysis (Callahan et al., 2016b). Sequence counts were converted to
relative abundance to normalize for varied library size and Weighted Unifrac (Lozupone
et al., 2011) distances were computed between samples. Significance testing for distances
between treatment groups was accomplished with the adonis function (Permutational
Multivariate Analysis of Variance) in the Vegan R package (Oksanen et al., 2015), as well
as the DESeq 2 pipeline implemented in phyloseq (Love, Huber & Anders, 2014).

Statistical analysis
Data were analyzed using the R statistical software (version 3.4.0; R Core Team, 2013)
with tidyr (Wickham & Henry, 2019) and ggplot2 packages (Wickham, 2010) for data
manipulation and visualization. Because fly eclosion was measured hourly, we used the
mean eclosion time per vial as a response variable. It was fit as a response in a mixed model
against observed effects of diet, cycle and selection (fixed effects) and replicate selection
lines within the treatment (random effect) using nlme package (Pinheiro et al., 2019).
Results were visualized using the Effects package (Fox et al., 2019). We visually confirmed
distributional assumptions of model fit.

Data accessibility and analytical reproducibility
All data and code necessary to reproduce the statistical tests, the main figures and tables
are available on GitHub (https://github.com/MikheyevLab/drosophila-microbiome-
selection), including an interactive online document for the R-based analysis: https:
//mikheyevlab.github.io/drosophila-microbiome-selection/. Sequence data have been
deposited into NCBI SRA database under the accession number PRJNA555001.

RESULTS
Fly eclosion time is unaffected by artificial microbiome selection
To examine if diet, selection and cycle leads to faster fly eclosion time, we used linear mixed
effects models, which allow for testing nested random effects and within-group variation.
We used selection-cycle, diet and artificial microbiome selection as fixed effects, and lines
with sample replicates nested within them as random effects. We observed significant
contribution of diet and selection-cycle on fly eclosion time, but artificial microbiome
selection did not affect the fly phenotype either as a main effect or an interaction (Fig. 2,
Table 1). Flies in high-sugar diets took longer to eclose than those in the no-sugar diet, but
eclosion time decreased in both diets.
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Figure 2 Phenotypic evolution over the course of the experiment. (A) High-sugar diet; (B) no sugar-
diet. Box plots of raw data, and lines with 95% confidence intervals showing the fit of the mixed-effect
linear model for the selection cycle by diet by selection interaction term (Table 1). Box plots hinges show
to the first and third quartiles, and whiskers encompass 1.5 times the inter-quartile range. Data beyond
the whiskers are are plotted individually. In both diets, fly eclosion times decreased significantly over the
course of the experiment. The difference in mean eclosion times between the first and last selection cycle
was 7.5± 1.2 (S.E.) hours for the no-sugar diet and 12.1± 1.2 (S.E.) hours for the high-sugar diet. How-
ever, selection had no effect and the rate of decrease was not different for random-selection controls vs.
selected flies. Rather than being driven by experimentally enforced selection, changes in phenotype were
caused by independent evolution of the microbiome.

Full-size DOI: 10.7717/peerj.9350/fig-2
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Table 1 While diet and selection cycle had strong effects on eclosion time, the selection did not (also
see Fig. 2).

Time

Predictors Estimates CI p

Intercept (High-sugar diet, No-selection control) 292.96 288.36–297.57 <0.001
Selection cycle −2.59 −3.95—1.23 <0.001
No-sugar diet −50.00 −56.29—43.70 <0.001
Selection treatment 3.58 −3.21–10.37 0.302
Selection cycle× No-sugar diet 0.81 −1.06–2.68 0.397
Selection cycle× Selection treatment −0.85 −2.83–1.14 0.402
No-sugar diet× Selection treatment −1.52 −10.57–7.53 0.742
Selection cycle× No-sugar diet× Selection treatment 0.65 −2.03–3.33 0.634
Nline 10
Nreplicate 199
Observations 10,850
Marginal R2/Conditional R2 0.779/0.834

