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Abstract

Background: Hepatitis B virus (HBV) infection increases the risk of liver disease and hepatocellular carcinoma. Small
interfering RNA (siRNA) can be a potential new tool for HBV therapy. Given the high heterogeneity of HBV strains
and the sensitivity towards sequences changes of siRNA, finding a potent siRNA inhibitor against the conservative
site on the HBV genome is essential to ensure a therapeutic application.

Results: Forty short hairpin RNA (shRNA) expression plasmids were constructed to target conserved regions
among nine HBV genotypes. HBV 1.3-fold genome plasmids carrying various genotypes were co-transfected with
shRNA plasmids into either Huh7 cells or mice. The levels of various viral markers were examined to assess the
anti-HBV efficacy of siRNA. Four (B245, B376, B1581 and B1789) were found with the ability to potently inhibit HBV
RNA, DNA, surface antigen (HBsAg), e antigen (HBeAg) and core antigen (HBcAg) expression in HBV genotypes A,
B, C, D and I (a newly identified genotype) in Huh7 cells and in mice. No unusual cytotoxicity or off-target effects
were noted.

Conclusions: Such siRNA suggests an alternate way of inhibiting various HBV genotypes in vitro and in vivo,
promising advances in the treatment of HBV.

Background
Worldwide, there are over 350 million people persis-
tently infected with hepatitis B virus (HBV) [1]. Chronic
HBV infections may have serious consequences, includ-
ing acute hepatitis, as well as chronic hepatitis, cirrhosis,
and hepatocellular carcinoma (HCC) [2]. Together,
these are responsible for over 1 million deaths world-
wide each year [3]. Current treatments for HBV infec-
tions are not only expensive and have significant side
effects, but also only induce a partial response [4-6].
In eukaryotic cells, RNA interference (RNAi), a type of

double-stranded (ds) RNA, initiates and directs
sequence-specific, post-transcriptional silencing of
homologous genes [7,8]. It has been demonstrated in
previous studies that expression and replication of HBV
can be suppressed by siRNA or shRNA with clinical
implications [9-11]. However, the wide heterogeneity of
HBV sequences may render RNAi inhibitors ineffective.

To explore this further, 40 shRNA expression plasmids
were constructed to target the sites that were conserved
among HBV genotypes A through I. Their anti-HBV
efficacy was then evaluated in vitro and in vivo.

Results
Screening for effective and broad anti-HBV shRNA
The shRNA plasmids co-transfected with two HBV 1.35
plasmids (N10 and Y1021) exhibited varying levels of
extracellular HBsAg expression (Table 1). Of the forty
shRNA plasmids, four plasmids (B245, B376, B1581 and
B1789, Figure 1) were selected as candidates for further
research based on their remarkable inhibitory ability and
also relatively lower off-target probability (off-target
score of above 30). The sequence conservation among
the A to I genotypes for B245, B376, B1581 and B1789
were 95.1% (95%CI: 92.2~97.2), 88.7% (95%CI:
84.7~91.9), 97.3% (95%CI: 94.8~98.7), and 97.6% (95%
CI: 95.2~98.9), respectively (Table 2). The data also
shows that the target sequences of B245, B1581 and
B1789 were more conserved than the target sequence of
B376 (p < 0.05) in genotype B and C (Table 2).
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Table 1 The characterization and screening for multiplex anti-HBV siRNA

ID Sequence Start Position Off-target numbera off-target scorea Genome localization Anti- Y1021 Anti- N10b

