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Neurodevelopmental disorders can stem from pharmacological, genetic, or
environmental causes and early diagnosis is often a key to successful treatment.
To improve early detection of neurological motor impairments, we developed a deep
neural network for data-driven analyses. The network was applied to study the effect
of maternal nicotine exposure prior to conception on 10-day-old rat pup motor
behavior in an open field task. Female Long-Evans rats were administered nicotine
(15 mg/L) in sweetened drinking water (1% sucralose) for seven consecutive weeks
immediately prior to mating. The neural network outperformed human expert designed
animal locomotion measures in distinguishing rat pups born to nicotine exposed
dams vs. control dams (87 vs. 64% classification accuracy). Notably, the network
discovered novel movement alterations in posture, movement initiation and a stereotypy
in “warm-up” behavior (repeated movements along specific body dimensions) that
were predictive of nicotine exposure. The results suggest novel findings that maternal
preconception nicotine exposure delays and alters offspring motor development.
Similar behavioral symptoms are associated with drug-related causes of disorders
such as autism spectrum disorder and attention-deficit/hyperactivity disorder in human
children. Thus, the identification of motor impairments in at-risk offspring here shows
how neuronal networks can guide the development of more accurate behavioral tests
to earlier diagnose symptoms of neurodevelopmental disorders in infants and children.

Keywords: data driven analysis, animal behavior, post-natal development, maternal preconception nicotine
exposure, deep neural network

INTRODUCTION

Many neurological disorders, such as attention deficit/hyperactivity (ADHD) and autism spectrum
disorder (ASD), have an early life onset. Although the successful treatment of the consequence of
childhood onset disorders depends upon the early diagnosis of at-risk children (Raza et al., 2020),
the methodology related to early diagnosis is underdeveloped. For example, mothers outperform

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; MPNE, maternal
preconception nicotine exposure.
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experts in the early diagnosis of conditions such as ASD
but the way that they do so is ad hoc (Sacrey et al.,
2018). Many methods and tools have been introduced in
order to address the problem of diagnosis and quantification
of human disorders in animal models (Basso et al., 1995;
Kabra et al., 2013; Berman et al., 2014; Machado et al.,
2015; Wiltschko et al., 2015; Ben-Shaul, 2017; Markowitz
et al., 2018; Mathis et al., 2018; Arac et al., 2019; Graving
et al., 2019; Pereira et al., 2019). Nevertheless, for animal
models and for human childhood disorders, early detection
is difficult because symptomology must be detected within
the limited motor repertoire displayed by infants (Schamhardt
et al., 1993). To address the problem of early diagnosis,
we introduce a deep neural network that automatically
classifies spontaneous behavior and extracts, in a data-driven
way, movements that distinguish control and experimental
groups of animals.

We applied our network to study the rat pups born to
maternal preconception nicotine exposed (MPNE) mothers.
Nicotine is one of the most widely used drug of abuse by
preconception parents and it is capable of perturbing many
aspects of development (Dwyer et al., 2008; Devoto et al., 2020).
Preconception nicotine can influence offspring development
via three main mechanisms; it may induce physiological
changes in the mother that alter the fetal environment,
it may induce epigenetic modifications in the oocyte that
shape ontology (Bohacek and Mansuy, 2013), and it may
change the quality of maternal care, thereby resulting in
the behavioral transmission of an altered developmental
trajectory. Nicotine also influences brain development,
e.g., by interacting with nicotinic acetylcholine receptors
(nAChRs), affecting neuronal proliferation, differentiation,
and maturation (Dwyer et al., 2008; Blood-Siegfried and
Rende, 2010). There is limited research into the effects
of MPNE on behavior (Holloway et al., 2007; Vassoler
et al., 2014; Zhu et al., 2014; Yohn et al., 2015; Renaud
and Fountain, 2016) and currently no studies consider
its impact on early postnatal development. Therefore, the
current research addresses two gaps in our understanding
of nicotine’s impact on early infant behavior. First, does
nicotine administration during the preconception period in
prospective dams, as opposed to the prenatal, preconception
+ prenatal, or paternal preconception period, affect behavior?
Second, are offspring affected at an early stage of infant
development, thus demonstrating an early impact of MPNE
on offspring locomotion and its sensitivity to experimental
detection?

To address these questions, we first analyzed neonatal
(10-days-old) rat pup video recordings using standard
locomotor-derived kinematic measures. Then we showed
that a neural network can improve on this conventional
analysis by identifying causative symptomology of the
effect of MPNE. Importantly, we also present how
to extract knowledge from the deep neural network
in order to identify novel behavioral components
that distinguished the nicotine exposed group from
the control group.

