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Abstract

In this study we have addressed the question of how activation and inhibition of human NK cells is regulated by the expression
level of MHC class I protein on target cells. Using target cell transfectants sorted to stably express different levels of the MHC
class I protein HLA-Cw6, we show that induction of degranulation and that of IFN-c secretion are not correlated. In contrast,
the inhibition of these two processes by MHC class-I occurs at the same level of class I MHC protein. Primary human NK cell
clones were found to differ in the amount of target MHC class I protein required for their inhibition, rather than in their
maximum killing capacity. Importantly, we show that KIR2DL1 expression determines the thresholds (in terms of MHC I protein
levels) required for NK cell inhibition, while the expression of other receptors such as LIR1 is less important. Furthermore, using
mathematical models to explore the dynamics of target cell killing, we found that the observed delay in target cell killing is
exhibited by a model in which NK cells require some activation or priming, such that each cell can lyse a target cell only after
being activated by a first encounter with the same or a different target cell, but not by models which lack this feature.
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Introduction

Natural Killer (NK) cells are lymphocytes capable of cytotox-

icity and cytokine secretion, which interact with other cells and

have an important role in certain anti-viral and anti-tumor

immune responses. Their response is determined by the

integration of activating and inhibitory signals and one important

unknown is how these signals are integrated. We have previously

shown that there is a clear threshold in the amount of target cell

surface Human Leukocyte Antigen (HLA)-C protein required for

inhibition of NK cell cytotoxicity [1]. In a separate study, small

changes in expression of MHC class I expression, modulated by

treating tumor cells with a combination of IFN-c (to increase

MHC-I expression) and b2m-siRNA (to target b2m mRNA and

consequently inhibit MHC-I surface expression), were again found

to change susceptibility of NK cells [2]. Furthermore, expression

of the activating ligand MICA changes the thresholds for

inhibition of NK cell cytotoxicity mediated by the target cell

MHC-I levels [3]. A naturally occurring mechanism regulating

expression levels of different alleles of the MHC class I protein

HLA-C involves microRNAs. More specifically, miR-148a

regulates HLA-C expression by binding to the varied 39

untranslated region (UTR) of HLA-C, whose variants associate

with control of HIV [4]. Thus it is important to elucidate the

effects of MHC expression levels on NK cell inhibition.

Both the identity and quantity of inhibitory receptors on NK

cells determine NK cell responsiveness [5,6,7,8]. It has been

qualitatively shown that murine NK cells with a low level of

inhibitory receptors require a higher level of inhibitory ligands to

achieve an inhibition of lysis similar to that of cells expressing a

high level of receptors [9,10]. The reason for this may be that the

probability of an inhibitory receptor finding its ligand depends on

the number of ligands on the target cell (and vice-versa), as shown

in our recent study of the dynamics of the NK cell immunological

synapse [11]. Similarly, murine NK cells expressing low amounts

of Ly49 inhibitory receptors required higher amounts of purified

MHC class I protein to inhibit IFN-c production, than cells

expressing high amounts of inhibitory receptors [12]. It has also

been recently shown that the threshold for inhibition of target cell

lysis by Ly49-expressing NK cells is quite low, with inhibition

occurring even for target cells with only 20% of the MHC-I levels

expressed by homozygous, normal, target cells. MHC-hemizygous

target cells (with only one copy of the gene for an Ly49A ligand)

had the same effect in inhibiting lysis by NK cells as homozygous

target cells. Additionally, target cells from mice expressing

haplotypes with much lower levels of Ly49A-tetramer binding
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than those of H-2d (e.g. H-2k) were able to exert inhibition of

Ly49A+ NK cells to a similar level than cells expressing H-2d

[13,14]. In humans, studies have shown that inhibitory receptor

expression determines NK cell responsiveness [5,7,15], and that

Killer cell Immunoglobulin-like Receptor (KIR) expression

regulates inhibition of NK lysis by target cells expressing low

amounts of MHC class I protein, while target cells expressing high

amounts of HLA inhibit NK cell cytotoxicity independently of

KIR expression [16]. However, it remains to be clarified what

precisely determines the differences in the MHC-I mediated

thresholds of inhibition of lysis by human NK cells.

During development, NK cells may downregulate the self-MHC-I

binding inhibitory receptors; this may be one of the mechanisms of

activation threshold adjustment, in order to better sense changes in

MHC expression levels in host cells [17]. Elucidating the dependence

of the NK cell activation on the numbers of inhibitory receptors and

ligands should provide a clearer understanding of NK cell function

and its regulation. Here, we studied the activation/inhibition

thresholds (defined in terms of the number of MHC ligands on the

target cell) of different human peripheral blood NK cell clones using

both experimental and theoretical methods. Functionally, the extent

of inhibition of cytotoxicity was correlated with inhibition of cytokine

secretion. Using mathematical modelling of target cell killing by

various NK cell clones, we found that NK cell clones differ mostly in

the activation threshold and less in their maximum killing capacity,

and that HLA-Cw6-mediated inhibition thresholds were determined

mainly by KIR2DL1 expression. In addition, we constructed

mathematical models of NK cell activation and target cell killing

and compared the kinetics predicted by these models to the

experimental data on the kinetics of target cell killing. The results

strongly suggest that NK cell cytotoxicity requires an initial activation

or priming, such that each cell can lyse a target cell only after being

activated by a first encounter with the same or a different target cell.