B182 GGACCCCTGCTCGTGTTACAG 182 8 30 S, P ++ +

B183 GACCCCTGCTCGTGTTACAGG 183 3 30 S, P - -

B184 ACCCCTGCTCGTGTTACAGGC 184 3 30 S, P - -

B243 AGAGTCTAGACTCGTGGTGGA 243 3 30 S, P + +

B244 GAGTCTAGACTCGTGGTGGAC 244 9 30 S, P +++ +++

B245 AGTCTAGACTCGTGGTGGACT 245 4 30 S, P +++ +++

B246 GTCTAGACTCGTGGTGGACTT 246 4 30 S, P - -

B250 AGACTCGTGGTGGACTTCTCT 250 10 35 S, P - +

B251 GACTCGTGGTGGACTTCTCTC 251 7 35 S, P + ++

B252 ACTCGTGGTGGACTTCTCTCA 252 2 30 S, P ++ ++

B375 GGATGTGTCTGCGGCGTTTTA 375 1 25 S, P ++ ++

B376 GATGTGTCTGCGGCGTTTTAT 376 7 30 S, P +++ +++

B377 ATGTGTCTGCGGCGTTTTATC 377 5 35 S, P + ++

B379 GTGTCTGCGGCGTTTTATCAT 379 4 35 S, P + +

B410 ATCCTGCTGCTATGCCTCATC 410 76 25 S, P - -

B415 GCTGCTATGCCTCATCTTCTT 415 54 25 S, P + ++

B456 AAGGTATGTTGCCCGTTTGTC 456 2 30 S, P ++ ++

B457 AGGTATGTTGCCCGTTTGTCC 457 1 40 S, P - +

B458 GGTATGTTGCCCGTTTGTCCT 458 7 35 S, P ++ ++

B459 GTATGTTGCCCGTTTGTCCTC 459 15 25 S, P ++ ++

B461 ATGTTGCCCGTTTGTCCTCTA 461 11 30 S, P + +

B1260 GCCGATCCATACTGCGGAACT 1260 2 25 EnhI, P + ++

B1577 GTGTGCACTTCGCTTCACCTC 1577 13 30 X, P, DR1 +++ ++

B1579 GTGCACTTCGCTTCACCTCTG 1579 5 25 X, P, DR1 ++ ++

B1581 GCACTTCGCTTCACCTCTGCA 1581 15 30 X, P, DR1 +++ +++

B1583 ACTTCGCTTCACCTCTGCACG 1583 21 30 X, P, DR1 ++ ++

B1787 GGAGGCTGTAGGCATAAATTG 1787 4 30 Pc, EnhII ++ ++

B1788 GAGGCTGTAGGCATAAATTGG 1788 9 25 Pc, EnhII ++ +

B1789 AGGCTGTAGGCATAAATTGGT 1789 5 30 Pc, EnhII +++ +++

B1880 AAGCCTCCAAGCTGTGCCTTG 1880 3 30 Pc + -

B1881 AGCCTCCAAGCTGTGCCTTGG 1881 23 25 Pc - -

B2389 AGAAGAAGAACTCCCTCGCCT 2389 42 25 C, P - +

B2390 GAAGAAGAACTCCCTCGCCTC 2390 26 25 C, P - +

B2391 AAGAAGAACTCCCTCGCCTCG 2391 29 25 C, P - -

B2392 AGAAGAACTCCCTCGCCTCGC 2392 19 30 C, P - +

B2393 GAAGAAGAACTCCCTCGCCTC 2393 18 30 C, P - +

B2394 AAGAACTCCCTCGCCTCGCAG 2394 29 25 C, P - +

B2395 AGAACTCCCTCGCCTCGCAGA 2395 14 35 C, P + +

B2396 GAACTCCCTCGCCTCGCAGAC 2396 18 35 C, P - +

B2397 GATCCATACTGCGGAACTCCT 2397 11 35 C, P - -

L1254 TGGCTACATTCTGGAGACATA NA NA NA luciferase - -

NA, no application.

“+” indicates weak inhibition (below 50%),

“++” indicates medium inhibition (above 50%, but below 90%),

“+++” indicates strong inhibition (above 90%),

“-” indicates no significant inhibition,

An underline represents the four candidates that were worthy for further research.
a: off-target effects were evaluated by the online SOS program http://rnai.cs.unm.edu/offTarget.
b: anti-HBV effects were evaluated by decreases in extracellular HBsAg level.
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Adverse side-effects evaluation for selected shRNA
plasmids
The B245, B376, B1581, and B1789 plasmids were trans-
fected into Huh7 cells to determine cytotoxicity by the
WST-8 assay. No significant siRNA-induced cytotoxicity
was observed for these siRNA when compared to an
empty pSUPER vector (p = 0.66, data not shown). The
mRNA levels of four major interferon stimulated genes
(STAT1, OAS1, GBP1 and MX1) in transfected cells
were measured by quantitative realtime PCR with
GAPDH mRNA acting as a control. As shown in Figure
2, between values 1 and 2, logarithmic increases for the
IFN-stimulatable mRNAs were only observed in the
IFN-treated cells, but not observed in any of the shRNA
treated cells vs. untreated cells. From this, it can be con-
cluded that an IFN response is not activated by these
anti-HBV siRNAs.

