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KEY POINTS

� The strongest genetic associations in primary biliary cirrhosis (PBC) and primary scle-
rosing cholangitis (PSC) occupy distinct regions of the major histocompatibility complex
(MHC).

� Most non-MHC associations overlap with other autoimmune diseases, with putative risk
loci indicating altered immunoregulatory pathways, aberrant microbial handling and dys-
regulated mucosal immunity generally.

� Less than 20% of the expected heritability is explained by currently available genome-
wide studies.

� Epigenetics have provided insight into sex predisposition as well as overexuberant
chemokine-mediated lymphocyte recruitment in the pathogenesis of immune-mediated
liver disease.

� Recognition of definitive immune regulatory mechanisms and pathway defects may facil-
itate approaches to risk stratification as well as in the identification of ostensible therapeu-
tic avenues.
INTRODUCTION

Chronic cholestatic liver diseases encompass a range of disorders affecting the hep-
atobiliary system and arise secondary to a variety of causes, including molecular de-
fects caused by genetic variation or drugs, structural changes due to congenital
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disorders, or autoreactive bile duct injury.1 In clinical practice, the latter is most often
applied in reference to primary biliary cirrhosis (PBC) and primary sclerosing cholan-
gitis (PSC), themselves part of the broader spectrum of immune-mediated liver dis-
ease.2 Support of an autoimmune cause is provided by strong genetic links with
human leukocyte antigen (HLA), the presence of high circulating autoantibody titers,
and a clear increased frequency of concomitant autoimmune disease in affected indi-
viduals as well as associated family members.
However, unlike many classic autoimmune syndromes, PBC and PSC do not typi-

cally respond to immunosuppressive therapy; with the development of newer thera-
peutic interventions being significantly mired by gaps in understanding disease
etiopathogenesis. Nevertheless, recent developments have begun to dissect the
impact of certain genetic polymorphisms not only on predisposition but also varying
phenotypic presentations, susceptibility to progressive disease, and putative thera-
peutic avenues based on the rational targeting of immune pathways presumed rele-
vant to disease initiation.
Genetic exploration of rare diseases frequently establish major genes that regulate

pathogen-specific immune responses, and genome-wide association studies (GWAS)
have been increasingly productive for recognizing common variants within a given
population. However, identifying the exact genes that result in statistical associations
is often not possible to determine, and often many plausible candidates at a given sus-
ceptibility locus are proposed.3 Conversely, if only one candidate susceptibility gene is
identified, the associated causative variant is often unknown.4
EPIDEMIOLOGIC CONSIDERATIONS: HERITABILITY AND FAMILIAL CLUSTERING

Although PBC and PSC represent relatively rare disease entities, systematic reviews
of disease frequency suggest an increasing incidence and prevalence globally.5

Moreover, both conditions continue to pose a significant burden on health care ser-
vices, accounting for approximately 25% of all first liver transplantations in the West-
ern world.6 For PBC, clustering of cases has been reported in certain geographic
areas, for instance, in coastal First Nations of British Columbia where disease prev-
alence is as high as 25% within generations of well-characterized multiplex families.7

Studies of monozygotic twins provide further support of a genetic predisposition,
with a reported 63% concordance rate, among the highest reported for any autoim-
mune disease.8 Moreover, a family history seems to be one of the strongest identified
risk factors for disease development (odds ratio: 10.7), with approximately 6% of the
patients having an affected first-degree relative.9 Conversely, population studies
from Australia estimate a prevalence of PBC between 19.1 per million among birth
natives relative and 183 per million among those migrating to the continent from
Europe.10,11 Although these data support an inherent genetic predisposition to dis-
ease development, the incidence seems to decrease in consecutive generations of
descendants of European migrants possibly indicating the impact of environmental
influences.12

Heritable aspects of PSC are also evinced through family studies, wherein disease
prevalence in first-degree relatives of affected patients is 100-times greater than that
observed across unrelated comparator populations.13 Clinical associations between
PSC and colonic inflammatory bowel disease (IBD) are well described,14 and the
risk of developing PSC and/or ulcerative colitis (UC) is also significantly increased in
families of afflicted individuals compared with controls.15

Despite the evidence of familial aggregation, neither PBC nor PSC display classic
Mendelian inheritance. Rather, they exhibit a complex and possibly dynamic
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gene-gene/gene-environment interaction contributing to disease manifestation at
various levels. Therefore, some of the currently proposed genes may influence dis-
ease risk by determining how a given individual responds to a particular environ-
mental antigen. Others may act in concert and express the consequence of
variation in a stepwise manner and be responsible for diverse clinical phenotypes
depending on the coexistence of genetic variability in distinct immune pathways
(Fig. 1).
HUMAN LEUKOCYTE ANTIGEN ASSOCIATIONS