16S rRNA gene analysis of microbiome composition
We performed 16S rRNA amplicon sequencing of microbiome from both selected and
random-selection control media that was chosen for propagation to the next cycle in each
diet. We sequenced the V3/V4 hypervariable region of the 16S rRNA gene using the MiSeq
v2 platform which generated an average of 175,522 reads per sample. These reads were
analyzed using the DADA2 (Callahan et al., 2016a) pipeline implemented in QIIME 2
(Bolyen et al., 2018). ASVs with low prevalence (<0.01) were removed and alpha-diversity
was measured by Shannon-diversity Index that accounts for both species abundance and
evenness (Willis & Martin, 2018). The association between bacterial alpha-diversity and
artificial microbiome selection regime was tested via the adonis function in vegan R package
(Oksanen et al., 2015), with alpha-diversity as dependent variable and diet, cycle, selection
pressure as explanatory variables. The alpha-diversity varied with both diet and cycle. It
increased in each successive cycle for both selected and non-selected vials, but it was more
pronounced in no-sugar vs. high-sugar diet (Fig. 3).

In general, the media contained low bacterial diversity, as reported previously (Blum
et al., 2013). The microbial communities were homogeneous in the initial rounds of
both diets. While Acinetobacter and Staphylococcus increased in frequency over time in
high-sugar diet, change in relative abundance of Pseudomonas and Acinetobacter led to a
significant increase in alpha diversity over time in the no-sugar diet (Table 2, Figs. 3 and
4). An adonis analysis of the UniFrac distances between microbial communities found a
significant change over cycles for the no-sugar diet (F = 6.15, p= 0.0004), but not for the
high-sugar diet (F = 0.62, p= 0.73), consistent with alpha diversity and compositional
differences (Figs. 3 and 4). We could not detect specific genera that systematically changed
over the course of the experiment in either media using linear models implemented in
DESeq2.
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Figure 3 Alpha-diversity based on Shannon index for the media microbiome in (A) high- and (B) no-
sugar diets over four cycles of artificial microbiome selection.Diversity was higher in the no-sugar diet
(see also Fig. 4), and increased over time (Table 2). The shaded area represents 95% confidence interval
for the line of best fit.

Full-size DOI: 10.7717/peerj.9350/fig-3

Table 2 Because there was no effect of selection (Table 1, also see adonis analysis), selection and no-
selection treatments were combined to increase power. The alpha diversity was lower in the high-sugar
diet (Figs. 3 and 4), and increased over time in the no-sugar diet (Fig. 3).

Value

Predictors Estimates CI p

Intercept (High-sugar diet) 0.04 −0.06–0.15 0.420
No-sugar diet 0.17 0.02–0.32 0.031
Selection cycle 0.02 −0.02–0.06 0.353
Selection cycle× No-sugar diet 0.20 0.14–0.26 <0.001
Observations 58
R2/R2 adjusted 0.833/0.824
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Figure 4 Stacked bar plot of bacterial genus-level relative abundance in the media over the course of
the experiment. The compositional changes in community structure over time were only significantly dif-
ferent for the no-sugar diet (A, B), compared to the high-sugar diet (C, D) (see also alpha diversity plots
in Fig. 3). The data are aggregated across three replicates in each condition and the shaded area repre-
sents 95% confidence interval for the line of best fit. This suggests that the microbiome of the two media
evolved differently, despite producing similar phenotypic results (Fig. 2).

Full-size DOI: 10.7717/peerj.9350/fig-4

DISCUSSION
We attempted to apply microbiome engineering to increase fruit fly development rate by
propagating the microbial community associated with fast development over four selection
cycles (Fig. 1). We observed substantial increase in developmental rates over the course
of the four selection cycles in two different dietary media with no- or high-sugar content.
However, selection for more rapid eclosion had no effect on either the developmental rate
or its change over the course of the experiment (Fig. 2). 16S rRNA amplicon sequencing
showed that the microbial diversity did indeed change over time, with a general increase
in alpha diversity, particularly in the no-sugar diet, but it too was unaffected by selection
(Figs. 3 and 4). Thus, independent microbial evolution in the media swamped any signal of

Arora et al. (2020), PeerJ, DOI 10.7717/peerj.9350 10/19

https://peerj.com
https://doi.org/10.7717/peerj.9350/fig-4
http://dx.doi.org/10.7717/peerj.9350


experimentally induced selection. This phenomenon is commonly observed in microbes,
which rapidly adapt to culture media, but the magnitude and significance of this effect has
largely been neglected by microbiome engineering work. However, by chance, the effects
of microbial adaptation affected the host phenotype in the same direction as our selection
pressure. Only by using a random-selection control could we detect that the entirety of the
observed effect was incidental.