Materials and Methods

Cells
721.221 (hereon referred to as 221 cells) is an EBV-transformed

human B lymphoblastoid cell line that does not express

endogenous HLA-A, HLA-B and HLA-C [18]. 221 cells have

been previously transfected to express different amounts of GFP-

tagged HLA-Cw6 protein, with target cells 6.1 to 6.7 expressing

progressively increasing amounts of MHC class I (6.1 expressing

an average of 1.56104 MHC class I molecules, 6.2 expressing

2.56104 molecules, 6.3 expressing 4.56104, 6.4 expressing

7.36104, 6.5 expressing 7.56104, 6.6 expressing 8.56104 and

6.7 expressing 1.36105 surface MHC class I molecules – Table 1)

[1]. Number of surface molecules expressed per cell was

determined as previously with Quantum Simply Cellular beads

(Bangs Laboratories) [1]. Cell lines were cultured in RPMI 1640

medium supplemented with 10% heat inactivated foetal bovine

serum, 2 mM L-glutamine, 50 U/ml penicillin-streptomycin, 1x

non-essential amino acids, 1 mM sodium pyruvate and 0.5 mM b-

mercaptoethanol (all from Invitrogen) (from hereon called RPMI

plus supplements). The 221 HLA-Cw6-GFP transfectants were

supplemented with 1.6 mg/ml geneticin (Gibco). Human periph-

eral blood NK cells from anonymous donors were generated by

magnetic sorting peripheral blood mononuclear cells, according to

manufacturer’s instructions (StemCell Technologies). NK cell

clones were generated as previously described [1]. NK cells were

grown in the presence of 100 or 200 U/ml human recombinant

IL-2 (Roche or National Cancer Institute, Fisher, respectively).

The purity and phenotype of the human NK clones were

determined by staining for CD3 and CD56.

Antibodies
The following antibodies were used at 10 mg/ml: anti-NKG2A

(131411, R&D systems), anti-NKp46 (195314, R&D systems),

anti-CD94 (HP-3D9, BD Pharmingen), anti-KIR2DL/S1 (EB6,

Serotec). Anti-LIR1 (HPF1, gift from M. Lopez-Botet) was used at

1:100 for flow cytometry. PE-Cy5-labelled anti-CD56 (B159, BD

Pharmingen) and PE-Cy5-labelled anti-CD3 (UCHT1, BD

Pharmingen) were used at 1:25 for flow cytometry. PE-labelled

anti-CD107a (H4A3, BD Pharmingen) was used at 7 ml per test.

APC-labelled anti-IFN-c (B27, BD Pharmingen) was used at 2 mg/

ml for intracellular staining. For ELISA, anti-IFN-c (NIB42, BD

Pharmingen) was used at 2 mg/ml, biotin-labelled anti-IFN-c
(4S.B3, BD Pharmingen) was used at 1 mg/ml and HRP-

conjugated streptavidin (BD Pharmingen) was used at 1:1000.

Adequate isotype-matched controls were all purchased from BD

Pharmingen. The secondary antibody Alexa 488-conjugated goat

anti-mouse IgG (Invitrogen) was used at 4 mg/ml.

Cell surface staining for flow cytometry
105 cells were incubated for 30 min at 4uC with the appropriate

antibody diluted in PBS 1x/1% BSA/0.01% sodium azide. After

three washes with PBS 1x/1% BSA/0.01% sodium azide, cells

were incubated for 30 min at 4uC with the secondary antibody.

The cells were washed twice and analysed by flow cytometry.

Isotype matched antibodies were used as controls. Data was

analysed with CellQuest (Becton Dickinson) or FlowJo software.

Cytotoxicity assays
NK cells cytotoxicity against different target cells was assessed in

35S-Met release assays, as described previously [19]. Spontaneous

release of 35S was less than 25% of the maximum release. For each

NK cell clone, to determine the amount of MHC class I required

to elicit half the maximum lysis (EC50), a logistic curve was fitted

to the plot with the lysis elicited by different target cells as a

function of target cell surface HLA-Cw6 and the value of EC50

was determined with Origin.

Degranulation assay and IFN-c intracellular staining
75,000 NK cells and 225,000 target cells were co-incubated for

5 hr at 37uC/5% CO2, in 100 ml of RPMI plus supplements in V-

bottom 96-well plates in the presence of anti-CD107a antibody

and 10 mg/ml Brefeldin A (Sigma). As a negative control, NK cells

were incubated in the presence of medium only. 100 ml of PBS/

5 mM EDTA/0.5% BSA was added to separate the conjugates

Table 1. Different target cell transfectants express varied
levels of the MHC class I protein HLA-Cw6.

