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Abstract

Chronic obstructive pulmonary disease (COPD) is a multifactorial progressive airflow obstruc-

tion in the lungs, accounting for high morbidity and mortality across the world. This study aims

to identify potential COPD blood-based biomarkers by analyzing the dysregulated gene

expression patterns in blood and lung tissues with the help of robust computational

approaches. The microarray gene expression datasets from blood (136 COPD and 6 controls)

and lung tissues (16 COPD and 19 controls) were analyzed to detect shared differentially

expressed genes (DEGs). Then these DEGs were used to construct COPD protein network-

clusters and functionally enrich them against gene ontology annotation terms. The hub genes

in the COPD network clusters were then queried in GWAS catalog and in several cancer

expression databases to explore their pathogenic roles in lung cancers. The comparison of

blood and lung tissue datasets revealed 63 shared DEGs. Of these DEGs, 12 COPD hub

gene-network clusters (SREK1, TMEM67, IRAK2, MECOM, ASB4, C1QTNF2, CDC42BPA,

DPF3, DET1, CCDC74B, KHK, and DDX3Y) connected to dysregulations of protein degrada-

tion, inflammatory cytokine production, airway remodeling, and immune cell activity were priori-

tized with the help of protein interactome and functional enrichment analysis. Interestingly,

IRAK2 and MECOM hub genes from these COPD network clusters are known for their involve-

ment in different pulmonary diseases. Additional COPD hub genes like SREK1, TMEM67,

CDC42BPA, DPF3, and ASB4 were identified as prognostic markers in lung cancer, which is

reported in 1% of COPD patients. This study identified 12 gene network- clusters as potential

blood based genetic biomarkers for COPD diagnosis and prognosis.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive airflow obstruction in the

lungs which slowly becomes apparent after the 40th or 50th year of age [1]. With a global preva-

lence of 251 million, COPD disease is currently the fourth leading cause of global deaths and

ranked fifth in terms of disease burden [2, 3]. The primary characteristics of the disease are

lung inflammation, breathing difficulties, airflow blockage, emphysema, long term cough with

mucus, chronic bronchitis, and refractory asthma [4]. Although cigarette smoking is the most

well-known significant risk factor for COPD, other factors such as tuberculosis history and

environmental exposure to lung irritants (such as indoor air pollutants and occupational dust)

are also known to contribute to modifying disease causality and severity [5, 6]. Chronic inflam-

mation is thought to be responsible for pathologic changes such as narrowing of airways in the

lungs and destruction of the lung parenchyma, with an underlying role of genetic, epigenetic,

and environmental factors [7].

Genetic studies of twins [8], first degree relatives [9] and sporadic COPD cases [10] have all

confirmed the role of heritability, which explains at least 30% of the variation in COPD risk.

For so long, the genetic basis of COPD has come from Mendelian syndromes, where rare path-

ogenic variants in ELN and FBLN5 genes cause cutis laxa and SERPINA1 causes α1-antitrypsin

deficiency [11]. Genome-wide association studies have reported the strong association of over

20 genetic loci with COPD and a few additional loci for COPD-related phenotypes like hypox-

emia, chronic bronchitis, and emphysema [12]. The molecular basis of COPD, however, could

not be fully explained by candidate genetic variants alone, but also by changes in global gene

expression. Besides providing an unbiased assessment of thousands of genes in the disease eti-

ology, global gene expression could also potentially help in developing personalized medicine.

However, analysis and interpretation of such massive gene expression data is so complex and

challenging.

A few studies have attempted to analyze gene expression changes in COPD patients’ blood

samples in recent years [13–16]. However, the correlation of common gene expression dysre-

gulations between blood and lung tissue samples from COPD patients is not well explored.

Recent deployment of advanced statistics and integrative bioinformatics methods, incorporat-

ing gene network graphs, unsupervised clustering, and functional annotations of pathways,

has provided a new dimension to explore the microarray gene expression datasets to discover

the molecular basis of different genetic pathologies [17–19]. Therefore, the objective of this

study is to expand our current understanding of COPD pathogenesis and to identify potential

genetic biomarkers. By involving a series of comprehensive bioinformatics approaches, this

study has identified several gene-network clusters involved in cell communication, inflamma-

tion, proliferation, and differentiation processes, are dysregulated in blood and lung tissues of

COPD patients. Our findings provide an insight into understanding the mechanisms of

COPD and its potential link with lung cancer, besides uncovering genetic markers with poten-

tial for disease diagnosis and therapeutic modulation.

2. Materials and methods

2.1 Microarray gene expression datasets

The NCBI-GEO and EBL-EBI Array Express databases were used to search for COPD gene

expression datasets using the keywords like “COPD”, “COPD blood”, and “COPD tissue”.