RESULTS

Effect of Maternal Nicotine Exposure
Prior to Conception on Offspring:
Analyses of Behavior Using Expert
Selected Measures
Standard “exploratory” locomotor measures were used to
investigate the effect of MPNE on offspring locomotor
development (Methods). Of 351 rat pups, 191 were from
preconception sucralose-exposed dams, and 160 were from
preconception nicotine-exposed dams (Methods). Ten day old
(P10) pups were placed singly in the open field for one minute
and their behavior was videotaped to investigate locomotor
development (Methods). The movement of an animal was
described in terms of two movement kinematics (Mychasiuk
et al., 2013; Jenkins et al., 2018). (1) Total activity was the total
number of square entries for either front paw of the animal
during exploration. (2) Novel activity was the number of unique
square entries, which relates to locomotor complexity. Those
measures were calculated separately for the inner and outer part
of the open field (Figure 1A, Methods). A statistical comparison
of the above movement measures of the MPNE (nicotine exposed
dam) and control groups (sucralose-exposed dam) are shown
in Figure 1B. The MPNE group was less active, entered fewer
squares and explored fewer novel squares than did the control
group (TotalControl = 57.0 ± 1.8, TotalNicotine = 42.2 ± 1.6;
Total InnerControl = 32.0 ± 1.2, Total InnerNicotine = 26.4 ±

2.0; Total OuterControl = 24.0 ± 1.2, Total OuterNicotine = 15.0 ±

1.0; NovelControl = 21.0 ± 0.6, NovelNicotine = 15.5 ± 0.6; Novel
InnerControl = 11.1 ± 0.4, Novel InnerNicotine = 9.1 ± 0.3;
Novel OuterControl = 9.9 ± 0.5, Novel OuterNicotine = 6.3 ±

0.3; “±” represents SEM; p < 0.001 for all comparisons using
t-test; using non-parametric Mann-Whitney U test also gave
significant results for all comparisons with p < 0.003). We
did not detect significant sex differences on any of the above
measures (t-test, p > 0.05 for all measures). In summary, on all
measures the MPNE offspring showed less exploration than the
control offspring.

Combining Movement Measures to
Distinguish the Control vs. Nicotine
Groups
As described above, we quantified the behavior by using typical
kinematic measures employed in an open field task. This
approach requires assumptions regarding which features of the
behavior will be useful in distinguishing between treatment
groups. To estimate the reliability of these expert selected
features, we used machine learning algorithms to predict
treatment groups using all six values of behavioral measures
described above. We used five different algorithms to ensure
that our results were not dependent on a specific data analysis
method. For all algorithms we used fivefold cross-validation,
where we trained the model on 80% of trials and predicted the
treatment group for the remaining 20% of trials. We repeated
this process 5 times to predict group category for every trial.
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FIGURE 1 | Movement of 10-day old rat pups in open field task. (A) Definition of outer and inner portions of the open field. (B) Movement measures in nicotine and
control animals reveals significant effect of MPNE on offspring exploration (see Methods for measures description). On each box, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to ±3SD, and red marks show data
points outside of 3SD range.

The algorithms discriminated between the two groups with
accuracy between 57–64% (Decision tree: 57%; Random forest:
61%; Logistic regression: 61%; K-nearest neighbors: 63%; Support
vector machine: 64%) (Supplementary Text 1). This means that
based on described movement measures it is possible to tell with
about 64% accuracy if it is a control or nicotine group animal
(chance level is 50%). We then applied principle component
analysis (PCA) to the movement measures. The distribution
of points for both classes largely overlapped in PC space
(Supplementary Figure 1). It indicates a weak discriminability
between classes, which is consistent with the above result using
machine learning algorithms.

Using Deep Neural Network to
Distinguish the Control vs. Nicotine
Groups
To investigate if additional information could be extracted from
the rat pup’s behavior, we used a deep neural network to
examine the same videos of MPNE and control animals in the
open field task (Figure 2A). This approach does not require
specifying which behavioral measures should be used. Rather,
the neural network discovers by itself which features in video
(e.g., shapes, movements, etc.) are the most predictive of the
treatment groups. Specifically, we used a convolutional network
(ConvNet) (Szegedy et al., 2016) to convert each video frame
(400 × 350 pixels) to a set of 2,048 features. Those features
may loosely correspond to object edges. Features from 150 video
frames from a single video clip were then combined and passed
to a recurrent neural network (RNN). This allowed the analysis
of animal movements throughout each trial (1 trial = 1 video clip
consisting of 150 frames corresponding to 50 s). The network
was then trained to assign a correct group category to each
video clip (Figure 2A), and then information was extracted
from the network to investigate its decisions (Figure 2B, see
next section). After training, the network was able to distinguish
videos of the MPNE and control groups with 87% accuracy.
This accuracy is higher than the classification accuracy obtained