The highly polymorphic major histocompatibility complex (MHC) has been implicated
in the etiopathogenesis of human autoimmunity for decades, with strong albeit distinct
HLA signals recently confirmed for autoimmune liver disease through GWAS.1,16

Comprehension of how HLA impacts cholestatic disease mechanistically is somewhat
limited, although the fact that an association has been identified in the first instance
suggests a defect in the direction and precision of antigen-specific immune
responses.
In PBC, several single-nucleotide polymorphisms (SNPs) mapping within or

near genes across the HLA region meet the significance threshold for genome-wide as-
sociation (P<5 � 10�8), with peak signals mapping between HLA-DQA1 and
HLA-DQB1.17–20 PBC-specific associations have also been reported forHLA-DRB1*08,
CLINICAL 
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Fig. 1. Aggregation of genetic risk in complex diseases. PBC and PSC represent complex dis-
eases, in which the cause is attributed to presence of ostensible genetic risk factors that
exhibit a poorly understood interaction with coexisting environmental influences. Individ-
ual susceptibility factors are frequently nonpathogenic in isolation, and currently identi-
fied genetic variants frequently occur in the healthy population to a certain degree.
However, in an individual who is immunologically primed, the cumulative loss of an unfor-
tunately high burden of protective factors gives rise to breaks in immune tolerance (indi-
cated by holes) that predispose to autoimmunity (eg, dysregulated IL-2 or IL-12 signaling
pathways) in addition to pathogenic responses to the commensal microbiome (eg,
CARD-9 variants) that result in a clinically identifiable presentation. Additional modifier
genes or epigenetic influences may also exist, which influence the rate of progression
and variant clinical phenotypes (eg, Fut-2 polymorphisms).
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HLA-DRB1*11, HLA-DRB1*14, and HLA-DPB1*03:01, with most corresponding amino
acids forming residues in the antigen-binding pocket of the MHC molecule suggesting
defective antigen presenting capacity. However, HLA associations vary geographically,
with increased PBC susceptibility demonstrated for HLA-DRB1*08:01 in European
patients and HLA-DRB1*08:03 – DQB1*06:01 and HLA-DRB1*04:05 – DQB1*04:01
haplotypes implicated in Japanese patients with PBC.21 A novel association with
the HLA-DRB1*0901 – DQB1*0303 haplotype and progression to cirrhosis and liver
transplantation have also been suggested in Japan, whereas HLA-DRB1*13:02 –
DQB1*06:04 and HLA-DRB1*11:01 – DQB1*03:01 seem protective.22

Pathologically, PBC is characterized by highly conserved humoral and cellular
autoreactive immune responses to the mitochondrial pyruvate dehydrogenase com-
plex E2 (PDC-E2).23,24 This loss of tolerance has been attributed to the aberrant
expression of molecular mimics of PDC-E2 on the cell surface of biliary epithelial cells
(BEC), which behave as immunodominant epitopes and bind with HLA-DRB4.25 How-
ever, interactions between other HLA haplotypes and PDC-E2 have not yet
determined.
Variationwithin theMHC region also represents themost significant genetic risk factor

for PSC, with proposed SNPs in near-perfect linkage disequilibrium with HLA-B*08:01
as well as more complex associations described for HLA-DRB1*03:01,
HLA-DRB1*13:01, HLA-DQA1*01:03, and HLA-DQA1*01:01.26–28 Simultaneously,
strongprotective influences of theHLA-DRB1*04 –DQB1*03:02 andHLA-DRB1*07:01 –
DQB1*03:03 haplotypes have been documented. Further insight into risk-related alleles
in the class-II region of patients has been provided by finemapping ofHLA-DRB1 geno-
types29; and 3-dimensional modeling of the corresponding protein chain has identified
key amino acids influencing the range of peptides incorporated into the binding pocket
of the MHC.
Despite a striking coexistence with colonic inflammation (in w80% of cases),

most of the HLA associations in PSC are distinct from those identified in IBD,
with the exception of a recently identified link to HLA-DRB1*15:01 that is seen to
overlap with that of UC (increased risk) and Crohn disease (decreased risk) as
well as a multitude of organ-specific autoimmune disease.30 The negative prog-
nostic impact of colitis in PSC has been consistently demonstrated in well-
characterized patient cohorts and population-based series,31,32 with more variable
stratification capabilities reported for those patients having elevated serum immu-
noglobulin G4 (IgG4) levels.33,34 Nevertheless, patients with PSC and high serum
IgG4 also exhibit an increased frequency of HLA-DRB1*15, the presence of which
may, therefore, signify a common high-risk phenotype. Conversely, individuals who
manifest the small duct variant of PSC in the absence of concomitant IBD harbor
several distinct HLA associations, possibly implying a distinct cholangiopathic
entity.28,35
T-CELL SIGNALING

