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ABSTRACT

The clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9)
system, an RNA-guided DNA targeting technology, is
triggering a revolution in the field of biology. CRISPR/
Cas9 has demonstrated great potential for genetic
manipulation. In this review, we discuss the current
development of CRISPR/Cas9 technologies for thera-
peutic applications, especially chimeric antigen receptor
(CAR) T cell-based adoptive immunotherapy. Different
methods used to facilitate efficient CRISPR delivery and
gene editing in T cells are compared. The potential of
genetic manipulation using CRISPR/Cas9 system to
generate universal CAR T cells and potent T cells that
are resistant to exhaustion and inhibition is explored.
We also address the safety concerns associated with
the use of CRISPR/Cas9 gene editing and provide
potential solutions and future directions of CRISPR
application in the field of CAR T cell immunotherapy. As
an integration-free gene insertion method, CRISPR/Cas9
holds great promise as an efficient gene knock-in plat-
form. Given the tremendous progress that has been
made in the past few years, we believe that the CRISPR/
Cas9 technology holds immense promise for advancing
immunotherapy.

KEYWORDS CRISPR/Cas9, chimeric antigen receptor,
T lymphocytes, adoptive immunotherapy, gene therapy

INTRODUCTION

The clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a
versatile RNA-guided DNA targeting technology, is triggering
a revolution in the field of biology. CRISPR/Cas9 has

demonstrated great potential for genetic manipulation, even
in previously difficult contexts. Here, we review the current
development of CRISPR/Cas9 technologies for therapeutic
applications, especially chimeric antigen receptor (CAR) T
cell-based adoptive immunotherapy. We compare the dif-
ferent methods used to facilitate efficient CRISPR delivery
and gene editing in T cells. We explore the potential for
genetic manipulation using the CRISPR/Cas9 system to
generate universal CAR T cells and potent T cells resistant to
exhaustion and inhibition. We discuss safety concerns
regarding the specificity and future directions of CRISPR in
the field of CAR T cell immunotherapy.

THE CRISPR/CASY9 SYSTEM

The field of genome editing is evolving rapidly. Until a dec-
ade ago, zinc-finger nucleases (ZFNs) were the only prac-
tical option available for targeted genome editing (Bibikova
et al., 2002, 2003; Porteus and Baltimore, 2003; Urnov et al.,
2005; Morton et al., 2006; Doyon et al., 2008; Kim et al.,
2009; Townsend et al., 2009). Zinc finger proteins recognize
target DNA in a modular fashion: each protein consists of at
least three zinc finger domains, and a single zinc finger
domain interacts with a 3-bp sequence, making them ideal
programmable sequence-specific DNA-binding proteins
(Pavletich and Pabo, 1991). In 2011, transcription activator-
like effector nucleases (TALENs) emerged as a competitive
alternative to ZFNs (Boch et al., 2009; Moscou and Bog-
danove, 2009; Cermak et al., 2011; Miller et al., 2011; Briggs
et al.,, 2012). Unlike zinc fingers, each repeat domain in
TALE proteins recognizes a single base. Four different
repeat domains can be mixed and matched to create new
DNA-binding proteins, which can be linked to the Fokl
domain to create a new class of programmable target DNA
nucleases (Miller et al., 2011). These molecules enable
precise targeting and cutting at a specific genomic locus to
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generate double-strand breaks (DSBs) followed by nonho-
mologous end joining (NHEJ) or homology-directed repair
(HDR)-mediated repair, thereby enabling precise genome
editing. Studies using these two classes of nucleases have
led to important scientific discoveries and therapeutic
development. In fact, a ZFN-based treatment of HIV that
disables the HIV co-receptor C-C chemokine receptor type 5
(CCRS5) in human primary T cells is currently in clinical trials
and has shown great promise (Perez et al., 2008; Tebas
et al.,, 2014). However, the recognition of the target DNA
sequence by these protein-based genome engineering
systems is determined by protein sequences. Tedious and
complex protein engineering and optimization are therefore
required for each specific target DNA sequence, and deliv-
ering many of these proteins into cells for simultaneous
multiplexed genetic manipulation is challenging. Given these
difficulties, their use for large-scale genomic manipulation or
genetic screens has been limited.