from kinematic defined movement features (57–64%). Figure 2C
shows the average activity of the output neuron for the control
group (mean = 0.82 ± 0.02 SEM) and the nicotine group
(mean = 0.13 ± 0.017 SEM). The activity of the output neuron
was bounded between 0–1, with 1 corresponding to the control
category. For example, a value of the output neuron of 0.9 can be
interpreted as the network indicating that it is 90% “confident”
of identifying a control animal, and only 10% “confident” that
it is a MPNE animal. For calculating the network’s prediction
accuracy, values of the output neuron above 0.5 was considered
as identifying a rat pup in the control group, and values below 0.5
as the rat pups in the MPNE group.

To verify that our network does not require fine parameter
tuning for robust performance, we also tested four variations of
the network. In particular, we modified the number of neurons
and layers in the RNN, and we repeated the training and
testing on the same data. The modified networks produced
results similar to those of the original network (Supplementary
Figure 2). To ensure that network accuracy is not a result of an
overfitting and that our network can generalize to new animals,
all predictions were obtained using fivefold cross-validation as
described above. Thus, no videos of the predicted animal were
included in the training dataset. Altogether, these results indicate
that there is information about MPNE in the behavior that is not
accounted for by the standard movement analyses.

Extracting Knowledge From the Neural
Network
Considering that the network classified the animal groups from
videos with higher accuracy than the kinematic measures, we
investigated what movement features were the most informative
for the network. We applied a recently developed Layer-wise
Relevance Propagation method (LRP) to extract knowledge from
deep neural networks (Bach et al., 2015; Lapuschkin et al.,
2019) (Methods). First, we identified which features extracted
from the videos were contributing the most to the predictions
made by the RNN (Figure 2B–features importance array), and
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FIGURE 2 | Neural network architecture for data-driven analyses. (A) The network is trained using video clips of single trials (each consisting of 150 video frames).
Frames are then passed through a convolutional network (ConvNet) to extract 2,048 high level image features from each frame. The features from 150 successive
video frames are then given as an input to a recurrent neural network (RNN) to analyze temporal information across frames. Based on this information, RNN predicts
a group category for each video clip (Output). (B) After the network is trained, information is extracted from the network weights in order to identify image features
and the parts of each video frame that were the most important to network decision making. For visualization, only every 20th feature is shown. (C) Average activity
of the output neuron for animal videos from each group.

then we investigated which parts of each frame corresponded
to those most informative features (Figure 2B—left side). This
knowledge extraction method reveals the network’s focus for
decision making.

Examination of the feature’s importance to the matrix revealed
that certain video frames were particularly informative for the
network decision. For example, the first frames had multiple
features which contributed to network classification more
strongly than subsequent frames (Figure 3A and Supplementary
Figure 3). Plotting the average value of the features separately
for each animal group showed the high discriminative power of
those initial frames (Figure 3B). To investigate why the first video
frames were singled out, we closely inspected those first frames.
We found that on average, there was a meaningful difference in
the starting posture and starting movement between the MPNE
and control animals. Figures 3C,D illustrates the difference in
their starting posture as soon as the pups in the open field
box. The MPNE animals sprawled, with the fore and hind legs
extended, whereas the control animals had their limbs beneath
in a posture of supporting the body. In short, the MPNE animals
displayed reduced postural support. The lack of postural support
indicated by extended limbs could also be observed as the MPNE
animals initiated movement. Once moving, the temporal features
of movement were also different between MNPE and control

animals. Notably, the control animals began to move as soon
as they were placed in the open field. They collected their body
by bringing their limbs to a weight bearing posture and made
small lateral movements of their head as they initiated movement.
The MPNE animals mostly lingered (not moving), then took
more time to establish postural support and only then initiated
movement.

Because knowledge extraction from the network revealed that
the initial posture is a highly discriminative feature between
MPNE and control pups, we developed measure to quantify it.
For that, first, we used DeepLabCut software (Mathis et al., 2018),
which allowed for semi-automatic marking of the position of
multiple body parts (four legs, nose, tail base and center of the
body; Figure 4A). Next, from x and y coordinates of resulted
marks, we estimated pose by calculating the average distances
between front and hind limbs in the initial frame. Consistent
with our visual observation, MPNE animals had displayed a
significantly larger distance between front and hind limbs as
compared with controls, indicating reduced postural support
(DistNicotine = 96.2 pixels ± 1.53 SEM, DistControl = 87.57
pixels ± 1.46 SEM, p < 0.0001, t-test; Figure 4B).