From the output, we selected two COPD gene expression datasets, i.e. GSE8581 and GSE54837

for our study. The first dataset (GSE8581) consists of gene expression data, from 35 lung tis-

sues, which were collected from 16 COPD subjects (with FEV1 < 70% predicted and FEV1/
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FVC< 0.7) and 19 controls (with FEV1 > 80% predicted and FEV1/FVC > 0.7), generated on

the Affymetrix U133 Plus 2.0 array [20]. The second dataset, GSE54837 includes the expres-

sion data generated on GPL570 platform (Affymetrix, Santa Clara, CA, USA) from the blood

samples of 136 COPD patients and 6 controls (ex-smokers) [21].

2.2 Data preprocessing and analysis

The microarray gene expression data analysis was performed using R/Bioconductor (http://

www.R-project.org/). The raw data extracted in.CEL format was normalized into expression

values using the Bioconductor-Affy package for the standardization and background correc-

tion of the probe data [22]. The limma package was then used to select the statistical signifi-

cance of the differentially expressed genes between normal and COPD samples by applying

the t-test statistical method. The Benjamini-Hochberg method was used to calculate the false

discovery rate (FDR) of all the statistically significant genes to enable the removal of false posi-

tive ones [24]. The cutoff value for DEGs was set as FDR < 0.01 and |log2 FC|> 1.5. A p-value

of less than 0.05 was considered as statistically significant. The expression values of DEGs were

divided into up- and down-regulated genes and visualized using the Heatmap online webtool

(http://www.heatmapper.ca).

2.3 Gene ontology and functional enrichment analyses

Gene Ontology (GO) and KEGG pathway (https://www.genome.jp/kegg/pathway.html)

enrichment analysis of DEGs was conducted using STRING database (http://string-db.org).

The significant GO terms and pathways were chosen at a threshold of adjusted p< 0.05 and

FDR of 0.05. The GO annotation networks were visualized in the Cytoscape network style

plugin (http://www.cytoscape.org/)).

2.4 Construction of protein-protein interaction (PPI) map

The potential PPI networks from the lung and blood DEGs were constructed using Bisogenet,

a cytoscape plugin (version 3.4.0). Furthermore, the network clusters from PPI interactions

were identified with the help of network analyzer tool. The cut-off value of input nodes and

their neighbors was up to a distance of 1 edge. During the creation of PPIM, only protein-pro-

tein interactions were selected, excluding protein-DNA interactions and microRNA silencing

interactions. Each node represents a gene connected with edges which are physical or func-

tional between the nodes. Therefore, few nodes have a large number of edges while several

nodes have low connectivity [23].

2.5 Hub gene subnetwork construction

PPIM is considered to be a large-scale network. By following the network biology concepts,

the PPIM complex was decomposed into significant subnetwork clusters of Significant Protein

Interaction Network (SPIN). Based on degree centrality (DC) and betweenness centrality (BC)

parameters, several genes were extracted. Each protein captured in the network was incorpo-

rated and standardized into Cytoscape 3.2.1 using Network Analyzer to calculate local degree

centrality (DC) and global betweenness centrality (BC) parameters of the network [24].

2.6 Genome wide association study analysis

The hub genes from the above gene-network clusters were searched in the GWAS catalog data-

base (https://www.ebi.ac.uk/gwas/) to check their association with COPD risk. Variant details

like reference and alternate alleles, population frequency, genome wide association value (P-
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value of<5 × 10−8), reported trait, and accession number of the study were collected. We have

also used another genotype-phenotype association database, PhenoScanner V2 (http://www.

phenoscanner.medschl.cam.ac.uk/) to cross reference the association of hub genes with COPD

risk. Each hub gene name was searched in the database generated tables, which contain trait

specific associations of each gene and genome wide association values for its variants (P-value

of<5 × 10−8).

2.7 Lung cancer expression analysis

We used three different databases to investigate the expression status of the COPD-hub genes

in lung cancer tissues: Gene Expression Profiling Interactive Analysis (GEPIA2), Gene Expres-

sion Database of Normal and Tumor Tissues (GENT2), and Human Protein Atlas (HPA).

Gene Expression Profiling Interactive Analysis (GEPIA2) (http://gepia2.cancer-pku.cn) was

used to provide tumor/normal differential expression analysis. The signature score of hub

genes is calculated by mean value of log2 (TPM + 1). The |Log2FC| of 1 and an expression

value cutoff of 0.01 (p-value) were determined in Lung Adenocarcinoma (LUAD) and Lung

Squamous Carcinoma (LUSC) tissues. The Gene Expression Database of Normal and Tumor

Tissues GENT2 (http://gent2.appex.kr/gent2/) platform was used to explore the gene expres-

sion patterns across normal and tumor tissues generated from public gene expression data

sets. The survival rate status of hub genes in lung cancer and its histological subtypes (adeno-

carcinomas, large and squamous) represented by Kaplan Meier plots at 95% confidence inter-

vals (CI) and computed log rank p-value was determined. The human protein atlas (https://

www.proteinatlas.org/) database was used to explore the expression status of each hub gene in

human non-malignant and lung cancer tissues. This database takes the query gene or protein

name and provides the information about that candidate protein expression based on the pri-

mary antibody staining data with a series of immunohistochemistry images of the correspond-

ing clinical specimens.