To the best of our knowledge, this is the first study to examine host-mediated indirect
selection of microbiome in an animal model. The fruit fly is an excellent model for
microbiome manipulations. It is an open symbiotic system, meaning that the microbiome
is horizontally transferred and is supplemented andmaintained through food consumption
(Blum et al., 2013; Wong et al., 2015). As a result, the processes affecting the microbiome
can be complex, including a mixture of ecological, evolutionary and social interactions
(Mueller et al., 2005; Kaltenpoth et al., 2014). For instance, behavior of individual flies, such
as regurgitation and fecal deposition in the food, tunneling, allo-coprophagy (consumption
of conspecifics’ feces), and acquisition of fly microbes through food consumption rather
than internal maintenance, leads to an exchange of symbionts among group members
reared in the same media (Chandler et al., 2011; Goodrich et al., 2014; Wong et al., 2015;
Körner, Diehl & Meunier, 2016). This aspect of fly biology motivated the media transfer
in our experiment. However, since the inoculating flies came from a common stock, the
initial microbiome diversity may have been low, with less variation available for subsequent
artificial selection. Yet, the microbiome did evolve over subsequent cycles, with significant
phenotypic effects on the flies.

It is well-known that the microbiome affects fly nutrition and development, particularly
by affecting the amount of fat (triglycerides) in the host; axenic individuals have a longer
developmental period (Storelli et al., 2011; Shin et al., 2011; Ridley et al., 2012; Newell &
Douglas, 2014; Ma et al., 2015). However, different bacterial species have unique effects
on the host. It is likely that our measures of bacterial relative abundance and community
diversity metrics (Figs. 3 and 4) cannot fully capture the complexity of bacterial interactions
with the host. This is exemplified by the fact that we only detected significant changes in
bacterial community composition in no-sugar media, yet, flies in both media types—high-
sugar and no-sugar—had comparable decreases in eclosion times. It is, therefore, possible
that phenotypic changes resulted from effects of lower-frequency strains (Matsutani et al.,
2011; Chouaia et al., 2014), or perhaps from other factors, such as chemical compounds
produced by bacteria in response to each other or to the media composition. In complex
systems, such as microbial communities, substantial phenotypic variation may be due to
interactions between its components, which play a role in facilitating community-level
selection (Williams & Lenton, 2007).

Implications for the design of experiments using artificial selection
of microbiome engineering
Did the experiment have power to detect effects of artificial selection?
This question may be answered by drawing on a parallel with artificial selection on
genes, which is a chief appeal of artificial selection on the microbiome. If there is no
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heritable variation in the microbiome’s effect on host phenotype, it cannot evolve in
response to selection. In the context of classical genetics, to understand whether evolution
is possible in principle, key parameters include (1) the selection differential (S), which is the
difference in average trait values between selected and unselected individuals and (2) the
heritability (h2). Given these values, the short-term response is governed by the breeder’s
equation R = h2S (Falconer & Mackay, 1996). In our experiment correlation between the
‘parental’ and ‘offspring’ mean phenotypes measured in the absence of selection was high
(r = 0.92), indicative of a high ‘microbial heritability’ (h2m) in the system. Likewise, by
selecting the top third of the replicates we attained a strong selection coefficient (6.8 h
± S.D. 11.5/selection cycle). Based on these considerations alone, we would expect to
see measurable changes at the end of the experiment in the selected treatments. Under
ideal circumstances mean eclosion time could potentially have been reduced by over
a day. However, in our treatments eclosion was accelerated by about half a day. Note,
that the parameter h2m is only broadly analagous to narro-sense genetic heritability,
since the microbiome is potentially more mutable, so these calculations are only crude
approximations. Nonetheless, estimating the amount of expected change in response to
selection is key before embarking on a long-running experimental selection design, and we
strongly recommend a pilot study to estimate h2m and S beforehand. If there is no h2m in
the system, a selection experiment will not likely succeed.

Efficacy of experimental selection vs. independent evolution by the
microbiome: implication for controls
Microbial evolution experiments typically apply discrete cycles of selection (Swenson,
Wilson & Elias, 2000; Panke-Buisse et al., 2015; Mueller et al., 2019). However, media
microbiome evolved continuously between selection cycles and not necessarily in ways
that we wanted or could effectively control. For example, to be passed to the next selection
cycle, microbes had to aggressively colonize fresh media and compete amongst themselves
for resources, but not in a way that negatively affected fly larvae. Because there are
many microbial generations within selection cycles, these parallel selection pressures may
dominate the evolutionary response with significant effects on the host phenotype, as
appears to have happened in our experiment.