The CRISPR/Cas9 technology originates from type Il
CRISPR/Cas9 systems, which provide bacteria with adap-
tive immunity to viruses, plasmids, and other foreign nucleic
acids (Barrangou et al., 2007; Horvath and Barrangou, 2010;
Wiedenheft et al., 2012). Type Il CRISPR systems incorpo-
rate sequences from invading DNA between CRISPR repeat
sequences that are encoded as arrays within the bacterial
host genome. Transcripts from the CRISPR repeat arrays
are processed into CRISPR RNAs (crRNAs) (Deltcheva
et al.,, 2011), each containing a variable sequence tran-
scribed from the invading DNA, which is known as the
“protospacer” sequence, and part of the CRISPR repeat.
Each crRNA hybridizes with a second RNA, which is known
as the transactivating CRISPR RNA (tracrRNA) (Deltcheva
et al., 2011), and these two RNAs form a complex with the
Cas9 DNA endonuclease (Jinek et al., 2012). The proto-
spacer-encoded portion of the crRNA guides Cas9 to com-
plementary target DNA sequences and cleaves the DNA if
they are adjacent to short sequences known as protospacer
adjacent motifs (PAMs). The type Il CRISPR system from
Streptococcus pyogenes has been adapted for inducing
sequence-specific DSBs and targeted genome editing. In
2012, Jinek et al. first demonstrated that the Cas9 protein
from Streptococcus pyogenes (SpCas9) can bind with a
tracrRNA-crRNA RNA complex to induce DSBs in vitro at a
target DNA sequence by Watson-Crick base pairing of
crRNA and target DNA (Jinek et al., 2012). This study also
showed that directing Cas9 to bind and cleave a specific
DNA sequence did not require an RNA complex. The pro-
cess can be simply achieved by using a designed, chimeric
single guide RNA (sgRNA). In 2013, two groups from MIT
and Harvard demonstrated the feasibility of genome editing
of human cells using the CRISPR/Cas9 system (Cong et al.,
2013; Mali et al., 2013b). These discoveries paved the way
and opened the era for the use of CRISPR/Cas9 in genome
engineering, including gene editing and gene expression
regulation, epigenetic modification, and genome imaging
(Cheng et al., 2013; DiCarlo et al., 2013; Gilbert et al., 2013;
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Hwang et al.,, 2013; Li et al., 2013; Maeder et al., 2013;
Nekrasov et al., 2013; Perez-Pinera et al., 2013; Qi et al.,
2013; Shen et al.,, 2013; Wang et al., 2013; Tanenbaum
et al., 2014; Chavez et al., 2015; Hilton et al., 2015; Kearns
et al., 2015; Konermann et al., 2015).

GENE EDITING AND THERAPEUTIC APPLICATION
OF CRISPR/CAS9 IN HUMAN T CELLS

In addition to generating powerful research tools, genome
editing with CRISPR/Cas9 technology holds great promise
as a means to produce therapeutic agents or as a thera-
pedutic itself. Although we focus on SpCas9, particularly its
use in therapeutic applications and the development of next-
generation transformational drugs in T cells, the general
outline described here applies to the larger ensemble of
CRISPR/Cas9 tools.

The therapeutic potential of CRISPR/Cas9 has already
been demonstrated in many aspects. CRISPR/Cas9 has
been applied as an antimicrobial agent and has been
developed to specifically target antibiotic resistance in highly
virulent strains of bacteria (Makarova et al., 2006). Gene
therapy applications have also been tested for monogenic
diseases. A CFTR gene defect was repaired in cells from
human patients with cystic fibrosis in vitro in cultured
intestinal stem cell organoids using CRISPR-Cas (Schwank
et al., 2013). Correction of the defective gene causing
hereditary tyrosinaemia was performed in mice after the
hydrodynamic injection of CRISPR components. This appli-
cation led to an expansion of mutation-corrected hepato-
cytes in vivo and resulted in a rescued phenotype in adult
mice (Yin et al., 2014). Advancing from the described ther-
apeutic treatment to preventative techniques, muscular
dystrophy was prevented via germ line gene editing (Long
et al., 2014). The use of CRISPR/Cas9 to treat viral infec-
tions, such as HIV and hepatitis B, has also been demon-
strated (Zhen et al., 2015). IPSC resistant to HIV-1 was also
generated through genome editing (Hu et al., 2014; Ye et al.,
2014).