3. Results

3.1 Differently expressed gene (DEGs) identification

A total of 54,675 probes were expressed in both datasets. In the human lung tissue dataset

(E-GEOD-8581), 678 DEGs including 247 up- and 431 down-regulated genes were identified,

whereas, blood dataset (GSE54837) showed the differential expression of 724 DEGs including

499 up- and 225 down-regulated genes. Comparison of both datasets revealed the shared

expression of 63 genes (Fig 1A). The expression level of DEGs of COPD patient samples (both

tissue and blood) is shown in the form of heatmaps and volcano plots (Fig 1B and 1C).

3.2 PPI network analysis and significant genes clusters

Bisogenet, a Cytoscape plugin analysis of DEGs from both datasets generated a complex PPIM

network of 1072 nodes (genes) and 20079 edges (interactions). The average edge-node ratio

was 18.73 (S1 Fig). In the context of the PPIM network, protein interactions within the same

group of clusters are assumed to have similar functions to the less interconnected regions or

different cluster groups. Therefore, the Network Analyzer plugin was applied to find signifi-

cant hub genes with the highest degree of centrality. A total of 12 significant genes and clusters

with a degree of centrality of>17 were identified from network analysis (Fig 2; S2 Fig) and

chosen as hub proteins (Table 1).
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3.3 GO annotation analysis

Gene Ontology annotation is the process by which functional categories of genes are assigned.

The GO annotations of 12 COPD gene clusters showed their enrichment in cell-cell communi-

cation, cell regulation, immune processes, transcription factors regulation and ubiquitin path-

ways. Four of these 12 COPD -gene clusters, CCDC74B, MECOM, IRAK2 and DET1 have

shown the lowest FDR values (Table 2), which reflects their highest functional enrichment in i

molecular function (MF), biological process (BP), cellular components (CC) categories and

KEGG pathways. For the CCDC74B cluster, GO enrichment highlights its involvement in ‘ubi-

quitin pathways and protein modification’, under the biological processes category, ‘Protein

Deubiquitination’ (GO:0016579) was the top GO term. The other top GO enriched terms fall-

ing into remaining categories are as follows; ‘proteasome-activating ATPase activity’ in MF,

‘Proteasome Regulatory Particle’ (GO:0005838) in CC and ‘Protein degradation’ (hsa03050) in

KEGG pathways. IRAK2 cluster was highly involved in signaling pathways and Kinase activity.

The GO term in BP highlighted ‘Interleukin-1-Mediated Signaling Pathway’ (GO:0070498),

Fig 1. B Analysis of COPD differentially expressed genes (DEGs) in comparison to corresponding controls (A)

Volcano plots of log fold changes in gene expression. (B) Identification of 63 common DEGs from blood and lung

tissue datasets using VENNY. The overlapped area defines the shared DEGs of lung tissue and blood. (C) Heatmap of

DEGs with a LogFC> 1.5. Red: up-regulation; green: down-regulation.

https://doi.org/10.1371/journal.pone.0274629.g001
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which mediates cytokine responses during inflammation. The MF ontology source showed

‘Protein Kinase Activity’ (GO:0004672) and ‘Catalytic Activity Acting on A Protein’

(GO:0140096) as top GO terms. The CC ontology source was mainly enriched in ‘endosome

Fig 2. Hub genes TMEM67, IRAK2, ASB4, MECOM, DPF3 and DDX3Y with their clusters identified from the common DEGs between

blood and lung tissue datasets. Their selection is based on degree of centrality in the PPI network with the score>18.

https://doi.org/10.1371/journal.pone.0274629.g002

Table 1. A total of 12 significant genes with more than 17 of DC were obtained from network analysis and chosen as hub proteins.

S.No Name Degree BetweennessCentrality ClosenessCentrality Clustering Coefficient

1 SREK1 77 0.004 0.456 0.177

2 TMEM67 54 0.012 0.386 0.0405

3 IRAK2 43 0.004 0.412 0.129

4 MECOM 31 0.002 0.394 0.234

5 ASB4 29 5.15E-04 0.390 0.122

6 C1QTNF2 28 0.005 0.369 0.010

7 CDC42BPA 26 0.005 0.415 0.0289

8 DPF3 24 2.37E-04 0.359 0.471

9 DET1 23 3.08E-04 0.384 0.260

10 CCDC74B 22 0.001 0.358 0.835

11 KHK 19 0.002 0.381 0.073

12 DDX3Y 17 2.80E-04 0.413 0.051

https://doi.org/10.1371/journal.pone.0274629.t001
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Table 2. Functional enrichment of CCDC74B, MECOM, IRAK2 and DET1 clusters, in which highlights highest functional enrichment in different molecular pro-

cesses like molecular function (MF), biological process (BP), cellular components (CC) and KEGG pathways based on FDR value.