Visualization of feature importance also showed unexpected
periodic movement changes (Figure 3B). Specifically, features
occurring about every 11th frame, corresponding to period
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FIGURE 3 | Finding the most informative behavioral features used by the network for decision making. (A) Average feature importance over all videos. (B) Average
importance of each video frame, for each animal group. This revealed that the 1st frame and every 11th frame were particularly important. (C,D) Typical starting
postures (1st frame) of MPNE (C) and control animals (D). Examples of 3 rats from each group are shown. For visualization clarity, only the portion of frame with the
pup is shown. Note extended legs in the MPNE group, and collected legs supporting weight in the control group.

FIGURE 4 | (A) Sample frame with semi-automatically superimposed virtual markers on body parts. (B) Distribution of distance between fore and hind limbs in the
first frames for all animals. This shows that MPNE animals (blue bars) had their legs more extended, indicating reduced postural support as comparing to control
pups (pink), a result consistent with that shown in Figures 3C,D.

of about 3.7 s, were informative for the network’s distinction
between the MPNE and the control groups. This was also
confirmed with spectral analyses shown in Supplementary
Figures 4, 5. To investigate the behavior underlying the
distinguishing movements, we divided the videos into 11 frame
segments and aligned the segments (Figure 5). This revealed a
stereotypical, repetitive behavior in MPNE animals. The animals
made repeated lateral movements that returned the animal to
its initial position. For comparison, Figure 6 illustrates a typical
temporal sequence of two control animals at the same time. The

control animals also make lateral movements, but the amplitude
and frequency of movement are different from that of the MPNE
animals. For example, in the control rat #1, the lateral head
movement begins at frame 10 and it ends at frame 18. Its next
lateral movement increases in amplitude, thus modifying the
sequence of movement (i.e., frames 21 and 31 are not the same
in Figure 6 for rat #1). Moreover, some of the control animals
pivoted as part of the lateral movement (Figure 6, rat #2). Note
that although our analyses showed that features of importance
peak at frames 10, 21, . . . , etc., it should not be interpreted that
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only those specific frames are of significance to the network.
Rather, it should be seen as an indication that at those times the
network recognized a periodic stereotypical sequence. Thus, the
network identified from raw video data a stereotypical behavior
as a distinguishing feature of MPNE pups.

To test whether the network-uncovered differences in
stereotypical behavior distinguished the control and nicotine
groups, we conducted additional analyses. Using DeepLabCut
marks (Figure 4A), we tracked nose position for the first 16
frames for all rats (Figure 7A). Next, we calculated distance
between nose position in the 1st and 11th frame. This allowed
us to estimate the relationship between the starting position
of the 1st and 2nd sequence of movements. Consistently with
results presented in Figures 5,6, the average distance for MPNE
group was significantly smaller (mean DistContr = 37.7 pixels
± 2.9 SEM, DistNicotine = 60.4 pixels ± 3.1 SEM; p < 0.0001,
Kolmogorov-Smirnov test; Figure 7B). Repeating the analyses
using the 3rd and 14th frame gave similar results. This confirmed
greater stereotypy in making repeated movements in nicotine
exposed group.

We also tested whether only the coordinates of body parts
marked with DeepLabCut could provide better features than
the ConvNet for predicting the animal group. For that, in all
video frames we tracked the position of the nose, limbs, tail
base and body center as illustrated in Figure 4A. All points
corresponding to frames from one trial were combined as one
input to the RNN (similar to ConvNet features in Figure 2; RNN
with 256 LSTM units). Thus, each video frame was represented
by x- and y-coordinates of seven marked body parts. This
procedure resulted in a 62% accuracy in distinguishing the
control and MPNE animals. This is a lower accuracy than using
original videos (87%), suggesting that ConvNet features selected
in a data-driven way contain additional information useful for
behavioral classification. Increasing the number of selected body
parts for digitization may result in improved RNN performance
relative DeepLabCut features. It is noteworthy, however, that the
advantage of our network is that it can directly predict movement
deficits from raw videos and does not require human decisions on
which body parts to select.

DISCUSSION

The neural network described here revealed motoric
impairments in at-risk rat pups whose mother received
preconception nicotine. Impairments include a reduction in
postural support, slower maturation of warm-up movements,
and stereotype in the component movements of warm-up. These
motoric abnormalities in the development of the rat pups may be
the first symptoms of what might later become abnormalities in
adult behavior. Thus, they may be diagnostic of early symptoms
of conditions analogous to those of human developmental
disorders. The network analysis also provided insights into the
hypoactivity of the MPNE pups, as their reduced posture, slow
warm-up and stereotype would be expected to compete with
locomotion. Thus, by analyzing the network’s decision-making
process, new insights into behavioral differences were obtained.