The application of genome editing for therapeutic purpose
has begun to overlap with the rapidly evolving field of cancer
immunotherapy, particularly for the production of next-gen-
eration chimeric antigen receptor (CAR) T cells. These
modified T cells armed with tumour-targeting receptors have
demonstrated great promise in clinical trials treating various
leukaemias and lymphomas and may eventually be used to
treat solid cancers (Maus et al., 2014). CARs comprise an
extracellular single-chain variable fragment (ScFv) specific
to an antigen on tumour cells and an intracellular chimeric
signalling domain that drives T cell activation and the killing
of tumour cells (Gross et al., 1989; Irving and Weiss, 1991;
Maher et al., 2002; Brentjens et al., 2003; Carpenito et al.,
2009). To date, the best CAR T cell therapy involves tar-
geting CD19, an antigen expressed by B cells and B cell
malignancies. Several other CAR T therapies targeting solid
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tumours antigens, such as Her2/neu, Mesothelin cMet, GD2,
interleukin-13 receptor alpha 2 (IL13Ra2), CEA, and EGFR,
are currently under evaluation in different phases of clinical
trials.

Currently, most CAR T clinical trials utilize autologous T
cells and might therefore be hampered by the poor quality
and quantity of T cells and by the time and expense of
manufacturing autologous T cell products. CAR T cell ther-
apy could substantially benefit from allogeneic universal
donor T cells, as “off-the-shelf” cells could greatly increase
the number of patients who could be treated by a single CAR
T cell product. However, endogenous TCR on allogeneic T
cells may recognize the alloantigens of the recipient, leading
to graft-versus-host disease (GVHD); furthermore, the
expression of HLA on the surface of allogeneic T cells cau-
ses rapid rejection by the host immune system. In this con-
text, ZFNs and TALENs have been used to knock out
endogenous T cell receptor genes in T cells, which could
prevent unwanted graft-versus-host reactivity (Provasi et al.,
2012; Torikai et al., 2012; Poirot et al., 2015). Genome-
editing strategies could also be used to prevent or delay the
rejection of CAR T cells by the recipient’'s immune system by
eliminating or decreasing the expression of histocompatibility
antigens on the donor T cells. Future CAR T cell therapies
could benefit from combined modification of endogenous
TCR genes, histocompatibility genes, and components of
signalling pathways. In a previous study, we reported the use
of the CRISPR/Cas9 system to simultaneously disrupt mul-
tiple genomic loci. CAR T cells deficient in the expression of
endogenous T cell receptor (TCR) and HLA class | (HLA-I)
were generated that can be used as universal CAR T cells
(Ren et al., 2016).

In addition to enabling the generation of universal CAR T
cells, genome editing could be used to enhance CAR T cell
function by ablating the genes encoding T cell inhibitory
receptors or signalling molecules, such as programmed cell
death protein 1 (PD1) or cytotoxic T lymphocyte-associated
protein 4 (CTLA4) (Lloyd et al., 2013; Hoos, 2016; Su et al.,
2016). Indeed, a clinical trial has recently been approved by the
US National Institutes of Health (NIH) Recombinant DNA
Advisory Committee (RAC) that will be conducted at the
University of Pennsylvania. In this clinical trial, PD1 and the
endogenous TCR will be knocked out by CRISPR/Cas9 in NY-
ESO-1 TCRtransduced Tcells. The first clinical trial of CRISPR/
Cas9 has been initiated. The trial uses CRISPR/Cas9 to knock
out PD1 in Tcells of patients with lung cancer; however, CAR or
TCR will not be introduced into T cells in this trial (Cyranoski,
2016). Similar trials with PD1-knockout autologous T cells for
prostate (NCT02867345), bladder cancer (NCT02863913),
and renal cell carcinoma (NCT02867332) are also being initi-
ated. Scientists are seeking to introduce CAR via HDR to
eliminate the need to randomly integrate viral delivery systems
and control where CAR integrates (Sadelain et al., 2011; Kalos
and June, 2013). Notably, simply ablating inhibitory molecules
can be a double-edged sword. It is important to investigate
whether the removal of some inhibitory signals from the T cells
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leads to the uncontrolled proliferation of cells or to severe
autoimmunity.