DEG Clusters Ontology Term ID Term Description Observed Gene Count FDR

CDC74B Biological Process (BP) GO:0016579 Protein Deubiquitination 20 1.64E-31

GO:0006511 Ubiquitin-Dependent Protein Catabolic Process 19 2.42E-25

GO:0043687 Post-Translational Protein Modification 18 3.09E-25

Molecular Function (MF) GO:0036402 Proteasome-activating ATPase activity 6 1.28E-13

GO:0017025 TBP-class protein binding 6 5.02E-11

GO:0008134 Transcription factor binding 8 6.89E-06

Cellular Component (CC) GO:0005838 Proteasome Regulatory Particle 19 2.98E-48

GO:0000502 Proteasome Complex 20 1.65E-44

GO:0031597 Cytosolic Proteasome Complex 10 2.16E-24

KEGG Pathways (KP) hsa03050 Proteasome 16 5.94E-36

hsa05169 Epstein-Barr virus infection 16 9.78E-27

MECOM Biological Process (BP) GO:0006357 Regulation of transcription by RNA polymerase II 29 3.62E-19

GO:0000122 Negative regulation of transcription by RNA polymerase II 21 8.33E-19

GO:0045892 Negative regulation of transcription, DNA-templated 23 8.55E-19

Molecular Function (MF) GO:0043565 Sequence-specific DNA binding 22 1.03E-18

GO:0140110 Transcription regulator activity 25 7.51E-17

GO:1990837 Sequence-specific double-stranded DNA binding 18 7.02E-16

Cellular Component (CC) GO:0005654 Nucleoplasm 27 4.42E-14

GO:0031981 Nuclear Lumen 28 5.76E-14

GO:0000785 Chromatin 13 1.54E-11

KEGG Pathways (KP) hsa05220 Chronic myeloid leukemia 7 7.23E-09

hsa05200 Pathways in cancer 11 2.25E-08

hsa04068 FoxO signaling pathway 7 8.41E-08

IRAK2 Biological Process (BP) GO:0070498 Interleukin-1-Mediated Signaling Pathway 11 9.63E-16

GO:0071347 Cellular Response To Interleukin-1 12 6.86E-14

GO:0002757 Immune Response-Activating Signal Transduction 15 1.62E-13

Molecular Function (MF) GO:0004672 Protein Kinase Activity 11 2.03E-05

GO:0016301 Kinase Activity 12 2.03E-05

GO:0140096 Catalytic Activity, Acting On A Protein 17 5.41E-05

Cellular Component (CC) GO:0010008 Endosome Membrane 8 0.0015

GO:0044433 Cytoplasmic Vesicle Part 13 0.0015

GO:0044440 Endosomal Part 8 0.0015

KEGG Pathways (KP) hsa04064 NF-Kappa B Signaling Pathway 9 7.07E-11

hsa04620 Toll-Like Receptor Signaling Pathway 9 7.70E-11

hsa05133 Pertussis 7 1.19E-08

DET1 Biological Process (BP) GO:0042176 Regulation Of Protein Catabolic Process 11 1.42E-10

GO:0045732 Positive Regulation Of Protein Catabolic Process 9 1.15E-09

GO:1903362 Regulation Of Cellular Protein Catabolic Process 9 2.44E-09

Molecular Function (MF) GO:0031625 Ubiquitin Protein Ligase Binding 9 8.27E-09

GO:0048156 Tau Protein Binding 3 0.0001

GO:0004842 Ubiquitin-Protein Transferase Activity 6 0.00015

Cellular Component (CC) GO:0080008 Cul4-RING E3 Ubiquitin Ligase Complex 7 2.55E-12

GO:0000151 Ubiquitin Ligase Complex 10 3.77E-11

GO:0031464 Cul4A-RING E3 Ubiquitin Ligase Complex 5 3.07E-10

KEGG Pathways (KP) hsa04120 Ubiquitin Mediated Proteolysis 9 2.32E-12

Hh Nucleotide Excision Repair 4 1.09E-05

hsa05215 Prostate Cancer 4 0.00012

https://doi.org/10.1371/journal.pone.0274629.t002
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membrane’ (GO:0010008) and ‘Cytoplasmic Vesicle Part’ (GO:0044433). KEGG underlined

GO terms which are responsible for cytokine production and regulating the immune response

like ‘NF-Kappa B Signaling Pathway’ (hsa04064) and ‘Toll-Like Receptor Signaling Pathway’

(hsa04620). DET1 cluster was mostly reported in relation to protein degradation processes.