In keeping with an immune-mediated cause, PBC and PSC display several immuno-
pathogenic traits common to human autoimmune disease, including overexuberant
effector and cytotoxic T-cell responses to pathogen stimulation,36–38 in parallel to a
relative loss of immunoregulatory leukocyte functions.39,40

Pathologically, PBC is characterized by a progressive lymphocytic cholangitis
centered on smaller intrahepatic bile ducts, and consistent with involvement of the
adaptive immune system the infiltrate is predominated by T cells. Large-scale ge-
netic studies have underscored the impact of adaptive regulatory immune pathways;
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in PBC, this is perhaps best highlighted by interleukin 12 (IL-12) and downstream Ja-
nus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT)
signaling.17,37,41 IL-12 is central in generating effector type-1 helper T-cell (Th1) re-
sponses directed toward clearance of intracellular pathogens, and interferon g
(IFNg) release suppresses IL-23–driven induction of IL-17–producing helper T-lym-
phocytes (Th17).

42 Additionally, impaired expression of the IL-12 receptor subunit
IL-12Rb2 has been shown to facilitate regulatory T-cell (Treg) suppressive functions
in the context of a proinflammatory environment. IL-12A and IL-12RB2 variants
confer an augmented risk of autoimmunity in many human conditions and have
been recently validated in a meta-analysis of several PBC GWAS.17–19,43–46 The sig-
nificance of this observation is elegantly illustrated in experimental cholangiopathy
models, wherein mice that lack the p40 subunit of IL-12 (IL12p40�/�) exhibit dramatic
reductions in histologic cholangitis and a significant decrease in the levels of intrahe-
patic, proinflammatory cytokines.47 Many other loci associated with PBC suggest
that Toll-like receptor signaling upstream of IL-12 production may also play a role
in disease. For instance, IFN regulatory factor-5 interacts with nuclear factor kB
(NFkB), which consequently induces expression of several effector T-cell cytokines,
including IL-12. Furthermore, variants at the IL12A locus have been reported to affect
the risk of PBC recurrence following liver transplantation.48 Several additional ge-
netic variants involved in key T-cell signaling have been suggested by candidate as-
sociation studies but not yet emerged as risk loci in PBC GWAS. The classic example
here is cytotoxic T-lymphocyte–associated protein-4, which encodes a protein
expressed on T-cells and competitively binds to costimulatory molecules CD80
and CD86, thereby ameliorating effector signaling through CD28.49

Of interest, CD28 has emerged as a risk locus in PSC and encodes a T-cell costimu-
latory molecule necessary for activation and proliferation. A recently published study
by Liaskou and colleagues50 has demonstrated that in PSC, CD41 T lymphocytes lack-
ing CD28 can be induced by tumor necrosis factor a (TNFa) and infiltrate the peribiliary
region where they induce BEC apoptosis through secretion of proinflammatory cyto-
kines in addition to granzyme and perforin-mediated injury. Of note, CD28 is required
for IL-2 production, which in turn is required for both the induction (activation of effector
T cells) and termination of inflammatory immune responses (induction of Treg).
TUMOR NECROSIS FACTOR a SIGNALLING

TNFa is an activating factor for several intracellular pathways that determine the fate of
epithelial cells, including hepatocytes and BEC.51 Interactions between specific mem-
bers of the TNF pathway lead to the induction of apoptosis as well as activation of
NFkB signaling; and in PBC, GWAS have identified 3 loci containing genes in TNFa
signaling pathways.18,20,52 Macrophages from patients with PBC when stimulated
with apoptotic bodies from BEC produce high levels of TNFa, with serum levels of
TNFa reflecting the severity of intrahepatic damage.23,53

A prominent role for TNFa in the immunopathogenesis of PSC has also been sug-
gested through induction of immunopathogenic T-cell phenotypes50 as well as indi-
rectly through the hepatic endothelial induction of mucosal chemokines and
adhesion molecules that are normally gut restricted in an NFkB-dependent
manner.54 Moreover, PSC genetic risk associations include the 1p36 locus that
encompasses the gene encoding TNF-superfamily receptor TNFRSF14, a protein
expressed on CD41 and CD81 T cells, B cells, monocytes, neutrophils, dendritic
cells, and mucosal epithelium, which behaves as a molecular switch modulating
lymphocyte activation.55
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MUCOSAL IMMUNE ACTIVATION IN LIVER AUTOIMMUNITY