DELIVERY OF CRISPR/CASY IN T CELLS

The CRISPR/Cas9 system can be directly applied to human
cells by transfection with a plasmid that encodes Cas9 and
sgRNA (Cong et al., 2013). The viral delivery of CRISPR
components has been extensively demonstrated using len-
tivirus and retrovirus (Shalem et al., 2014; Williams et al.,
2016). Gene editing with CRISPR encoded by non-inte-
grating virus, such as adenovirus and adenovirus-associated
virus (AAV), has also been reported (Ran et al.,, 2015;
Swiech et al., 2015). Recent discoveries of smaller Cas
proteins have enabled and enhanced the combination of this
technology with vectors that have gained increasing success
for their safety profile and efficiency, such as AAV vectors.
Due to their relatively low immunogenicity, AAVs are com-
monly chosen for in vivo gene delivery in somatic gene
therapy (Friedland et al., 2015; Ran et al., 2015). CRISPR
delivery via Cas9 ribonucleoproteins (RNP) also exhibited
efficient gene editing in human cells (Kim et al., 2014).

Gene disruption in T cells had been achieved by lentiviral
and adenoviral delivery of CRISPR components into primary
T cells. However, these methods cannot site-specifically
insert and occasionally disrupt essential genetic elements,
and the gene disruption efficiency was not very high (Wang
et al., 2014; Li et al., 2015). Recently, a Jurkat T cell-based
lentiviral CRISPR toolbox was developed to facilitate the
research on T cell function. Given the flexible and easy-to-
handle features of Jurkat T cells, and programmability with
different Cas9 variants, the toolbox might serve as a useful
platform for the study of T cell signal transductions (Chi et al.,
2016). Although gene ablation in T cells with DNA nucleo-
fection of CRISPR reagents was also achieved, DNA
nucleofection is associated with high toxicity to T cells, which
represents a major difficulty for its application (Mandal et al.,
2014; Su et al., 2016). Schumann et al. reported the site-
specific genome editing of primary human T cells using Cas9
RNPs (Schumann et al., 2015). Cas9 RNPs are recombinant
Cas9 proteins complexed with in vitro-transcribed sgRNAs.
Cas9 RNPs delivered via electroporation efficiently ablate
CXCR4 and PD-1 expression in CD4 T cells by introducing
insertions or deletions (indels) in the targeted region. Fur-
thermore, the inclusion of a HDR template successfully
introduced exogenous DNA into the genome at the Cas9
cleavage site. Deep sequencing results indicated that up to
55% of the treated cells contained indels in the targeted
region, with 20% of the cells incorporating the exogenous
DNA sequence introduced through the HDR template.

The work by Schumann et al. is joined by other recent
reports focused on primary human T cell gene editing using
CRISPR/Cas9. Hendel et al. reported the disruption of CCR5
locus in T cells by co-delivering Cas9 mRNA or protein with
chemically modified sgRNAs via electroporation, achieving
up to 49% target mutagenesis in activated primary human T
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cells calculated by tracking of indels by decomposition
(TIDE) analysis (Hendel et al., 2015).