Number surface MHC class I molecules

Target cell clone Average SEM

6.1 1.56104 9.66102

6.2 2.56104 7.86103

6.3 4.56104 4.36103

6.4 7.36104 7.46103

6.5 7.56104 8.76103

6.6 8.56104 1.16104

6.7 1.36105 2.06104

Average number of surface MHC class I molecules and standard error of the
mean (SEM) are shown for each target cell clone.
doi:10.1371/journal.pone.0024927.t001
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and plates were centrifuged at 400 g for 3 min at 4uC. Cells were

incubated in 150 ml of PBS/5 mM EDTA/0.5% BSA for at least

30 min on ice. Plates were centrifuged again and the cells were

fixed by adding 200 ml of Cytofix/CytopermTM (BD Biosciences)

and incubating for 20 min at 4uC. Cells were washed twice with

200 ml of PBS/5 mM EDTA/0.5% BSA/0.1% Tween 20. Cells

were stained with an APC-conjugated anti-IFNc mAb in Perm/

Wash/1% BSA for 30 min at 4uC. Cells were washed a further

two times and analysed by flow cytometry.

Measuring IFN-c secretion by ELISA
106 NK cells were incubated with 106 irradiated target cells

(6,000rad) in 200 ml DMEM plus supplements in flat-bottom 96-

well plates for 72 hr at 37uC/5% CO2. The supernatant was

collected after centrifuging the plates for 10 min at 200 g at room

temperature. ELISA plates (Maxisorp, NUNC) were incubated

overnight at 4uC with 50 ml/well of anti-IFN-c capture antibody

in binding solution (0.1 M Na2HPO4, pH 9.0). Plates were washed

three times with 200 ml/well of PBS/0.05% Tween 20 and

blocked with 200 ml/well of blocking buffer (PBS/3%BSA) for 1–

2 hrs at 37uC. After three washes with PBS/0.05% Tween 20,

100 ml/well of samples were plated in triplicates. Plates were

incubated 1–2 hrs at 37uC and washed a further five times. Plates

were incubated for 1 hr at 37uC with 100 ml/well of biotinylated

anti-IFN-c detection antibody in blocking buffer/0.05% Tween

20. Plates were washed six times with PBS/0.05% Tween 20 and

incubated for 30 min at 37uC with 100 ml/well of streptavidin-

HRP in blocking buffer/0.05% Tween 20. Plates were washed six

times and 100 ml/well TMB ELISA substrate (Sigma) was added.

Plates were read on an ELISA plate reader (Multiskan MCC/340,

Titertek) at 620 nm. As negative controls, wells without biotiny-

lated mAb, without streptavidin-HRP or without standards/

samples were also assayed.

Modelling the dependence of activation thresholds on
MHC class I and KIR expression levels

To model the dependence of the activation/inhibition threshold

on MHC class I and KIR expression levels, we assumed that the

target cell killing probability per encounter, k, depends on the

product of MHC and KIR numbers (MHC*KIR), such that higher

numbers of either will lead to higher inhibition. This assumption is

based on the findings that cells with lower level of inhibitory

receptors require more inhibitory ligands to achieve the same level

of inhibition [9,10,12], as the probability of an inhibitory receptor

finding its ligand depends on the number of ligands on the target

cell (and vice-versa) [11]. We used a sigmoid threshold function

(Equation 1), where S denotes the threshold of the NK cell clone in

the same experiment, in units of (molecule numbers)2 as it is given

in terms of the MHC*KIR product. The parameter kmax is the

maximum killing capacity of each cell in the clone per encounter,

and n is the exponent of the sigmoid function.

k~kmax
Sn

MHC � KIRð ÞnzSn½ �

� �
ð1Þ

This function approaches kmax for MHC*KIR ,,S (insufficient

inhibition), and for MHC*KIR ..S it approaches zero (complete

inhibition). Around MHC*KIR = S, threshold sharpness is

determined by the exponent n. We fitted this function to the data

on NK cell killing of target cells with various MHC levels, in order

to see whether clones differ in their activation threshold, maximal

killing capacity, or both.

Fitting the threshold function to the experimental data
Model simulation and fitting to our experimental data was done

using the Berkeley Madonna� and Matlab� softwares. Equation

(1) was fitted to the data on target cell killing vs. MHC level using

the least-squares fitting function of Matlab. In each fitting

procedure, the parameter space was scanned in small intervals,

and each set of values was used as an initial guess for the software’s

fitting algorithm. KIR and MHC-I molecule numbers expressed

by NK and target cells were measured as described [1]. Values of

the threshold parameter (S) were varied according to the ranges of

KIR and MHC-I molecule numbers. The maximum killing

probability (kmax) values were varied as well, within the ranges of

maximal killing (of MHC2 target cells) exhibited by the NK cell

clones. Values of the response sensitivity exponent (n) were varied

between 1 and 5. Due to the high variability between clones, we

saw no point in obtaining confidence limits for each parameter

value for each clone, as only the overall variability between clones

was of interest to us.