The BP ontology source highlighted ‘Regulation of Protein Catabolic Process’ (GO:0042176)

as the top GO term. MF ontology source identified ‘Ubiquitin Protein Ligase Binding’

(GO:0031625) as the significant GO term. ‘Cul4-RING E3 Ubiquitin Ligase Complex’

(GO:0080008) are the top CC terms, while ‘Ubiquitin Mediated Proteolysis’ (hsa04120) and

‘Nucleotide Excision Repair’ (hsa03420) was the significant KEGG pathways. (Fig 3A). The

MECOM cluster was highly enriched in regulation of transcription by ‘RNA polymerase II’ as

top BP GO term (GO:0006357). Top MF term was ‘transcription regulator activity’

(GO:0140110). ‘Nucleoplasm’ (GO:0005654) and ‘Nuclear Lumen’ (GO:0031981) are the top

CC terms, and ‘Pathways in cancer’ was the significant KEGG pathway (Fig 3B).

The functional enrichment values of the remaining 8 gene clusters (CDC42BPA, DPF3,

SREK1, TMEM67, ASB4, DDX3Y, KHK, and C1QTNF2) are shown in Fig 3A and 3B.

CDC42BPA cluster predicted its participation in ‘Fc Gamma R-Mediated Phagocytosis’

(hsa04666). ‘Legionellosis’ (hsa05134) was mainly enriched by DPF3 cluster. While the

TMEM67 and ASB4 clusters were mostly involved in "Proteasome" (hsa03050) and "Ubiqui-

tin-mediated proteolysis" (hsa04120), the SREK1 cluster was mostly involved in ‘RNA binding’

(GO:0003723). The ‘Pathways in cancer’ (hsa05200) was significant GO term in DDX3Y clus-

ter. Lastly, KHK and C1QTNF2 were mainly enriched in ‘metabolic process’ (GO:0044238)

and ‘extracellular matrix-receptor interaction’ (hsa04512) respectively.

3.4 Examining the role of hub genes in data from COPD genome wide

association studies (GWAS)

Both the GWAS catalog and PhenoScanner databases were used to collate the genetic associa-

tion data of hub genes with the risk of COPD development. The GWAS data findings of 12

COPD-hub genes, include variant IDs, reference and alternate alleles, significance of associa-

tion (P = 5 × 10−8), phenotypic traits associated with the query genes, etc. GWAS findings

revealed the association of IRAK2 with eosinophil count alterations usually manifested in

inflammatory conditions (Table 3). For the MECOM hub gene, the associated traits are pul-

monary complications including COPD, asthma and lung function (Fig 4C and 4D No signifi-

cant GWAS data linking the remaining 10 COPD-hub genes (SREK1, TMEM67, ASB4,

C1QTNF2, CDC42BPA, DPF3, DET1, CCDC74B, KHK, and DDX3Y) with any kind of lung

disease was found. In PhenoScanner, 6 out of 12 hub genes (IRAK2, MECOM, ASB4,

CDC42BPA, DPF3 and TMEM67) have revealed an association with lung related traits and

lung cancer (S1 Table). IRAK2 is associated with lung cancer and a high eosinophil count.

Genotype-phenotype associations of MECOM highlighted pulmonary function interaction,

lung cancer, and COPD with acute exacerbation. Both ASB4 and CDC42BPA showed an asso-

ciation with COPD with acute lower respiratory infection. The DPF3 gene is associated with

COPD and squamous cell carcinoma, lung cancer. Lastly, TMEM67 is associated with lung

cancer.

3.5 Examining the transcriptional status of COPD hub genes in lung cancer

expression

In GPEIA2 analysis, boxplots of 12 hub genes were retrieved. Adenocarcinoma (LUAD) and

Squamous Cell Carcinoma (LUSC) were selected with a P-value cutoff of 0.01 using The Can-

cer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Out of 12 hub
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Fig 3. GO-annotations stacked network view of (A) MECOM and (B) IRAK2 clusters. The size of the circle (left side)

represents the number of genes involved in a specific GO-term. The GWAS loci of (C) MECOM (D) IRAK2 genes

from the GWAS catalog.

https://doi.org/10.1371/journal.pone.0274629.g003

PLOS ONE Biomarker discovery in COPD and Lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0274629 October 4, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0274629.g003
https://doi.org/10.1371/journal.pone.0274629


genes, only 4 (IRAK2, SREK1, C1QTNF2 and DDX3Y) have shown significant gene expression

in lung cancer compared to the normal tissues (Fig 4A–4E). The boxplots of IRAK2, SREK1
and C1QTNF2 show their significant expression in LUSCs. The DDX3Y gene was significantly

expressed in both LAUD and LUSC cells. The GENT2 platform is used to explore gene expres-

sion patterns across normal and lung tumor tissues. Fig 5 shows the prognostic value (patient

survival in days) of the expression status of 6 COPD-hub genes. Out of the 12-COPD hub

genes, 5 genes (SREK1, TMEM67, CDC42BPA, DPF3, and ASB4) showed an improvement in

lung cancer survival duration up to 1500 days (P values for all the associations is<0.02) (Fig

5). The correlation of survival status of patients with different lung cancer subtypes to all five

gene expression levels reveals that adenocarcinomas have a longer survival rate (0.2–0.4) than

those with squamous and large cell lung cancers.