A major challenge in primary T-cell engineering lies in the
limited time frame in which genetic manipulation can be
accomplished with high efficiency. Unstimulated primary or
naive T cells are significantly less receptive to exogenous
nucleic acid or protein uptake compared with stimulated T
cells (Hendel et al., 2015). By contrast, repeated stimulation
will lead to T-cell exhaustion and decrease its anti-tumour
efficacy. Therefore, protocol optimization will be required to
enable the effective application of multiple genetic manipu-
lation techniques on one T-cell product. To this end, we
recently reported a method to incorporate disrupting
endogenous genes into standard clinical CAR T cell manu-
facturing processes (Ren et al., 2016). Freshly isolated
human T cells were stimulated via anti- CD3/CD28 beads
and lentivirally transduced at 1 day post-stimulation to stably
express a CAR transgene, and T cells were electroporated at
days 3 and 4 with RNA-encoding Cas9 and sgRNA to disrupt
TCR, HLA-I, and PD1 simultaneously. The editing efficiency
using this combined protocol was donor dependent, with the
results indicating >70% CAR transduction efficiency and
>60% double-knockout efficiency in most production runs.
This manufacturing procedure yielded CAR T cells that were
specific to CD19 targets, resistant to host rejection, and
incapable of triggering GVHD, thus highlighting the ability to
generate multi-functional universal CAR T cells with
CRISPR/Cas9 techniques. Similar results were also repor-
ted using another approach of CRISPR/Cas9 RNPs target-
ing the same 3 genes: TCR, B2m, and PD1 (Liu et al., 2017).
Compared to multiple deliveries of sgRNAs, multiplex gen-
ome editing with Cas9 RNP in T cells reduced the toxicity
associated with RNA electroporations at the cost of
decreased gene targeting efficiency. The authors used
multiple sgRNAs targeting the same gene to improve gene
disruption efficiency, which may potentially increase the off-
target effects. To further improve the application of multiplex
genome editing and to reduce the toxicity associated with
multiple electroporation, we developed a One-shot CRISPR
system, by incorporation of multiple gRNAs in a CAR len-
tiviral vector. Efficient multiple gene modification can be
achieved by a single electroporation of various Cas9 mRNAs
(Ren et al.,, 2017). A brief summary of various delivery
methods of CRISPR/Cas9 components into T cells is
schematically presented in Fig. 1. A comparison between
different methods for CRISPR gene editing in T cell is pre-
sented in Table 1.

These Cas9-based gene-editing techniques will enable
the disruption of a wide variety of target genes, including
endogenous TCR, the checkpoint receptors PD1 or CTLA-4
in tumour-targeting T cells or the virally targeted chemokine
receptors CCR5 and CXCR4 in T cells of HIV patients. The
insertion of exogenous DNA sequences using HDR tem-
plates demonstrated by Schumann et al. further opens the
possibility of precisely integrating transgenic elements,
thereby reducing the risk of gene integration in oncogenic

© The Author(s) 2017. This article is an open access publication

sites caused by viruses. However, the current efficiency of
site-specific gene knock-in by nuclease-mediated homolo-
gous recombination is not comparable to that of standard
viral transduction. Thus, the next step for gene editing in T
cells will be to develop protocols that enable the combina-
torial application of various gene-editing techniques in pri-
mary T cells.

SAFETY ISSUES AND CONCERNS

The off-target activities of Cas9 can be measured by directly
assessing the potential off-target genomic DNA sites defined
by the sequences that have 1-6 nucleotide (nt) differences
to the intended target sequence. A given 20-nt target
sequence might have hundreds of such potential off-targets
within the human genome. The T7 Endonuclease | (T7E1)
mutation mismatch assay is commonly used to detect high
indel frequencies (>2%-5%). As a result, more sensitive
deep sequencing assays are needed to identify lower fre-
quency off-target mutations (Cho et al., 2014; Fu et al.,,
2014). Exome sequencing was also used for off-target
analysis, but the high false negative result rate associated
with exome sequencing analysis limits its interpretation of
the results. However, accurately predicting the off-target
cleavage sites remains a challenge because it is typically
biased, given the inability of most available algorithms for off-
target prediction to cover all potential off-target sites. The
genome-wide detection of DSBs provides a non-biased
method to assess the specificity of Cas9-mediated DNA
cleavage, and several methods have been developed to
meet this purpose. In one method called genome-wide
unbiased identification of DSBs enabled by sequencing
(GUIDE-Seq), the Cas9-sgRNA induced DSBs are tagged in
the genomes of living cells by introducing a blunt, double-
stranded oligodeoxynucleotide during the end-joining pro-
cess following a DSB. The double-stranded oligodeoxynu-
cleotide integration sites are then amplified and deep
sequenced (Tsai et al., 2015). A modified high-throughput,
genome-wide translocation sequencing (HTGTS) was
developed based on linear-amplification-mediated PCR
(LAM-PCR HTGTS). LAM-PCR HTGTS enables the detec-
tion of DSBs based on translocation to other endogenous or
ectopic DSBs using the target DSB as “bait” to capture the
“prey” sequences translocated to the target DSB (Frock
et al., 2015). A third method, called in situ breaks labelling,
enrichments on streptavidin, and next generation sequenc-
ing (BLESS), captures biotinylated oligonucleotides labelled
DSBs in fixed cells using streptavidin. Enriched DSB-con-
taining DNA fragments are PCR amplified and analysed by
deep sequencing (Crosetto et al., 2013; Ran et al., 2015). A
fourth method called digested genome sequencing (Digen-
ome-Seq) uses isolated genomic DNA for in vitro Cas9-
mediated digestion followed by whole-genome sequencing
to evaluate genome-wide Cas9 off-target effects (Kim et al.,
2015).
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Figure 1. A brief summary of various delivery methods of CRISPR/Cas9 components into T cells.
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Table 1. Comparison of various delivery methods of CRISPR/Cas for T cell gene editing