Modelling NK cell activation dynamics
Simple Model. In the simple model for conjugation and

dissociation of target and NK cells, (Figure 1A), the number of free

NK cells is denoted by N, the number of free target cells by T, and

the number of NK-target cell conjugates by C. The following

differential equations (2–4) describe the changes of these

populations with time.

dC=dt~bNT{C=t ð2Þ

dN=dt~{bNTzC=t ð3Þ

dT=dt~{bNTz 1{kð ÞC=t ð4Þ

In these equations, the conjugation rate is denoted by b
(cells*min)21, such that the number of conjugates formed in every

time step is bNT, proportional to both the number of free NK cells

and the number of free target cells. Conjugate lifetime is denoted

by t (min), such that conjugates dissociate at rate 1/t (min)21. NK

cell dynamics are thus the inverse of conjugate dynamics (equation

3), where –bNT describes NK cells moving to the conjugates

population, and C/t is the number of NK cells becoming free each

time step due to conjugate release. The parameter k denotes the

death rate of post-encounter target cells, such that (1-k)/t living

targets return to the free target population each minute.
Model with delay in target cell death. In the second model

version, the dying target cells are a separate population (Figure 1B).

Here the number of dying target cells is denoted by Td, such that

kC/t target cells destined to die after each encounter join the Td

population per minute (equation 5). The Td subset death rate is

denoted by m ((min)21).

dTd=dt~kC=t{mTd ð5Þ

Model with delay in NK cell activation. To model a delay

in NK cell activation (Figure 1C), we divided the NK cell

population into resting and activated subsets, where resting NK

cells do not kill targets. However, after their first encounter with

target cells they become activated and capable of killing (equations

6–10). The numbers of free resting and activated NK cells are

KIR2DL1 Sets the HLA-Cw6 Inhibition Threshold
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denoted by Nr and Na, respectively, and those of target-resting NK

cell and target-activated NK cell conjugates by Cr and Ca,

respectively. Parameters are the same as in the basic model, except

for different conjugation and dissociation rates for resting and

activated NK cells: br and tr for resting and ba and ta for activated

NK cells, respectively.

dCr=dt~brNrT{Cr=tr ð6Þ

dCa=dt~baNaT{Ca=ta ð7Þ

dNr=dt~{brNrT ð8Þ

dNa=dt~{baNaTzCa=tazCr=tr ð9Þ

dT=dt~{T brNrzbaNað ÞzCr=trz 1{kð ÞCa=ta ð10Þ

We also tried a model combining both death and activation

delays (not shown), but its behaviour did not differ much from that

of the model with activation delay alone.
Parameter values for model exploration. The data on

target cell killing vs. time were not sufficient to perform

quantitative fitting (there was only one data point per MHC

level per time point), so we looked only for qualitative resemblance

to the data.

Conjugation (b) and dissociation (t) rates were obtained by

fitting the model to the experimental data and scaling it using data

from the literature, as follows. Since k is negligible in the time

frame of the conjugation experiments (30 minutes), the best fit of

these data to the basic model with k = 0 (Figure S1A) gave:

b = 3.5661026 (cells*minutes)21 and t = 16.75 (minutes). Note

that we do not assume there is no killing of target cells by NK cells

in the first 30 minutes, but rather that the target cells that are killed

would not have completed their death processes and hence would

still be counted as alive in this time frame. Similar parameter

values were obtained by fitting our model to another, published

conjugation data set [20] (data not shown).

The lysis experiments were performed with an effector-target ratio

of 10:1, while the conjugation experiments were performed with a 1:1

Figure 1. Modelling NK cell activation dynamics. A) The Basic model. The variables represented by this model are: N – the number of free NK
cells; T – the number of free target cells; and C – the number of NK-target cell conjugates. The Parameters that govern the behaviour of these
populations are: b - the conjugation rate (cells*min)21; t - the conjugate lifetime (min), such that conjugates will break up at rate 1/t (min)21; and k -
the death rate of post-encounter target cells, such that (1-k) is the fraction of living targets returning to the free target population. B) Model with a
delay in cell death. Here, Td is the number of dying target cells; they die at rate m ((min)21), such that 1/m is the dying target cell lifetime (min). C)
Model with a delay in cell activation. The model version shown here does not include target cell death delay. The variables here are: Nr – the number
of free resting NK cells; Na – the number of free activated NK cells; T – the number of free target cells; Cr –the number of cell conjugates of target and
resting NK cells; and Ca – the number of cell conjugates of target and activated NK cells. Parameters are the same as in the basic model, except for
different conjugation and dissociation rates for resting and activated NK cells: br and tr for resting and ba and ta for activated NK cells, respectively.
doi:10.1371/journal.pone.0024927.g001
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Figure 2. CD107a degranulation and IFN-c production by different human NK cell clones. A) Induction of CD107a and IFN-c are not
correlated. NK cells were co-incubated with (bottom) or without (top) 221 target cells and analysed by flow cytometry. NK cells were selected on the
basis of size (left; FSC-H stands for Forward Scatter and correlates with the cell volume while SSC-H stands for Side Scatter and correlates with the
granularity of the cell; NK cells are the smaller cells, while the larger events correspond to target cells) and analysed for CD107a degranulation and
IFN-c intracellular staining (right). B) Top: Amount of IFN-c, determined by ELISA, secreted by different NK cell clones incubated for 72 hr with 100 U/
ml IL-2, or in the presence of irradiated target cells (221 cells expressing no MHC class I, or target cell clones 6.2, 6.3, 6.4 or 6.6, expressing an
increasing number of surface MHC class I molecules per cell – Table 1). Bottom: Percent of lysed target cells by NK cell clones as determined by 5 hr
radioactive release assays (bottom), using the same target cell clones. C) CD107a degranulation (left) and IFN-c production (right) by NK cells
incubated with different target cells for different times. Data shown was obtained with an NK cell line, and are representative of data acquired with
two NK clones and one polyclonal NK cell line. D) Correlation between inhibition of NK cell CD107a degranulation and IFN-c production. NK cell