We did not anticipate the strength of independent evolution by the microbiome when
designing our study, and the topic has received relatively little theoretical or empirical
attention (though see Williams & Lenton, 2007). One key implication is for the design of
controls during microbiome evolution studies. Randomly selected control lines allow the
microbiome to evolve in the same way, except for the experimentally enforced selection.
However, these controls are extremely time- and labor-consuming. Alternative options,
such as constant inoculation from a preserved microbiome source (Martino et al., 2018) or
null inoculations, have been proposed as efficient alternatives (Mueller & Sachs, 2015). Even
the fallow-soil control used by Mueller et al. (2019), which is a substantial methodological
advance over typically used sterile controls, does not take into account possible interactions
between the microbiome and the plant and how they might evolve. Experimental designs
with other control strategies do not provide the same level of control over microbial
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evolution as does the random-selection control. For example, using constant or null
controls in our experiment would have led us to erroneously infer that the microbiome
evolved in response to experimental selection. Understanding the evolutionary processes
that can take place during micribiome harvesting, transfer and selection is key to for
optimizing microbiome engineering experiment design.

Evolution can take place either by evolution of the initial communities, by changes in the
frequencies of existing microbes or by immigration of new ones. Microbiome engineering
strives to harness the first two mechanisms, which can be quantified via sequencing protein
coding genes along with 16S rRNA (Matsutani et al., 2011; Chouaia et al., 2014). On the
other hand, microbial immigration (i.e., contamination) can be limited, but close to
impossible to eliminate unless the experiment takes place in completely sealed systems,
such as bioreactors. In more realistic settings where microbial evolution takes place
alongside a living host, eliminating immigration is much harder. Specifically, immigration
may provide an inherent problem in open systems like the fruit fly gut/media or plant/soil
systems, where experimental selection will have to overcome its effects. By contrast,
microbiome engineering may be more powerful in closed systems with strict vertical
transmission.

Control of host genotypes
Along similar lines, we cannot exclude the possibility that the host has changed in the
course of the experiment. Strictly controlling the host population (e.g., in a glycerol stock
or seed bank) is not possible with fruit flies. In retrospect, it would have been desirable
to confirm stability of eclosion times in the source population at the beginning and the
end of the experiment. Changes in the host population appear a less likely explanation
for the observed data, given the magnitude of change seen in the experiment—about half
a day earlier eclosion in the course of four selection cycles (Fig. 2). First, the fly stocks
were inbred and genetically homogeneous, minimizing the possibility of evolutionary
changes (Emborski & Mikheyev, 2019). Second, they were kept in a stable environment with
controlled temperature, humidity, photoperiod and diet. Third, eggs were surface sterilized
to prevent the introduction of additional microbes to the experiment. Nonetheless, even
because the most stable-seeming environments, such as glycerol stock or seed banks may
experience change over time (e.g., due to freezer malfunctions or fungal rot), ideally
both host and microbiome changes should be controlled in the course of microbiome
engineering experiments. Therefore, we strongly recommend that studies introduce this
‘host-stability’ control.

CONCLUSIONS
In conclusion, the findings show that artificial microbiome selection is not significantly
correlated with fly phenotype or microbiome. This was made possible due to the use of
random-selection controls to measure selection pressure. The lack of significant correlation
of selection might be driven by factors independent of host-mediated artificial selection.
Any future prospects in artificial engineering of host microbiome to select desirable host
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phenotype would require selection regimes that are stronger than microbial evolution. In
short, we recommend the following three considerations for experimental design:
1. Random-selection controls are mandatory, as they control for microbiome evolution,

either outside the control of the host or through immigration.
2. A control for the stability host phenotype over the timescale of the experiment

assures that the evolutionary dynamics are, in fact, due to microbiological changes
3. A power analysis before the start of the experiment to assure transmission of the

phenotype via the microbiome (a measure of heritability) and to compute the extent of
phenotypic variability within a selection round. These will help choose an appropriate
selection coefficient to obtain a detectable magnitude of response.
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