Viral-delivery

Non-viral-delivery

Integrating virus

Integrating-free virus

Single electroporation Double electroporation

Lentivirus Retrovirus Adenovirus AAV Plasmid RNP Chem-RNA RNA
Integration Yes Yes No No Rear No No No
Efficiency Low Low Low Low Low Medium Medium High
Electroporation No No No No Yes Yes Yes Yes
Toxicity Medium Medium Low Low High Low Low Medium
Off-target effects Medium Medium Low Low Medium Rear Low Rear

RNP: Cas9 protein-sgRNA complex; Chem-RNA: Cas9 protein or mRNA complexed with chemically modified sgRNA; RNA: Cas9 mRNA and

sgRNA.

CRISPR/Cas9 generally disrupts their intended target
sites reliably; however, an important question to consider is
to what extent these nucleases induce off-target cleavage
events, especially in therapeutic application. CRISPR/Cas9
gene editing generates off-target mutations depending upon
the experimental setting and cell type (Cho et al., 2014).
Pankaj et al. reported an extremely low incidence of off-tar-
get mutagenesis of CRISPR in hematopoietic stem cells
(Mandal et al., 2014). Recent studies also demonstrated a
low incidence of off-target mutagenesis in T cells using len-
tivirus and adenovirus-delivered CRISPR/Cas9 to knockout
CCR5 (Wang et al., 2014; Li et al., 2015). Another report
showed no detectable off-target mutations in the CXCR4-
knockout CD4 T cells (Hou et al., 2015). We reported rare
off-target mutagenesis targeting TRAC or TRBC with Cas9
(Ren et al., 2016). Although these studies all suggest that T
cells might be minimally tolerable to CRISPR/Cas9-induced
off-target mutagenesis, non-biased strategies combined with
deep sequencing for off-target detections should be applied
to the selected target gRNA used in the clinical trials.

FUTURE DIRECTIONS

Reducing the off-target effects for safe therapeutic applica-
tion of CRISPR/Cas9 in immunotherapy remains unre-
solved. Various approaches have been explored to improve
the specificity of CRISPR/Cas9. The choice of proper target
sequence is the first and most effective option to improve the
specificity. All published studies have suggested that the
CRISPR/Cas9 mediated off-target mutagenesis could vary
depending on the sgRNA design and target sequence.
Predictive algorithms have been developed to facilitate this
process by computationally searching target sequences that
bear the least similarities to other sequences to reduce the
off-target effects.

Precisely tuning the amount of Cas9 and sgRNA in cells
is also used to improve the specificity; some studies have
demonstrated that a decrease in the amount of CRISPR
reagents in cells could reduce off-target effects (Fu et al.,
2013; Hsu et al., 2013). Timely controlled Cas9 expression is

© The Author(s) 2017. This article is an open access publication

also demonstrated through a tet-on system (Gonzalez et al.,
2014). Furthermore, gene editing with the Cas9 mRNA and
protein causes fewer off-target effects compared to plasmids
and viruses, likely because the mRNA or RNPs were rapidly
degraded after immediate on-target cleavage (Kim et al.,
2014). Modifying the sgRNA sequence also improved the
specificity. For example, sgRNA with a truncated base-pair-
ing sequence (17 nt instead of 20 nt) enhanced the targeting
specificity because truncated sgRNAs have reduced binding
affinity with the target DNA and thus are more sensitive to
mismatches (Fu et al., 2014).