KIR2DL1 Sets the HLA-Cw6 Inhibition Threshold
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effector-target ratio. In order to scale the conjugation rate to the

E:T = 10:1 experiments, assuming that the effector-target ratio only

affects conjugation, but not dissociation, we used a published data set

that presents the % lysis of 221 target cells by untreated NK cells for

different effector-target cell ratios [21]. The scaling factor received

was 6.3, which gave b = 2.2661025 (cells*min)21 for the experiments

with a 10:1 effector:target cell ratio.

To verify that the model behaves as expected, we ran the model

with the above values for b and t, without killing (k = 0), and

observed that we reach a steady state for the conjugated and the

dissociated cells (Figure S1B). If we raise k to 0.05, the fractions of

target cells decrease with time (Figure S1C), as expected. The next

step was to see how the value of k affects the lysed target cell fraction

after 5 hours, as in the experiments (Figure S1D): the higher the

killing probability per encounter, the higher the lysed cell fraction,

and the dependence is logarithmic, because killing slowly

approaches 100% for high values of k. Similar graphs were

generated for the more advanced versions of the model (not shown).

Results

Cytotoxicity and IFN-c secretion: independent activation,
correlated inhibition

We have previously shown that inhibition of NK cell cytotoxicity

correlates with MHC class I protein expression by target cells [1].

To test whether other NK cell functions such as IFN-c secretion are

affected by the activation/inhibition threshold, a panel of target cells

expressing varied amounts of HLA-Cw6 was used. For this purpose,

221 cells had previously been transfected to stably express different

levels of GFP-tagged HLA-Cw6, named from 6.1 to 6.7 for

increasing expression of MHC-I protein (Table 1 and [1]).

Peripheral blood human NK cells incubated with the different

target cells were stained for both CD107a degranulation and

intracellular IFN-c. It should be noted that, though CD107a release

has been suggested to reflect the cytotoxic capability of CD8+ T

cells and NK cells [22,23], degranulation and cytotoxicity are not

always correlated in NK cell clones (Figure S2). CD107a+ NK cells

did not always produce IFN-c after a 5 hr co-incubation with target

cells, while all IFN-c+ NK cells were CD107a+ (Figure 2A). Also,

while all NK cell clones were stimulated with PMA/ionomycin to

produce IFN-c, not all of them secreted IFN-c upon stimulation

with 221 target cells (data not shown). Similarly, production of IFN-

c in the presence of 221 target cells was not always detected by

ELISA in clones that were able to lyse the same targets, and that

could secrete cytokines upon stimulation with IL-2 (Figure 2B). As

expected, CD107a degranulation occurred in a shorter time frame

than cytokine production (Figure 2C). These data indicate that NK

cells have different requirements for induction of cytotoxicity and

cytokine secretion, as also reported by others [24]. Importantly, in

contrast to the different activation requirements, we found that in

human NK cells, inhibition of IFN-c production by different

amounts of MHC-I protein correlated with inhibition of lytic

granules release (Figure 2D).

Expression of KIR2DL1 determines the amount of target
HLA-Cw6 required for NK cell inhibition

Consistent with previous results, there was a sharp threshold in

the amount of target cell MHC-I protein required to inhibit most

NK cell clones. Interestingly, the amount of MHC-I required to

inhibit cytotoxicity varied greatly among different human NK cell

clones. A few clones showed no inhibition, or even activation by

target cell MHC-I, likely due to expression of the activating

receptor KIR2DS1 (examples are shown in Figure 3A). These

different responses could be found among different clones from the

same NK cell donor.

In order to find which, if any, NK cell receptors determine this

threshold, expression levels of the inhibitory receptors KIR2DL1,

LIR1, NKG2A and CD94 were tested (Figure 3 and Figure S3).

KIR2DL1 can recognize HLA-Cw6, amongst other alleles. LIR1

can recognize HLA-A, B and C alleles, including HLA-Cw6 [25].

CD94 forms heterodimers with NKG2A and NKG2C, thus

forming inhibitory and activating receptors capable of recognizing

HLA-E [26,27,28]. NKG2A expression was variable amongst

different NK cell clones, consistent with previous reports [29].

Expression of each of these receptors in different clones was then

correlated with the value of EC50, i.e. the amount of MHC-I

protein required for eliciting half maximum lysis (Figure 3).

Importantly, the level of KIR2DL1 expression was positively

correlated with the amount of MHC-I required for cytotoxicity

inhibition (**P,0.005), such that NK cell clones expressing

KIR2DL1 are inhibited by low amounts of target cell surface

HLA-Cw6 (on average 26104 molecules) while KIR2DL1-

negative cells are inhibited only by high MHC-I levels (Figure 3;

see also Table S1 for a statistical analysis comparing different

receptor combinations). No other receptors tested had a strong

correlation with the EC50 (Figure 3C,D). Thus, we conclude that

expression of KIR2DL1 determines the amount of target HLA-

Cw6 required for NK cell inhibition, that is, the cell’s activation/

inhibition threshold.