ShRNA inhibit gene expression of HBV strains with
different genotypes in vitro
The levels of cytoplasmic HBV pg/pc RNA (3.5 kb) and
HBV DNA in cultured supernatants were determined by
realtime RT-PCR/PCR and presented in Figure 3. The
pg/pc RNA level of five HBV strains with different geno-
types were reduced by 58%~93% in B245(69%~93%),
B376(59%~91%), B1581(67%~90%) and B1789(58%~88%)
treatments, while the HBV DNA level observed in super-
natants was decreased by 77%~99% in these shRNA plas-
mid treatments (B245: 83%~99%, B376: 79%~99%,
B1581:88%~98%, B1789: 77%~99%).
In addition, the extracellular and intracellular antigen

levels in Huh7 cells that were co-transfected with HBV and
shRNA plasmids were also determined (Figure 4). In the
shRNA-treated Huh7 cells, the average extracellular HBsAg
expression level of all five HBV strains decreased by 1.66 ±
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3.5kb pgRNA

HBeAg/HBcAg/DNAP

2.4kb

Large HBsAg

2.1kb

Small/Middle HBsAg
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Figure 1 A schematic diagram depicting the locations of siRNA targets in association with viral open reading frames and viral mRNAs
within the HBV genome. The circular HBV genome is presented in a linear form. The coding regions for e/core, surface, polymerase, and X
proteins are displayed and designated as Pc/C, S, P, and X, respectively. The relative locations of the target sites of B245, B376, B1581 and B1789
are also indicated by arrowheads.

Table 2 Sequence conservation of four selected siRNA targets in 327 HBV strains

Genotype
(No. of HBV strains)

Number of strains with identical
sequence with siRNA(%)

Subtype
(No. of HBV strains)

B245 B376 B1581 B2379

Genotype A (63) 61(96.8) 62(98.4) 62(98.4) 63(100) Aa(45), Ac(9), Ae(9)

Genotype B(72) 69(95.8) 49(68.1)* 71(98.6) 70(97.2) Bj(9), Ba(38), B3(7), B4(8), B5(4), B6(6)

Genotype C(58) 53(91.4) 46(79.3)* 57(98.3) 56(96.6) C1(38), C2(13), C3(2), C4(2), C5(3)

Genotype D(30) 29(96.7) 29(96.7) 28(93.3) 28(93.3) D1(11), D2(6), D3(8), D4(5)

Genotype E(34) 33(97.1) 34(100) 33(97.1) 33(97.1) F1(4), F2(14)

Genotype F(18) 15(83.3) 18(100) 18(100) 18(100)

Genotype G(17) 17(100) 17(100) 15(88.2) 16(94.1)

Genotype H(13) 13(100) 13(100) 12(92.3) 13(100)

Genotype I(22) 21(95.5) 22(100) 22(100) 22(100) I1(10), I2(12)

Total (327) 311(95.1) 290(88.7)* 318(97.3) 319(97.6)
a: An asterisk represents a statistical difference of P < 0.05 in comparison with B376 and others.
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0.36 logs. The average intracellular HBsAg expression level
decreased by 1.47 ± 0.33 logs, while the extracellular
HBeAg levels decreased by 1.04 ± 0.23 logs, and the intra-
cellular HBcAg levels by 1.71 ± 0.49 logs. The effect of the
siRNA treatment on HBeAg levels was weaker than that on
the HBsAg or HBcAg levels (P < 0.001, Figure 5).

Inhibition of gene expression of HBV strains with
different genotypes in vivo
Using the mouse model of acute hepatitis B virus infec-
tion [12], the profiles of serum HBsAg and HBeAg were

used to evaluate the effect of shRNA over nine days
(Figure 6). All HBV plasmids expressed detectable
HBsAg and HBeAg in mice sera (Figure 6). As compared
to the control mice (HBV+L1254), B245 and B376 treat-
ments reduced HBsAg expression by over 99% in all five
HBV genotypes. Furthermore, B1581 and B1789 treat-
ments suppressed HBsAg by over 99% in mice infected
with HBV genotypes A, B, C and D. In a novel W29
strain representing genotype I however, B1581 and
B1789 treatments only reduced HBsAg expression by
about 90%. With regards to serum HBeAg for genotypes
A, B, C, D and I, B245, B376, B1581 and B1789 treat-
ments suppressed HBeAg by 96%~99%, 79%~99%,
94%~99%, and 89%~99%, respectively. The overview of
the results shows that B245 is the most potent agent.