Table 3. Association of two hub genes with the lung related traits and lung cancer from GWAS catalog database.

Gene Variant and risk

allele

P-value Reported trait Trait(s) Study accession

IRAK2 rs114743735 6 x 10–

11

Eosinophil percentage of white cells eosinophil percentage of leukocytes GCST004600

rs114743735 1 x 10–

10

Eosinophil counts eosinophil count GCST004606

rs115820364- 1 x 10–

26

Eosinophil counts eosinophil count GCST90002298

rs115820364 3 x 10–

24

Eosinophil counts eosinophil count GCST90002302

rs115820364 1 x 10–

24

Eosinophil counts eosinophil count GCST007065

rs114743735 6 x 10–

9

Sum eosinophil basophil counts basophil count, eosinophil count GCST004624

MECOM rs1344555 3 x 10–

8

Pulmonary function pulmonary function measurement, forced expiratory volume GCST001251

rs1344555 4 x 10–

6

Pulmonary function (smoking

interaction)

pulmonary function measurement, forced expiratory volume,

smoking behaviour measurement

GCST001784

rs11721111 8 x 10–

6

Chronic obstructive pulmonary disease chronic obstructive pulmonary disease GCST007692

rs78101726 5 x 10–

16

Lung function (FVC) vital capacity GCST007429

rs78101726 8 x 10–

25

FEV1 forced expiratory volume GCST007432

rs78101726 4 x 10–

8

Lung function (FEV1/FVC) FEV/FEC ratio GCST007431

rs17485347 3 x 10–

9

Asthma asthma GCST010043

rs191494905 1 x 10–

11

Lung function (FEV1/FVC) FEV/FEC ratio GCST007080

rs6763377 9 x 10–

10

Lung function (FEV1/FVC) FEV/FEC ratio GCST007080

rs10936584 3 x 10–

18

Lung function (FVC) vital capacity GCST007081

rs6806825 5 x 10–

12

Lung function (FVC) vital capacity GCST007081

rs419076 2 x 10–

24

Diastolic blood pressure (cigarette

smoking interaction)

smoking status measurement, diastolic blood pressure GCST006187

rs419076 4 x 10–

22

Systolic blood pressure (cigarette

smoking interaction)

smoking status measurement, systolic blood pressure GCST006188

https://doi.org/10.1371/journal.pone.0274629.t003
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The Human Protein Atlas (HPA) derived protein expression status in normal tissue and

lung cancer tissues for COPD- hub genes is illustrated in Fig 6 and Table 4. Abundance of

these proteins could be divided into four categories like high, medium, low and not detected

by the scoring system based on the intensity of staining, whether strong, moderate, weak, or

Fig 4. Expression levels in lung adenocarcinoma and lung squamous cell carcinoma cells in compression to normal tissues from GEPIA2. A)

SREK1. B) IRAK2. C) DDX3Y. D) C1QTNF2. The signature score is calculated by mean value of log2 (TPM + 1). The |Log2FC| cutoff of the

expression of proposed biomarker was 1. The p-value cutoff of the expression of proposed biomarker was 0.01. The red box indicates the tumor

samples while the gray one represents the normal tissues. E. Pathological Stage Plot of SREK1, IRAK2, DDX3Y and C1QTNF2 genes in lung

cancer.

https://doi.org/10.1371/journal.pone.0274629.g004
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negative. The macrophage and pneumonocytes staining for ASB4 in normal lung tissues was

not detected and was medium in lung cancer. Medium staining detection of CDC42BPA and

IRAK2 were found in both normal and cancer lung tissue in addition to SREK1 and C1QTNF2
which was observed in medium in normal tissue but higher in lung cancer tissue. Staining of

MECOM was very high in both normal and cancer lung tissue. While low to no protein detec-

tion of DET1 and KHK were observed in both normal and lung cancer tissue. Furthermore,

DDX3Y and DPF3 staining in normal lung tissues were negative but DDX3Y was higher in

lung cancer tissue but not DPF3. Finally, data were not available for TMEM67 and CCDC74B
genes in HPA (S3 Fig).