NK cell clones differ from each other mostly in their
activation/inhibition thresholds

In order to understand how KIR2DL1 expression levels

determine NK cell activation/inhibition thresholds, we mathe-

matically modelled the dependence of the killing rate k on the

product of the numbers of KIR and MHC molecules by a sigmoid

threshold function (equation 1), where S denotes the threshold of

the NK cell clone in the same experiment, in units of (molecule

numbers)2 as it is given in terms of the MHC*KIR product. The

parameter kmax is the maximum killing probability of an NK cell

belonging to each clone, per encounter, and n is the exponent of

the sigmoid function. For each NK cell clone, we performed a

curve-fit of equation 1 to the data on percent of target cells lysed as

function of MHC expression levels (9 representative examples are

given in Figure 4). The parameter value ranges used in these runs

were: n was 0.25–3.00, varied in 23 intervals of 0.125; S was 0–

5*109, varied in 101 intervals of 5*107; kmax was 0.01–0.21, varied

in 21 intervals of 0.01.

Values of kmax obtained for different clones varied between

0.015 and 0.065 per cell per encounter, that is, about four-fold.

Values of n (response sensitivity exponent) varied between 0.99

and 2.36, that is, only about two-fold. Moreover, all clones but one

(AD30) had n # 1.61, that is, most of the variation in n was of less

than two-fold. In contrast, values of S (the threshold parameter)

varied by more than ten-fold – from 3*108 to 3.9*109. These

results show that, in addition to the cell surface expression levels of

clones were incubated with 221 cells or cells expressing different MHC-I levels for 5 hr and analyzed for CD107a degranulation and intracellular IFN-c
production (right, two clones are shown). Left: Pearson correlation coefficients between the percent of CD107a+ and that of IFN-c+ NK cells upon co-
incubation with target cells expressing different levels of MHC-I protein, calculated with SPSS v14 for Windows. Each circle represents one NK cell
clone.
doi:10.1371/journal.pone.0024927.g002
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Figure 3. The threshold in MHC-I mediated NK cell inhibition depends on the expression level of KIR2DL1. A) Lysis of different target
cells by three NK cell clones, as determined by radioactive release assays, plotted against target MHC-I cell surface expression. Open symbols
represent lysis of untransfected 221 cells. Circles show a clone inhibited by MHC; triangles show a clone not inhibited by MHC; and squares show a
clone whose activity increased as function of target MHC level. B) Lysis of target cells by one NK cell clone as a function of target MHC-I cell surface
expression. A sigmoid curve was fitted to the data (using the Origin software) and the amount of MHC-I required to inhibit lysis to half its maximum,
the EC50, was determined. C) Where inhibition of lysis was observed, EC50 was determined for different clones phenotyped for KIR2DL1, NKG2A, LIR1
and CD94 expression. Each clone may express one or more receptors. Medians are indicated and statistical significance of differences was determined
with the non-parametric Mann-Whitney test. **P,0.005; ns, not significant. D) Correlation between EC50 and receptor expression level, obtained by
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KIR2DL1, the clones differ mostly in their intrinsic activation

thresholds (S), which may have been set during the education

process.

Target cell killing by NK cells may require NK cell priming
To explore the kinetics of NK cell activation and target cell lysis,

we applied a combination of mathematical and experimental tools.

With all target cell clones except the two with zero or lowest MHC

expression, lysis (determined by radioactivity release assays) is

hardly seen after 3 hours; only after 5 hours some lysis is seen in

all target cells (Figure 5A). This contrasted with our observation

(Figure S1) and others’ that conjugation reaches saturation in the

first half-hour of the experiment [20], and raised the question of

what causes the delay in observation of target cell lysis. To address

this issue, we simulated the kinetics of NK cell activation under

three alternative mathematical models. The simple model, in

which any target cell-NK cell encounter may result in immediate

target cell killing (Figure 1A and equations 2–4), always resulted in

convex graphs of lysis vs. time (data not shown), which did not

resemble the concave graphs observed experimentally. Hence, we

needed to include some delay mechanism in the model.

The delay in observation of lysis may be due to the fact that

target cells take some time from the moment they receive the

death signal until they fully die and disintegrate [30]. During this

time, they would still be counted as present and alive in the

culture. This feature was implemented in the second version of the

model by including target cell death delay (Figure 1B and

equations 2–5; the number of dying target cells is denoted by Td,

and the Td subset death rate is denoted by m, whose units are

(min)21). However, simulations of this model, with m obtained by

performing a regression analysis to evaluate the contribution of each receptor – or combination of receptors – to the EC50 data. R2 is the correlation
measure, and the higher it is, the higher the correlation. More details are given in Table S1.
doi:10.1371/journal.pone.0024927.g003

Figure 4. Sample fitting graphs. The dependence of target cell lysis on target cell MHC expression level. Dashed lines: k values calculated from
experimental lysis data based on Figure S1D. Solid lines: the best fit of model results to the data (in clones C1.4 and C2.1 these lines are masked by
the dashed lines). The values of n, S and kmax that yielded best fit for each clone modeled are indicated on the figures. The parameter value ranges
used in these runs were: n was 0.25–3.00, varied in 23 steps of 0.125; S was 0–5*109, varied in 101 steps of 5*107; kmax was 0.01–0.21, varied in 21
steps of 0.01.
doi:10.1371/journal.pone.0024927.g004
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fitting to data on NK cell line-mediated lysis of targets which

express no MHC ligands, did not result in concave graphs either;

the behaviour of this model differed only slightly from that of the

simple model (data not shown). Thus, target cell death delay alone

could not explain the dynamics of lysis.