Discussion
Activated RNAi pathway can silence HBV replication
and expression [13,14]. However, in most previous stu-
dies, the activity of RNAi against HBV is often evaluated
with only one HBV strain [15-18]. Nine HBV genotypes
(including a newly identified genotype “I”), designated as
the letters A through I, have been recognized with an
accompanying sequence divergence of >8% over the
entire genome [19-21]. The influence of genotypes on
HBV replication efficacy and antigen expression level
had been proved to be various and that may further
associate with clinical outcomes and antiviral treatments
responses [22]. Hence, RNAi designed for one genotype
may not necessarily be effective against another geno-
type. Given the high heterogeneity of HBV strains and
the sensitivity of siRNA to the sequence changes,
designing siRNA targets against the conservative site on
HBV genome is essential to ensure activity across all
genotypes [23].
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Figure 2 The expression profile of four major interferon
stimulated genes (ISGs) in shRNA plasmids transfected cells.
Cytoplasmic RNAs, from Huh7 cells treated with or without IFNa-2a
or transfected with either pSUPER vector or shRNA plasmids, were
analysed by realtime RT-PCR for IFN stimulated genes STAT1, OAS1,
GBP1 and MX1. The values on the figure, plotted as “Relative gene
expression level” on the y-axis, were calculated as the mRNA levels
of ISGs divided by the GAPDH (control) mRNA level. Student t test
was used to assess the difference between shRNA plasmids
(including empty pSUPER vector) of transfected cells and non-
transfected cells (mock). No significant difference was observed.
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Figure 3 SiRNAs inhibit RNA and DNA expression of HBV strains with different genotypes in Huh7 cells. The histogram show the
cytoplasmic HBV pg/pc RNA levels (A, B, C, D, E) and extracellular HBV DNA (F, G, H, I, J) of five HBV strains with genotypes Ae(N10), Ba
(C4371), C1(Y1021), D1(Y10) and I1(W29) in treated shRNA plasmids, treated pSUPER vector, and non-treated Huh7 cells.
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In shRNA expression systems, two different promoters
are predominantly used: U6 and H1, both driven by
human polymerase III (poly III). Compared to Pol II
promoters, Pol III promoters generally possess a greater
capacity to synthesize RNA transcripts of a higher yield
and rarely induce interferon responses [17,24]. However,
a previous study noted that U6 Pol III-expressed
shRNAs may cause serious toxicity in vivo by saturating
the endogenous miR pathway [25]. In this report, we
constructed 40 shRNA plasmids (Table 1) with various
targets, using a human H1 Pol III promoter. The target
sequences of the final four selected shRNA plasmids
demonstrated high sequence conservation among A to I
genotypes and significant inhibition activity, in both
Huh7 cells and mice, against the expressions of HBV
RNA, DNA and antigens in genotypes A, B, C, D and I.
The inhibitory efficacy of these shRNAs (B245, B376,

B1581 and B1789) however, varies significantly against
the various genotypes for different viral markers in dif-
ferent models (Figure 3, 4, 5 and 6). Such differences in
efficiency may be due to differences in the mRNA’s sec-
ondary structure or the target site accessibility [26].
B245 was the most effective of the four candidates.
It should be noted that both the cell-transfection