4. Discussion

Massive high throughput genome wide- sequencing and expression studies have been effective

in querying the molecular basis of many inherited diseases in humans. However, deciphering

the molecular basis of chronic diseases is challenging, owing to the complex interplay of genes

and environmental factors. The etiopathogenesis of complex diseases like COPD can be better

explained by studying the global gene expression changes. The recent biomarker discoveries in

intracranial aneurysm [25], Parkinson disease [26], Diabetes mellitus [27] and cancers [28]

once again proves the robustness of bioinformatics methods in analyzing the huge gene

expression data. Few studies have attempted to analyze the gene expression changes either in

blood samples [29, 30] or tissue samples of COPD patients [31, 32]. But, none of them

attempted to identify blood based genetic biomarkers. Therefore, this study tried to explore

Fig 5. The prognostic values (patient survival in days) of the expression status of 6 COPD-hub genes. A) SREK1 (P<0.001).

B) TMEM67 (P = 0.002). C) CDC42BPA (P = 0.003). D) DPF3 (P = 0.005). E) ASB4 (P = 0.024) F) IRAK2 (P = 0106). The

correlation of survival status of patients with different lung cancer subtypes (Squamous, Adeno, Large) to all six genes expression

level.

https://doi.org/10.1371/journal.pone.0274629.g005
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the shared gene expression changes between both blood and lung tissues to identify potential

biomarkers to assist in diagnostics or prognostic aspects of COPD patients.

Chronic diseases are caused by the action of dysregulation of multiple genes at different

stages of the disease pathology. Hence, we constructed a protein interactome based on the dif-

ferentially expressed genes in the COPD patients. The protein-protein interaction networks

establish the physical contacts between two or more proteins as a result of biochemical events

underlying the disease etiopathogenesis. The characteristic features of PPI is based on various

connectivity between nodes and edges, where each node indicates a gene connected to its func-

tional partners [23]. To reduce the complexity of PPI network, highest connected nodes are

decomposed into a clusters or modules. The gene with the highest number of edges among

group of genes within the same cluster is known as hub gene, which are basically chosen based

on its degree of centrality (DC) values in the network [33]. DC also refers to node connectivity,

i.e. the number of connections to the node and its interaction [34]. In context of these network

principles in identifying the COPD-hub genes, we assessed the essential properties of the genes

that are involved in the disease.

Since clusters are characterized by extensive connectivity between a set of genes, GO anno-

tations provides functional interpretation of them under vaiety of biological categories [35]. In

the present study we identified 12 COPD hub gene clusters (SREK1, TMEM67, IRAK2,

MECOM, ASB4, C1QTNF2, CDC42BPA, DPF3, DET1, CCDC74B, KHK, DDX3Y) from PPI

Fig 6. The expression of the two hub genes from the Human Protein Atlas (HPA) in normal and cancer lung tissue.

https://doi.org/10.1371/journal.pone.0274629.g006
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network, which revealed their enrichment in cell regulation, immune process, transcription

factors regulations and protein degradation pathways. The upregulated gene (DDX3Y) in both

blood and lung tissue were enriched in functions associated with regulation of gene expression,

cell cycle, cellular senescence and FoxO signaling pathway which is involved in many cellular

physiological events such as apoptosis and cell-cycle control. Moreover, there were two down-

regulated genes (MECOM and KHK). MECOM were associated with regulation of transcrip-

tion, pathways in cancers and FoxO signaling pathway. While KHK were involved in Starch

and sucrose metabolic processes. However, of those 12 gene clusters, CCDC74B, MECOM,

IRAK2 and DET1 clusters had shown the lowest FDR values, which reflects their highest func-

tional enrichment in different molecular processes. The CCDC74B gene cluster was mainly

enriched in proteasome pathway, which degrades unneeded proteins within the cell. The activ-

ity of proteasome can be impaired by cigarette smoke resulting in reduction of antigen presen-

tation and lead to prolonged lung infections and COPD patients [36].

In lung tissues of COPD patients, accumulation of ubiquitylated proteins and further degra-

dation by proteasome machinery is reported [37]. Protein catabolic processes pathway

enriched in DET1 gene cluster also plays an important role in pathogenesis of COPD. The

chronic inflammation in COPD contributes to the imbalance of protein degradation resulting

in the loss of skeletal muscle protein, one of the characteristic features present in COPD [38].

On the other hand, MECOM gene cluster highlights the regulation of transcriptional pathway

which controls the changes in gene transcription of many inflammatory substances that play a

key role in the pathogenesis of COPD [39, 40]. The IRAK2 gene cluster showed its involve-

ment in regulation of inflammatory process such as interleukin (IL)-1 pathway activation and

Toll like receptor that is directly linked to the pathogenesis of COPD, is characterized by

abnormal release of inflammatory cytokines, remodeling of the airways and dysregulated

immune cell activity [41, 42].

Table 4. The expression levels of the 10 hub genes in normal lung and cancer tissues: Human Protein Atlas (HPA).