We suggest that this network methodology could be useful
for the analysis of behavior of other animal analogs of human
movement disorders as well as for the analysis of at-risk human
infants.

Significance of Behavioral Results
Our data-driven approach identified impaired postural support,
reduced warm-up and increased stereotypical behavior of warm-
up components of the MPNE pups. The interpretation of
the results of our network analysis capitalized on previous
work showing that the development of infant rat movement is
organized. When an adult rat is placed on a horizontal surface in
an open environment it sequentially makes lateral, forward and
dorsoventral movements that escalate in amplitude into forward
locomotion (Golani et al., 1981; Golani, 1992). Such warm-up
behavior is also a feature of the ontogeny of motor development,
in which the topographic dimensions of movement emerge and
escalate as maturation proceeds (Golani et al., 1981). Thus, in
terms of warm-up, the MPNE animals display lower level of
maturation, featuring reduced postural support and movement
relative to the control pups.

The infant MPNE pups also displayed stereotyped behavior in
that once making one lateral head movement they then repeated
the movement at regular intervals rather that escalating warm-
up movements into locomotion. Stereotype, as featured in tics,
repetitive movements and compulsive behavior, is a feature of
many developmental conditions including ASD and ADHD.
Stereotype is also symptomatic of use of drugs of abuse and
many adult neurological conditions, especially those that affect
the basal ganglia (Eilam et al., 2006; Lelard et al., 2006; Singer,
2009; Wolgin, 2012; Berman, 2018; Martino and Hedderly, 2019).
That the infant MPNE rat pups displayed stereotype suggests that
the MPNE treatments resulted in neural changes in the rat pups
that may be analogous to those that produce stereotype in human
conditions. Future work could examine both the neural basis of
MPNE-based stereotype as well as its influence on adult motor
and cognitive behavior.

In the present study we also used conventional locomotor
measures with the MPNE rat pups and found that the pups
displayed reduced locomotion. A reduction in locomotion can
have many causes but our network results suggest that reduced
postural support, immaturity in warm-up and stereotype could
all contribute. Thus, an important feature of the network analysis
is that it pointed to potential first causes of the more behaviorally-
holistic symptomology of locomotor measures. Many tools have
been constructed for the diagnosis of developmental disabilities,
but most are compromised by questions related to reliability.
The reliability of measurements of activity changes in conditions
such ADHD is illustrative (Egger and Emde, 2011; Wolraich
et al., 2019). The utility of more detailed methodology for
symptom detection is that it improves the reliability of some
behavioral measures and may actually serve as a more valid
replacement.

Nicotine exposure during development has long been
associated with changes in locomotor behavior. Prenatal,
preconception + prenatal, and paternal preconception nicotine
have all been linked with hyperactivity in young adult offspring
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FIGURE 5 | Stereotypical behavior in two rat pups from the MPNE group. Numbers above the pictures represent the frame number. Note the almost exact same
body position every 11 frames.

that can propagate through multiple generations (Bruin et al.,
2010; McCarthy et al., 2020). However, here we report
a decrease in locomotion following maternal preconception
nicotine exposure. An important distinction between the study
presented here and previously reported results is the age at
which the pups were tested; we analyzed the emergence of
locomotor behavior in 10-day-old pups. To our knowledge, no
other studies have explored the impact of preconception nicotine
on young offspring locomotion. One study examined the effects
of prenatal nicotine on 19-day-old offspring and found a similar
decrease in activity in the nicotine-exposed pups compared to
control pups (LeSage et al., 2006). Furthermore, they report
that pups prenatally exposed to nicotine were less active than
controls during the initial exploration of the open field but
were equally active after 10 min of exploration. This finding
is reminiscent of our observation that MPNE pups had slowed
warm-up and increased stereotypy relative to control pups.
Therefore, it may be that the effects of nicotine on locomotor
development are age-dependent; nicotine may delay maturation
in early life leading to decreased locomotion, but eventually
lead to hyperactivity in later life. Further research is required
to understand the effects of the cross-generational effects of
maternal and biparental preconception nicotine exposure on the
emergence of locomotion in early life.