model and hydrodynamic injection model more closely
resemble an acute model of a HBV infection. This is a
potential limitation in this study, as most individuals
who need anti-HBV therapy are chronically infected.
Compared to the HBV transgenic mouse models and
stably transfected cell lines, the former are more flexible
and convenient in evaluating the efficacy of shRNAs as
a way to inhibit various HBV strains. Nevertheless, the
effective shRNA candidates should be studied further in
different models.
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Figure 4 SiRNAs inhibit viral antigens expression of HBV strains with different genotypes in Huh7 cells. (A, B, C, D) Extracellular HBsAg,
intracellular HBsAg, extracellular HBeAg, and intracellular HBcAg expression levels of HBV N10(Ae), respectively. (E, F, G, H) Extracellular HBsAg,
intracellular HBsAg, extracellular HBeAg, and intracellular HBcAg expression levels of HBV C4371(Ba), respectively. (I, J, K, L) Extracellular HBsAg,
intracellular HBsAg, extracellular HBeAg, and intracellular HBcAg expression levels of HBV Y1021(C1), respectively. (M, N, O, P) Extracellular HBsAg,
intracellular HBsAg, extracellular HBeAg, and intracellular HBcAg expression levels of HBV Y10(D1), respectively. (Q, R, S, T) Extracellular HBsAg,
intracellular HBsAg, extracellular HBeAg and intracellular HBcAg expression levels of HBV W29(I1), respectively.
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Because HBV contains overlapping open reading
frames (ORFs) and all four HBV transcripts overlap in
their 3′ terminals, a single siRNA targeting multiple
areas could be designed to maximize inhibitory potency
[23]. The siRNAs targeting C ORF, such as
B2389~B2397, presented in Table 1, show activity only
against the 3.5 kb pregenomic RNA, but are unlikely to
show any activity against the other three transcripts
(Figure 1). Meanwhile, all four siRNAs demonstrated
more silencing activity with regards to HBsAg expres-
sion than HBeAg expression for various genotypes in
the cell cultures and mice. The targets on both however
were the same in the HBV transcripts for the two pro-
teins (Figure 4 and Figure 5), which was also observed
in a previous study [23]. HBcAg, a viral capsid corre-
lated with viral replication [27,28], was silenced as effec-
tively as HBsAg, but HBeAg was not (Figure 4).
The registered agents currently available for the treat-

ment of HBV infections, such as interferon and nucleo-
side analogues, can dramatically decrease HBV DNA
levels and induce particular HBeAg loss, but will rarely
cause HBsAg loss in chronic hepatitis B patients [29-32].
RNA interference, on the other hand, can theoretically be
directed to cleave any target RNA, providing a novel

methodology for anti-HBV therapy [33]. In the present
study, and supported by other studies [13,34,35], using
RNAi as an inhibitor for HBV effectively reduces viral
antigen levels, including HBsAg. It can be speculated that
RNAi-treatments may offer complementary effects for
current anti-HBV therapy. However, the final application
of RNAi-based anti-HBV drugs depends on the develop-
ment of effective and safe RNAi delivery systems.

Conclusions
In summary, four candidate shRNA plasmids signifi-
cantly inhibited HBV genotypes A, B, C, D and I in
vitro and in vivo. A potential avenue of investigation
would be a combination strategy of various siRNA in a
single transcript to improve efficacy and also prevent or
at least delay the rise of viral escape mutants.

Methods
HBV Plasmids
Five HBV 1.35-fold genome plasmids - N10 (genotype Ae,
AY707087), C4371 (genotype Ba, GU357842), Y1021
(genotype C1, GU357845), Y10 (genotype D1, GU357846)
and W29 (genotype I1, GU357844) were used for transfec-
tion and hydrodynamic injection. The constructions and
molecular and phenotypic characteristics are described in
our previous report [36].

Bioinformatics Analysis
To define the conservative sites on HBV genomes
amongst the various genotypes, all available complete
genome sequences of HBV, as of April 2009, were
downloaded from GenBank. Multiple alignment was
done with ClustalX2 under default settings (Gap Open-
ing:10, Gap Extension: 0.2, Delay Divergent Sequences
(%): 30, DNA Transition Weight: 0.5, Use Negative
Matrix: Off). The most representative and informative
sequence in terms of phylogeny were collected as a
dataset and the most similar sequences were removed
using all pairwise distance scan. A total of 327 HBV
genomes including A-I genotypes and nearly all reported
subtypes were remained in the final dataset. The geno-
types and subtypes of six HBV genomes isolated in the
study were submitted to phylogenetic analysis using
MEGA 4.0 software (data not shown). Forty sites with
conservative sequences were selected and the shRNA
plasmids were constructed (Table 1). The designed
siRNA were evaluated for potential off-target effects by
the online SOS program http://rnai.cs.unm.edu/offTar-
get. The sequences and positions of the forty designed
shRNA targets are shown in Table 1.

ShRNA Plasmids
ShRNA plasmids were cloned downstream of the human
H1 promoter in the vector pSUPER [37]. The target
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Figure 5 Comparing the RNAi-induced silencing effect on
different viral markers. Data were displayed the average antigen
level of the 4 siRNAs reduced for five HBV strains. “Ex” = Extracellular
and “In” = Intracellular. The Mann-Whitney test was used to assess
the difference. An asterisk represents a statistical difference of P <
0.01 in comparison with the other markers (Ex HBeAg vs. Others P <
0.001, Ex HBsAg vs. In HBsAg P = 0.05, Ex HBsAg vs. In HBcAg P =
0.82, In HBsAg vs. In HBcAg P = 0.10.)