An alternative hypothesis was that NK cells require some

priming before they can lyse the target cells [31], such that, if we

start with resting NK cells, each cell becomes activated – and can

lyse a target cell – only after its first encounter with a target cell. In

the first encounter the NK cell will not kill the target cell. This

‘‘NK cell priming’’ hypothesis was implemented in the third

version of the model, which includes two NK cell subsets, resting

and activated (Figure 1C and equations 6–10). Simulations of this

model yielded lysis kinetics which resembled the experimental

kinetics much better than those of the earlier versions (Figure 5B).

While the resemblance here is only qualitative due to data paucity

(there was only one data point per MHC level per time point), it is

important to note that we could get this type of kinetics only when

the model included NK cell priming; assuming both subsets can

lyse target cells, and differ only in their conjugation rate,

dissociation rate, and/or kmax, always yielded graphs that were

more similar to those of the simple model than to the

experimentally observed ones (data not shown).

Discussion

This paper addressed the question of how the activation/

inhibition decision by an NK cell is regulated by the expression

level of MHC class I on the target cell. More specifically, we asked

what determines the NK cell’s activation threshold, and what the

functional implications of this threshold are.

We show here that human NK cells and NK cell clones have

different stimulation requirements for degranulation and for IFN-c
secretion, with the latter having more stringent stimulation

requirements and taking longer to be elicited. These data are

consistent with observations in mice [6,8,32] and in polyclonal

human NK cells stimulated with Drosophila cells transfected to

express different combinations of ligands [24]. It seems important

that NK cells are able to control IFN-c secretion in a more

stringent way than cytotoxicity, to avoid unnecessary stimulation

of other cells while ensuring lysis of any dangerous cell. On the

other hand, we show that while CD107a expression and IFN-c
secretion are not correlated, their degrees of inhibition by MHC-I

molecules are correlated (Figure 2D). This implies that inhibitory

receptor binding to MHC class I inhibits both responses in the

same way.

Analyzing NK cell inhibition in more detail, we found that

different NK cells differ mostly in the number of target MHC

molecules required to inhibit their responses, that is, in their

activation/inhibition threshold (Figure 4). The rheostat model by

Höglund et al. [6,17,33,34] proposes that NK cell education is not

a binary selection of NK cells that do or do not express self MHC-

specific receptors, but rather a quantitative tuning of each cell’s

activation threshold in proportion to inhibitory signals received

during its education. The differences observed here between

activation thresholds of different NK cell clones may indeed result

from differences in the inhibitory signals these cells have received

during education.

Consistent with this line of thought, we found that the

expression level of KIR2DL1 determined the inhibition threshold

of target HLA-Cw6 molecules on NK cells, with little contribution

from other NK cell receptors (Figure 3 and Table S1). However, as

experiments were performed with primary human NK clones

possessing variegated receptor expression, we cannot completely

exclude the possibility that the strong effect KIR2DL1 has in

regulating the inhibitory threshold may mask a weaker effect of

other NK receptors, as shown by, e.g., the small increase in R2

obtained for combinations of KIR2DL1 with LIR1 relative to R2

of KIR2DL1 alone. Nevertheless, the findings that KIR2DL1 and

not other receptors is the main player determining HLA-Cw6-

mediated thresholds on NK cells, and that human NK cell clones

vary in their intrinsic activation thresholds, may be important for

predicting the outcome of allogeneic haematopoietic stem cell

transplantation in treatment of acute myeloid leukemia, where NK

cell activation plays a major role [35].

NK cells not expressing KIR2DL1 could still be inhibited by

MHC-I, though this required a higher number of MHC class I

molecules than cells expressing KIR2DL1 (requiring approxi-

mately 56104 MHC class I molecules for inhibition as opposed to

26104, a range that includes the amount of MHC class I protein

expressed by different primary and immortal cell lines [1]).