Comparison With Other Methods
One approach to improving the analysis of exploratory behavior
is the use of tracking systems such as those using markers that
are automatically or manually attached to body parts (Zhou et al.,
2008; Parmiani et al., 2019). In the last few years several methods
such as LocoMouse (Machado et al., 2015), DeepLabCut (Mathis
et al., 2018), JABAA (Kabra et al., 2013), Optimouse (Ben-
Shaul, 2017), and LEAP (Pereira et al., 2019) and DLCAnalyzer
(Sturman et al., 2020) have been developed to allow users to
identify key points in videos, such as the location of a paw,
and then automatically track the movement of those key points
across video frames. For instance, in DeepLabCut (Mathis et al.,
2018), the experimenter manually labels body parts (e.g., the
snout, left ear, right ear, and tail) in selected video frames using
virtual markers, and then the network is trained to automatically
predict the position of those body parts in the rest of the
video. Although this method is useful, it requires investigator
decisions about relevant body parts, and it requires separate
analyses to determine whether the measures are relevant. Here
we have shown that using whole frame video is informative about
behavior that a selective investigator may not have predicted
a priori. Nevertheless, DeepLabCut did play a valuable role
in quantifying the behavior allowing us to validate the results
we obtained from the knowledge extraction method. Thus, our
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FIGURE 6 | Sample behavior of typical control animals. The movements are less repetitive compared to nicotine animals and more diverse as exemplified by pivoting
(rat #2).

FIGURE 7 | (A) Position of rat nose during first 16 frames for control (red) and MPNE pups (blue). Each animal is represented by a line connecting 16 points. For
visualization, only every 2nd animal is shown. All trajectories are aligned such that nose position in frame 1 is set to point (0, 0). (B) Distribution of distances between
nose position in frame 1 and 11. The shift of distribution to the left for the MPNE group shows that nicotine exposed pups were more likely to return to the same
position after first sequence of movements.

network approach adds to the armamentarium of behavioral
analysis.

The second category of automated methods such as MoSeq
(Wiltschko et al., 2015), MotionMapper (Berman et al., 2014)
and B-SOiD (Hsu and Yttri, 2020) first reduce the dimensionality
of the video data, and then relate the results to the behavioral
components. These methods require image pre-processing and
proper image alignment, and additional methods must be
applied for classifications. Our method also offers an alternative
to these approaches. First, the convolutional network works

with raw images without the need of pre-processing and
without the difficult task of image alignment, and second, the
network automatically identifies the most relevant behavior for
predictions. In short, our approach offers a one-step solution for
feature selection and animal group classification.

The method presented here also provides significant
advancement on our previous network used for analyses
of the skilled reaching behavior of stroke rats (Ryait
et al., 2019). Specifically, here we introduced analyses in
a time dimension, which allowed us to identify repetitive
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movements. As movement timing is crucial component of
animal behavior, the temporal analyses presented here can
help to provide more sensitive measures of neurological
deficits.

We suggest that the analysis used here could be applied
to the behavior of at-risk human infants in the way that it
was applied here to infant rats. The development of behavior
of human infants is also organized, and this organization is
widely used to assess the attainment of developmental milestones
(Harris and Heriza, 1987; Sacrey et al., 2020). The assessment of
milestones, however, depends upon the accuracy of the rating
tool, the expertise of the rater, and it can be confounded by the
normal developmental variability of infants. Nevertheless, brief
video records of infant behavior could be subject to network
analysis to confirm development milestones and to pinpoint the
significance of variability as was done here for the behavior of
infant rats.

In the future, the behavioral analyses described here could
be combined with histological analyses (Faraji et al., 2013)
or with electrophysiological recordings (Schjetnan and Luczak,
2011; Ponjavic-Conte et al., 2012; Schjetnan et al., 2019).
Most neuronal analyses rely on using expert selected features
of brain activity (e.g., spike timing, correlations, firing rate
in specific time) to relate it to behavior or sensory stimuli
(Luczak et al., 2004; Luczak and Narayanan, 2005; Quiroga
and Panzeri, 2009). Applying the present here data-driven
approach to electrophysiological data may uncover novel
features of neuronal activity patterns, more predictive of animal
behavior.

In conclusion, the experimental results answer the
questions proposed in the introduction of this study.
Nicotine administration during the preconception period
in prospective dams altered the behavior of the infant offspring
by reducing locomotion, reducing postural support, slowing
the development of warm-up, and inducing stereotype in
component movements of warm-up. The MPNE offspring
were affected at an early stage of infant development, thus
demonstrating an early impact of MPNE on offspring
locomotion and its sensitivity to experimental detection.
These findings suggest that the measurement of infant
behavior using a neural network analysis can improve the
identification of behavioral irregularities in at-risk infant
rats and in the same way, it could be applied to the early
identification of signs of symptomology in at-risk human
infants.