Genes Normal Tissue Staining Cancer Lung Tissue (Tumor cell)

Cell Staining Quantity Staining Quantity Type of Cancer

ASB4 Macrophage Not detected None Medium 75%-25% LUAD

Pneumonocyte Not detected None

CDC42BPA Macrophage Medium >75% Medium 75%-25% LUSC

Pneumonocyte Medium >75%

DET1 Macrophage Low <25% Low <25% LUSC

Pneumonocyte Not Detected None

IRAK2 Macrophage Medium >75% Medium >75% LUSC

Pneumonocyte Low 75%-25%

MECOM Macrophage High >75% High >75% LUSC

Pneumonocyte High >75%

DDX3Y Macrophage Not detected None High 75%-25% LUSC

Pneumonocyte Not detected None

SREK1 Macrophage Medium 75%-25% High >75% LUSC

Pneumonocyte Medium 75%-25%

DPF3 Macrophage Not Detected <25% Not Detected None LUAD

Pneumonocyte Not detected <25%

C1QTNF2 Macrophage Not detected None High >75% LAUD

Pneumonocyte Medium 75%-25%

KHK Macrophage Medium >75% Low >75% LAUD

Macrophage Not detected None

https://doi.org/10.1371/journal.pone.0274629.t004
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Genome wide association studies reveals the association of genetic variants with risk of

developing common diseases by screening genetic samples from thousands of samples. In this

study, 12 hub genes were searched in GWAS databases for their association with COPD, lung

function traits as well as lung cancers. The GWAS data confirmed that the variants in the 6

COPD-hub genes (IRAK2, MECOM, CDC42BPA, ASB4, DPF3 and TMEM67) shows genome

wide significant association to traits that could potentially modify the risk of COPD pathology

development. At least 5 variants in IRAK2 were significantly associated with variety of eosino-

phil count traits [43]. Eosinophilia (high eosinophil counts) causes inflammation of the lung

tissue and exacerbates the lung function in the COPD patients. However, the role of eosino-

phils in COPD is unclear, as not all COPD patients develop eosinophilic airway inflammation

[44, 45]. Interestingly, IL-1 signaling has been shown to be associated with eosinophilic inflamma-

tory profiles in patient with COPD [43]. Moreover, in COPD patients with eosinophilic inflam-

mation have the tendency to respond to steroid therapy. Therefore, eosinophil count is an

important point of view to direct biological therapies for COPD [46]. Many variants in MECOM

were strongly associated with FEV1and other traits that are directly related to lung function and

COPD pathogenesis [47]. Other COPD- hub genes (CDC42BPA, ASB4, DPF3 and TMEM67) are

were also associated with lung function related traits and lung cancer [48–50].

COPD is one of the significant risk factors for oncogenesis of the lung tissues, which is seen

in about 1% of COPD patients every year [51]. Both COPD and lung cancer share many com-

mon pathways such as immune dysfunction and regulation of transcription factors [52]. Inter-

estingly, pathways enriched by MECOM and IRAK2 were involved in lung cancer

development. For instance, MECOM is an important transcription factor involved in onco-

genesis [53, 54]. Aberrant expression of MECOM is one of the characteristic features of many

malignancies including leukemia [55] and solid tumors such as breast cancer and hepatocellu-

lar carcinoma [53, 56] as well as lung cancer [57]. Moreover, frequent alterations in MECOM

have been associated with primary and metastatic lung adenocarcinomas [58]. On the other

hand, activation of the TLR pathway has a significant impact on cancer progression regulation

including lung cancer [59, 60]. One genetic variant in IRAK2 (rs779901 C> T) in the TLR sig-

naling pathway is suggested to be a prognostic biomarker for non-small cell lung cancer

(NSCLC) [61]. Global gene expression profile analysis provides a valuable insight into the nor-

mal biological process and to disease pathogenesis [62]. To support the contribution of IRAK2

and MECOM hub genes, significant dysregulation of expression in lung cancer types were

observed in HPA, GPEIA2 and GENT2 databases as well. Furthermore, differentially expres-

sion of IRAK2 and MECOM genes has been reported in many studies in cancers or COPD

[63–65].

5. Conclusions

In conclusion, we identified, 12 blood based molecular biomarkers (SREK1, TMEM67,

IRAK2, MECOM, ASB4, C1QTNF2, CDC42BPA, DPF3, DET1, CCDC74B, KHK, DDX3Y)

for COPD diagnosis, by integrative gene expression and gene network approaches. Out of

these 12 hub genes, two (MECOM and IRAK2) were over expressed in lung cancers tissues,

which reflects a shared molecular lineage between COPD and lung cancers. Interestingly, we

have also identified that the expression status of other COPD hub genes like SREK1,

TMEM67, CDC42BPA, DPF3, and ASB4 improves the survival duration of lung cancer

patients, hence they may act as potential molecular drug targets and/or biomarkers for both

COPD and/or lung cancer. However, biological and clinical relevance of each COPD hub gene

can be better understood, when our findings are explored through future in vitro and in vivo
validation assays.
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