Zhang et al. BMC Microbiology 2010, 10:214
http://www.biomedcentral.com/1471-2180/10/214

Page 6 of 10

http://rnai.cs.unm.edu/offTarget
http://rnai.cs.unm.edu/offTarget


Genotype A

0 2 4 6 8 10
0.1

1

10

100

1000

10000

Day post injection

Se
ru

m
 H

B
sA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

Genotype A

0 2 4 6 8 10
0.1

1

10

100

1000
N10+L1254

N10+B245
N10+B376
N10+B1581
N10+B1789

Uninjected Mice

Day post injection

Se
ru

m
 H

B
eA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

Genotype B

0 2 4 6 8 10
0.1

1

10

100

1000

10000

Day post injection

Se
ru

m
 H

B
sA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

Genotype B

0 2 4 6 8 10
0.1

1

10

100

1000
C4371+L1254

C4371+B245
C4371+B376
C4371+B1581
C4371+B1789

Uninjected Mice

Day post injection

Se
ru

m
 H

B
eA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

Genotype C

0 2 4 6 8 10
0.1

1

10

100

1000

10000

Day post injection

Se
ru

m
 H

B
sA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

Genotype C

0 2 4 6 8 10
0.1

1

10

100

1000
Y1021+L1254

Y1021+B245
Y1021+B376
Y1021+B1581
Y1021+B1789

Uninjected Mice

Day post injection

Se
ru

m
 H

B
eA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

Genotype D

0 2 4 6 8 10
0.1

1

10

100

1000

10000

Day post injection

Se
ru

m
 H

B
sA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

Genotype D

0 2 4 6 8 10
0.1

1

10

100

1000
Y10+L1254

Y10+B245
Y10+B376
Y10+B1581
Y10+B1789

Uninjected Mice

Day post injection

Se
ru

m
 H

B
eA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

Genotype I

0 2 4 6 8 10
0.1

1

10

100

1000

10000

Day post injection

Se
ru

m
 H

B
sA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

Genotype I

0 2 4 6 8 10
0.1

1

10

100

1000
W29+L1254

W29+B245
W29+B376
W29+B1581
W29+B1789

Uninjected Mice

Day post injection

Se
ru

m
 H

B
eA

g 
le

ve
l (

S/
C

O
 v

al
ue

)

A

B

C

D

I

Figure 6 Kinetics of serum HBV antigen (HBsAg and HBeAg) of various HBV genotypes in RNAi-treated mice. For each group (each line
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10-fold. (A) Genotype Ae (N10 group), (B) Genotype Ba (C4371 group), (C) Genotype C1 (Y1021 group), (D) Genotype D1 (Y10 group),
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sites for siRNA were chosen based on conservative sites
among the major HBV genotypes and subtypes. An
shRNA plasmid targeting the firefly luciferase gene was
used as a control (L1254: TGG CTA CAT TCT GGA
GAC ATA).

Cell Culture and In Vitro Transfection
The plasmids used for in vitro transfection were purified
with PlasmidSelect Xtra Starter Kit (GE Health, Sweden)
and the concentrations were determined by the UV-
spectrophotometric method. To determine the ability of
siRNA to inhibit HBV gene expression in cell cultures,
Huh7 cells were co-transfected with 4 μg of HBV plas-
mids, 1 μg of shRNA plasmids and 0.4 μg of a
pcDNA3.1-SEAP plasmid using Lipofectamine 2000
(Invitrogen, Shanghai, China) following the manufac-
turer’s instructions. They were then harvested four days
later. The pcDNA3.1-SEAP plasmid is a reporter plas-
mid expressing secreted alkaline phosphatase and used
for transfection efficiency standardization by estimating
SEAP enzymatic activity (Pierce; Kunming, China) in
the culture supernatant.