MATERIALS AND METHODS

Animals
Procedures were conducted in accordance with the Canadian
Council of Animal Care and were approved by the University
of Lethbridge Animal Care and Use committee. Animals were
given food and water ad libitum and were maintained on a
12-h light/dark schedule (lights on from 07:30 to 19:30) in
a temperature- and humidity-controlled (21◦/50%) breeding
room. A total of 45 female Long Evans born in-house from

11 different litters were used. Nicotine-exposed dams (n = 23)
received 15 mg nicotine hydrogen tartrate salt (Sigma) per
liter of drinking water sweetened with 1% sucralose to increase
palatability (Nesil et al., 2011; Collins et al., 2012). Control dams
(n = 22) received 1% sucralose only. Nicotine was administered
for seven consecutive weeks beginning in adulthood (90-days-
old); 7 weeks is the length of the spermatogenic cycle in male
Long Evans rats and was chosen to mirror the complementary
paternal studies. Nicotine consumption was calculated as mg
of nicotine per kg of body weight. The volume of water
consumed each day was measured by weighing the water
bottles at the same time each day and dividing the change
in volume by the number of females with access to the
bottle. The mg of nicotine consumed was then calculated
from the volume divided by the average weight of the females
with access to the bottle. On average, nicotine-exposed dams
consumed 2.4 mg of nicotine per kg of body weight per
day across the 7 weeks. Females were bred with non-drug-
exposed male Long Evans rats (n = 45) the day following
completion of nicotine administration. Animals in this analysis
were pups from 32 successful litters for a total of 351 pups.
Eighteen litters (191 pups: 102 female and 89 male) of the
animals were from sucralose-exposed dams, and 14 litters (160
pups: 76 female and 84 male) were from nicotine-exposed
dams. Females in both conditions reared their own litters
(i.e., pups that were not cross-fostered) until pups were weaned
on postnatal day 22.

Behavioral Testing
Pups were tested in the open field task on post-natal day 10. The
testing apparatus was a clear Plexiglas box measuring 20 cm ×

30 cm with a grid of 150 squares (10 squares × 15 squares)
on the floor each with a size of 2 cm × 2 cm (Figure 1A).
Pups were placed individually in the center four squares (shaded
black) and left to explore the box for 1 min while being recorded
from above. The open field was cleaned with Virkon between
animals.

Kinematic movement measures and their definitions in the
scoring procedure are as follow:

Novel = the number of unique squares that either front paw of
the pup enters, up to a maximum of 146 (i.e., the box is divided
into 150 squares total (10 × 15), minus the four shaded squares).

Total = the total number of square entries for either front paw
(i.e., the number of times a front paw goes from one square to
another).

Novel Inner = the number of unique squares in the inner
portion of the field that either front paw of the pup enters. (i.e.,
the number that are within the 6 × 11 squares in the center of
the box, minus the four shaded squares).

Novel Outer = the number of unique squares in the outer
portion that either front paw of the pup enters. (i.e., the two rows
of squares that make up the perimeter of the open field).

Total Inner = the total number of square entries in the inner
portion for either front paw.

Total Outer = the total number of square entries in the outer
portion for either front paw.
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Deep Neural Network Training and
Architecture
For training the ConvNet neural network we used 351 videos: 160
from MPNE animals, and 191 videos from control animals. The
original frame rate was 30 frames per second with resolutions
720 × 480 pixels. However, to reduce the amount of data, we
used only every 10th video frame (three per second). From each
video we excluded the initial period showing the experimenter’s
hand releasing the pup. The 50 s of recording (150 frames) after
that was used.

The general network architecture is shown in Figure 2.
First, a pre-trained convolutional neural network (ConvNet)
known as Inception-V3 (Szegedy et al., 2016) was used
to extract 2,048 features from each video frame. This
reduced each video to a 2D matrix of the size (2,048
features × 150 frames). This matrix was then given
as an input to the recurrent neural network (RNN) to
predict animal groups. We used a RNN composed of 256
long short-term memory (LSTM) units, which allowed
for the extraction of temporal relations between frames.
The LSTM layer was followed by a dropout layer of 0.2
to prevent overfitting, and then a dense layer with two
neurons with the softmax activation function classified the
animal’s behavior. We used “Group K-Fold” in Keras to
split the data randomly and uniformly (to prevent the train
and test data being biased) into 5 classes. Each run is
initiated with random set of weights. Batch size was 100
and Adam optimizer was used with binary cross entropy
as the loss function. The code for our network including
all parameters is available in the Github repository as
Behaviour_Recognizer toolbox: https://github.com/rezatorabi13/
Behaviour_Recognizer.