Specific binding to NK cell receptors leads to MHC-I transfer to

the NK cells. The percentage of NK cells acquiring target HLA-

Cw6 molecules is almost null in contacts involving KIR2DL12

cells [36], indicating that receptors other than KIR2DL1 govern

this NK-target cell interaction. Inhibition of cytotoxicity on NK

cells not expressing KIR2DL1 is likely to be mediated by HLA-E,

since HLA-Cw6 codes for a leader peptide which can be presented

Figure 5. The kinetics of NK cell activation. A) Experimental results. The percent of lysed target cells expressing different amounts of MHC class I
was determined by radioactive release assays, after 1, 3 or 5 hrs of co-incubation. B) Mathematical model – simulation results.
doi:10.1371/journal.pone.0024927.g005
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by HLA-E. It will be interesting to determine whether expression

of HLA-E correlates with expression levels of HLA-Cw6. It is

however unlikely that, in the presence of KIR2DL1, the

interaction of HLA-E with CD94/NKG2A has played a

significant role in determining the cells’ MHC-I-mediated

threshold, because our statistical analysis has shown that the

expression of KIR2DL1, and not CD94/NKG2A, correlated with

NK cell inhibition. Thus, NK cell clones expressing KIR2DL1 will

be inhibited by low amounts of HLA-Cw6, while cells not

expressing KIR2DL1 will only be inhibited by high amounts of

HLA-Cw6. These data add to the results obtained with precursor

–B-cell leukemia target cells, where it was described that

expression of KIR by NK cells affects their capacity to lyse target

cells expressing high or low amounts of HLA class I [16].

The mechanism of the putative NK cell priming is yet

unknown. Expression of FasL was observed to be upregulated

upon NK cell activation by stimulating the cells with PMA/

ionomycin, with cytokines, or by cross-linking different activating

receptors (see, e.g. [37,38]). Thus, FasL expression may be

regulated by the presence of target cells. On the other hand, since

the preferential mechanism for NK cytotoxicity is via perforin and

granzymes [38], it would be interesting to check whether there are

changes in this mechanism upon first interaction with target cells.

Finally, the mechanism may not necessarily be direct; it could also

be the result of interactions with DC rather than with target cells,

or both mechanisms could play a role. In future studies we plan to

directly test this priming hypothesis, and elucidate the responsible

mechanisms.

Supporting Information

Figure S1 Parameter determination for the mathemat-
ical model. (A) The blue points represent data of percentage of

conjugated target cells out of the initial target cell number in

conjugation assays, performed at a 1:1 ratio, with peripheral blood

polyclonal NK cells and with 221 target cells. The pink line

represents the model’s best fit to these data, which was obtained

with b= 3.5661026 (cells*minutes)-1 and t= 16.75 (minutes). For

conjugation assays, NK cells and target cells were incubated for

various times at a 1:1 ratio (2.56105 of cells for each) in 50 ml of

RPMI plus supplements. After the incubation, cells were fixed in

300 ml of Cytofix/CytopermTM (BD Biosciences) for 15 min at

4uC. Cells were washed twice with PBS 1x/1% BSA/0.01%

sodium azide and stained with a PE-Cy5 conjugated anti-human

CD56 antibody and a FITC-conjugated anti-human CD19

antibody for 30 min at 4uC. Cells were washed twice with PBS

1x/1% BSA/0.01% sodium azide and analysed by flow

cytometry. Isotype matched antibodies were used as controls.

Data were analysed with CellQuest (Becton Dickinson). (B) cell

fractions. Q –fraction of conjugated NK cells out of the initial

number of NK cells (N0); N1 – fraction of free NK cells out of the

initial number of NK cells (N0); M –fraction of free target cells out

of the initial number of target cells (M0); fT – fraction of living

target cells (free and conjugated) out of the total initial number of

target cells (M0). Parameter values are as in Figure S1A. (C) Cell

fractions are defined as in Figure S1B. Parameter values are as in

Figure S1A, except that here k= 0.05. (D) Lysed target cell

fractions after 300 minutes of encountering NK cells for varying

values of k. Other parameter values are as in Figure S1A.

(DOC)

Figure S2 Degranulation cannot always be a marker for
lysis, because it is not correlated with lysis for all clones. Examples

of data for 5 clones are shown.

(DOC)

Figure S3 Different NK cell clones express different
receptor combinations. The figure shows phenotypes of NK

cell clones showing different lytic activity against target cells

expressing different amounts of surface MHC class I. Each row

refers to one clone. (A), (B) and (C) show data for clones were

cytotoxicity decreased (A), did not change (B), or increased (C)

with increasing expression of target cell MHC class I protein.

Some clones did not efficiently lyse 221 target cells (D). The

amount of MHC class I protein required to halve the maximum

lysis (EC50) was classified into low, medium or high. Clones were

screened for EB6 staining (KIR2DL/S1), LIR1, CD94, NKp46

and NKG2A expression, which were also classified into similar

levels.

(DOC)

Table S1 The NK cell inhibition threshold is mainly
determined by KIR2DL1. A regression analysis was performed

for all the receptor combinations, to evaluate the contribution of

each receptor – or combination of receptors – to the EC50. R2 is

the correlation measure, and its range of values is from -1 to 1,

with 1 indicating a full direct correlation. By looking on the effect

of each receptor alone on the EC50, we see that KIR2DL1 has the

strongest effect (R2 = 0.24). However, the combinations show that

KIR2DL1 and NKp46 together affect the EC50 even more

(R2 = 0.63). Not all receptor combinations were observed in the

experiments (marked as na, that is, not available), therefore there

might be other combinations that have higher effects on the EC50

and the inhibition. The validity of some of the regression model fits

was indicated by the software (SAS) as questionable (cases marked

with asterisks), presumably because of the low sample sizes, as

there were too few cases for some of the receptor combinations.

(DOC)
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