Evaluation for Potential Adverse Effects of siRNA
Possible adverse effects of shRNA on cells were evalu-
ated using morphology criterion, growth rate assess-
ment, and by noting the cytotoxicity profile of
transfected cells. Cytotoxicity was determined through
a WST-8 assay (Cell Counting Kit-8, Beyotime, Shang-
hai, China) [38,39]. The number of viable cells was
then determined by absorbance measured at 450 nm
on an automated plate reader. The potential off-target
effects of siRNA were evaluated by monitoring
the IFN response. Huh7 cells were transfected with
1 μg of shRNA plasmids. Non-transfected cells treated
or untreated with 500 IU of IFNa-2a (Anfulong,
Huadali Company, China) for 24 h served as a positive
control [40]. Expression profile of four major inter-
feron-stimulated (STAT1, OAS1, GBP1 and MX1)
were analyzed by a quantitative RT-realtime PCR using
the previously reported primers while the GAPDH
level served as a control[41].

Mice Experiments
To evaluate the anti-viral effects of siRNA in vivo, an
HBV hydrodynamic injection was conducted in BALB/c
mice. Briefly, 50 μg of purified HBV plasmid and 10 μg
shRNA plasmids were diluted to 2 mL with physiologi-
cal saline and then injected into the tail vein within 5-
10 s. Mice sera were assayed every day for HBsAg and
HBeAg from Day 0 to Day 9. For each group, five mice
aging from 4-6 weeks were used [42]. All animals
received humane care and the study protocol complied
with the institution’s ethics guidelines.

Measurement of HBV RNA and DNA
For detection of the cytoplasmic HBV RNA, total RNA
was extracted from cells using Tripure Isolation Reagent
(Roche Applied Science, Switzerland) according to the
manufacturer’s instructions. Potential residual DNA
contamination of RNA preparations were excluded by
DNase I digestion. Ten nanograms of RNA were ana-
lysed by AccessQuick realtime RT-PCR System (Pro-
mega, USA) on a CFX96 instrument (Bio-Rad, USA).
The HBV pg/pc (pregenomic/preCore) RNA level was
detected by primers PGP (-CACCTCTGCCTAAT-
CATC, nt1826-nt1843) and BC1 (GGAAAGAAGTCA-
GAAGGCAA, nt1974-nt1955) [43] using probe CP2
(HEX-ATGTTCATGTCCTACTGTTCAAGCC-BHQ2).
The transcript copy number was normalized to those of
GAPDH.
For the HBV DNA assay, 100 μL of supernatant was

pre-heated at 50°C for 20 minutes and then treated with
1 U DNase I for 2 hours to eliminate residual plasmids.
The reaction was terminated by EDTA at a final con-
centration of 10 mM. The mixture was then incubated
at 70°C for 10 min and the HBV DNA was extracted
using QIAamp DNA blood kits (QIAGEN, Hilden,
Germany). HBV DNA quantification assays were per-
formed using a commercial real-time PCR kit (Kehua,
Shanghai, China).

Determination of HBV Antigens
HBsAg, HBeAg and HBcAg levels were determined by
chemiluminescence using commercial assay kits (Wantai,
Beijing, China). The relative level of each antigen was
expressed as an S/CO (signal/cutoff) value, on a linear
range from 1 to 1000 for all three assays. The lower
detection limit was 10 pg/mL for the HBsAg and HBeAg
assays, and 50 pg/ml for the HBcAg assay. In regards to
the intracelluar HBV antigen assay, the transfected cells
were treated with a suitable lysis buffer (20 mM HEPES,
1 mM EGTA, 100 mM NaCl, 5 mM Mg2Cl, 0.4%
n-Dodecyl b-D- maltoside, n-Dodecyl b-D-maltoside, and
10% Glycerol) at room temperature for 30 minutes and
the supernatants were separated through centrifugation
and used for immunoassay.

Statistical Evaluation
Statistical analyses were performed using independent
Student t test or Mann-Whitney U test (GraphPad Soft-
ware, San Diego California USA,). Differences were con-
sidered to be statistically significant for p values ≤ 0.05.

Abbreviations
SIRNA: small interfering RNA; SHRNA: short hairpin RNA; OFF-TARGET
EFFECT: non-specific effects resulting from the introduction of siRNA;
STAT1: signal transducers and activators of transcription1; OAS1: 2′-5′-
oligoadenylate synthetase 1; MX1: interferon-induced GTP-binding protein;
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GBP1: guanylate binding protein 1; HBV: hepatitis B virus; HBSAG: hepatitis
B surface antigen; HBEAG: hepatitis B e antigen; HBCAG: hepatitis B core
antigen.
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