An alternative approach is to take advantage of the Cas9
nickase that contains mutations in one of the two nuclease
domains, HNH or RuvC, which cleave the DNA strand
complementary and noncomplementary (respectively) to the
sgRNA (Gasiunas et al., 2012; Jinek et al., 2012). A pair of
Cas9 nickases could generate two single-strand breaks
adjacent to each other on opposite DNA strands when gui-
ded by two properly designed sgRNAs (Mali et al., 2013a;
Ran et al., 2013; Cho et al.,, 2014). The paired nickases
exhibit higher specificity in editing because the generation of
DSBs requires two independent binding events, whereas the
nuclease Cas9 requires only one binding event. A similar
strategy is to fuse DNA-endonuclease-dead Cas9 (dCas9) to
the dimerizing Fokl nuclease. The dCas9-Fokl fusion is an
RNA-guided nuclease that cleaves DNA only when a pair of
Fokl domains is sufficiently close to form a dimer. Efficient
cleavage occurs when two target sites are spaced approxi-
mately 13-25 bp apart (Guilinger et al., 2014; Wyvekens
et al., 2015). Moreover, because the Fokl nuclease activity
relies on dimerization, this strategy also reduced unwanted
mutagenesis compared to the Cas9 nickase (Guilinger et al.,
2014; Wyvekens et al., 2015). However, these approaches
improve CRISPR specificity at the cost of reduced efficiency.

Facilitated by the crystal structure of SpCas9, two recent
studies have reported more precise genomic edits with
rationally engineered CRISPR/Cas9 systems. Slaymaker
et al. created systematic single or multiple mutations in the
positively charged residues that are predicted to be involved
in the interaction with the non-target strand of the target DNA
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and identified Cas9 mutants that decrease off-target effects
without impairing on-target activity (Slaymaker et al., 2016).
Using a similar approach, Kleinstiver et al. made a quadruple
amino acid substituted SpCas9 that retains high on-target
activity with minimal off-target activity. Application and further
exploration of high-fidelity Cas9 variants will increase the
reliability of CRISPR/Cas9 as both a research tool and a
therapeutic approach.

As an integration-free gene insertion method, CRISPR/
Cas9 holds great promise as an efficient gene knock-in
platform. Conventional CAR expression in T cells requires
randomly integrating viral delivery vectors, including len-
tivirus and retrovirus. However, uncontrolled virus integration
in host cell genomes has the potential risk of causing
insertional mutagenesis. CRISPR/Cas9 mediates efficient
gene knock-in in human cells, embryos, and plants. Schu-
mann et al. reported successful introduction of exogenous
DNA into T cells genome at the Cas9 cleavage site. Although
the knock-in of large fragments, such as a CAR in T cells,
remains challenging, doing so is desirable for therapeutic
application and needs further exploration. Sather et al.
reported the feasibility of knock-in of a CAR transgene in T
cells with MegaTal and an AAV HDR template (Sather et al.,
2015). A more recent study showed that targeting a CAR to
the TRAC locus greatly enhanced the antitumor activity by
reducing tonic activation (Eyquem et al., 2017). Microho-
mology Mediated End Joining (MMEJ) has been used for
gene knock-in in human cells and animals wherein large
homology arm is not required, thus facilitating gene delivery
with small inserts (Nakade et al., 2014; Sakuma et al., 2015).
Previously, some studies have highlighted the possibility of
knock-in of large gene cassettes using homology-indepen-
dent targeted integration strategy, which enables robust DNA
knock-in in both dividing and non-dividing cells in vitro and,
more importantly, in vivo (Auer et al., 2014; He et al., 2016;
Suzuki et al., 2016).

Given the tremendous progress that has been made in the
past several years, we believe that the CRISPR/Cas9 tech-
nology holds immense promise for advancing immunotherapy.
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cell death protein 1; RNP, ribonucleoproteins; ScFv, single-chain
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variable fragment; sgRNA, single guide RNA; TALENS, transcription
activator-like effector nucleases; ZFNs, zinc-finger nucleases
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