Knowledge Extraction Method
After the network was trained, information was extracted
from the network weights in order to identify image features
and the parts of each video frame that most contributed to
the network decision. For this knowledge extraction from
the network, we used the Layer-wise Relevance Propagation
(LPR) method (Bach et al., 2015; Lapuschkin et al., 2019)
available in the DeepExplain package (Braitenberg and Schüz,
1998). This method uses the strength of synaptic weights
and neuronal activity in the previous layer to recursively
calculate the contribution (importance) of each neuron
to the output score. Because our network is composed
of two parts, ConvNet and RNN (Figure 2A), we first
investigated which features were most informative for the
RNN to classify animal groups (Figure 2B middle panel).
Next, we propagated feature importance back to pixels in
the video through the Inception V3 network (Figure 2B
left panel, Supplementary Figure 6, and Supplementary
Text 2). This provided us with information related to
which parts of the image the network was “attending
to” when making classifications. This allowed for a check
on whether the network was using rat movements rather

than spurious features, such as the amount of light, to
discriminate between the treatment groups. Using other
methods for knowledge extraction like gradient-based methods
(Shrikumar et al., 2017; Ancona et al., 2018) gave qualitatively
similar results.
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Supplementary Figure 1 | (A) Principal component (PC) space of behavioral
measures. Each dot represents a single animal with MPNE group denoted in blue
and control group in orange. Note that more control animals have high values of
PC1 in comparison with the nicotine animals. To investigate this, we calculated the
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correlations between principal components and movement measures (B). We
found that the first principal component has the largest correlation with the “Novel”
followed by the “Total” measure. This indicates that control animals have a greater
tendency to explore new places (i.e., enter a greater number of unique squares) as
well as to explore more (i.e., enter more squares overall) than MPNE animals.

Supplementary Figure 2 | Different architectures of recurrent neural network
(RNN) tested. For this manuscript we selected the top network (one layer of LSTM
with 256 neurons). However, all tested networks produced similar results, as
shown in the table. The network performance was also robust to changes in video
preprocessing. Specifically, down-sampling video by taking every 9th frame
instead of every 10th frame (Methods) gave similar accuracy of ∼89%. This shows
that our network does not need fine tuning to outperform machine learning
methods using expert selected movement measures. (B) Sample learning curve
from training top RNN with one layer of 256 long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997; Greff et al., 2017) units. Note that on training
data we achieved 100% accuracy (red line), however, on testing data accuracy
was reduced (green line). This suggests that with larger dataset performance of
the network may further improve.

Supplementary Figure 3 | Most informative features for network decisions. (A)
Average of feature’s importance over all videos, as shown in main text in
Figure 3A. Considering reoccurring peaks in feature importance, it is apparent
that the network is identifying periodic behavior, especially in the early 50 frames
(∼ 17 s), to distinguish MPNE animals from control animals. Our RNN network
was able to detect a repetitive pattern in the behavior because it is composed of
the LSTM units which have memory and are specialized in identifying sequences
of activity. (B) Average relevance (importance) of each 2,048 features across all
video data. Average relevance was obtained by averaging columns in the matrix
shown in panel (A). (C) The same average feature importance as in (B), but sorted
from highest to the lowest value. It illustrates that about 20 features had a
disproportional effect on network decision making.

Supplementary Figure 4 | Power spectra analysis. In order to investigate
periodic behavior shown in Figure 3B, we calculated power spectra of the
average feature importance. Blue and orange lines denote MPNE and control
animals, respectively. Peak in power spectra at frequency of 0.27 Hz confirmed
that video features oscillate with a period of 1/0.27 = 3.7 s. Note that this periodic
behavior was seen mostly in MPNE animals. This indicates that MPNE animals
have much more stereotypical behavior, while control animals have more diverse
and less repetitive movements.

Supplementary Figure 5 | Power spectral analysis for 20 most important
features. The blue and orange lines indicate MPNE and control animals,
respectively. After identifying the most important features as illustrated in
Supplementary Figure 4C, the power spectral for each of the 20 top features
was calculated in each video. Then, we averaged spectra of each feature,
separately for MPNE and control animals, which lead to the 20 graphs shown
above. As can be seen, the periodic behavior with the frequency of about 0.27 Hz
is clearly visible in nearly all of the features.

Supplementary Figure 6 | (Left column) Representative video frames, and the
same frames with superimposed network focus (Right column). Red color scale
denotes the most informative pixels used by the network to make decisions. This
allowed us to verify that the network used features related to rat posture to
discriminate control from MPNE animals. This analyses also ensures that the
network does not “cheat” by using spurious features like the clock display. To
superimpose pixel importance on the frames, the values of importance were
rescaled to range 50–250. The pixel importance was obtained by using LRP
method described above.

Supplementary Text 1 | Applying machine learning algorithms on movement
measures.

Supplementary Text 2 | Notes on knowledge extraction from neural networks.
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