Th17 cells are abundant in the intestinal lamina propria where they are induced by
commensal bacteria and provide protection against invading pathogens.56,57 In
mice, peripheral Th17-cells can be redirected from the periphery to the small intestine
via chemokine recruitment through CCR6-CCL20 interactions; and in humans, CCL20
is expressed on inflamed bile ducts, suggesting that the same chemokine pathway
might promote accumulation in the inflamed liver.58 Of interest, the recent PBC
GWAS meta-analysis by Cordell and colleagues46 identified CCL20 as a plausible
candidate gene, which, given the role of this chemokine axis in the formation and func-
tion of gut lymphoid tissues, suggests a pivotal role of the mucosal immune system in
the initiation or perpetuation of lymphocytic cholangitis.59

The chemokine receptor CXCR5 has also been identified as a risk locus in PBC18

and is involved in the migration of both T lymphocytes and B lymphocytes to sites of
antibody production along a chemokine gradient (ligand CXCL13). CXCR5 is consti-
tutively expressed on mature B lymphocytes and induced on T-follicular helper cells
(TFh) in response to antigen and is critical to formation of intestinal lymphoid folli-
cles.60 Emerging evidence also indicates that CXCR5 deficiency is associated with
defective germinal center responses within the liver, the critical location for driving
B-lymphocyte differentiation.61 This observation is of particular interest given that pa-
tients with PBC exhibit an increased frequency of TFH cells in vivo that correlates with
increased B-cell activation, disease severity, and biochemical response to ursodeox-
ycholic acid.61 IL-7 is another key player for both T and B lymphocyte development
and is also necessary for sustaining peripheral T-cell populations. Receptor induction
occurs on T-cell positive selection in the thymus and directs thymic CD81 lineage
specification and peripheral naı̈ve T-cell homeostasis, whilst simultaneously having
a role in myeloid cell differentiation.62,63 IL-7R expression is generally reduced on
Treg compared with other T-cell subsets, and IL-7 signaling plays an important role
in the imprinting of a gut-tropic (a4b7-integrin positive) phenotype64 —a noteworthy
observation given that mucosal lymphocytes purportedly drive proinflammatory re-
sponses in autoimmune cholestasis.59,65

Genetic links to mucosal immunity are even more evident in PSC (Fig. 2).59 The
importance IL-2/IL-2Ra polymorphisms, suggested through associations at the
4q27 and 10p15 loci, respectively,26 is supported by the fact that mice lacking
IL-2Ra develop autoantibodies and a T-cell–mediated cholangitis together with coli-
tis.66 Moreover, liver-derived lymphocytes from patients with PSC show reduced
expression of the IL-2 receptor and an impaired proliferative response to pathogen
stimulation in vitro.67 IL-2 can contribute to termination of inflammatory immune re-
sponses by promoting the development, survival, and function of Treg. Loss of
IL2Ra signaling function in PSC is supported by the observation that patients who har-
bor variant polymorphisms exhibit reduced circulating populations of Treg.

39

An immunosuppressive role for histone deacetylase (HDAC)-7, a gene implicated in
the negative selection of T cells in the thymus and development of tolerogenic immune
responses,26 is supported by a genetic association at 12q13 in PSC GWAS in which
the most associated polymorphism was located within an intron encoding serine-
threonine protein kinase (PRK)-D2 (19q13). When T-cell receptors of thymocytes are
engaged, PRKD2 phosphorylates HDAC7 resulting in loss of its gene regulatory func-
tions. This gives rise to apoptosis and negative selection of immature T cells. Notably,
this negative selection takes place owing to a loss of HDAC7-mediated repression of
the leukocyte transcription factorNur77.26Nur77 expression parallels that of IL-10 and
is heavily influenced by salt-inducible kinase (SIK)-2 polymorphisms, the latter of



Fig. 2. Mucosal genetics in autoimmune cholestatic liver disease. The strongest genetic
associations in autoimmune cholestatic liver disease are within the MHC. However, a signif-
icant proportion of non-HLA associations and epigenetic influences underscore the impor-
tance of mucosal immunogenicity in the pathogenesis of autoimmune cholangitis. These
associations include defective microbial handling and immunopathogenic responses to
the commensal microbiome, defects in epithelial (eg, intestinal or biliary) barrier function,
dysregulated leukocyte trafficking and homing to sites of injury, loss of intestinal and hep-
atobiliary tolerogenic responses, and consequently direct tissue inflammation. The outer
(green) ring in this diagram indicates the putative mucosal pathway, with PSC risk genes
identified by the middle (blue) ring and PBC risk genes the inner (red) ring.
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which is also proposed as a genetic risk-locus in PSC. Of note, IL-10 variants are
an established susceptibility factor for early onset ulcerative colitis,68 and exposing
Il10�/� mice to a diet high in saturated fat has been shown to induce specific changes
in the bile acid pool that consequently leads to alterations in the gut microbiome and
increased susceptibility to IBD69 – linking multiple putative risk loci to a common
mucosal pathway in PSC. Further impression of impaired mucosal tolerance is sug-
gested through a genetic association at 18q21, which contains transcription factor-
4; congenital deficiency of which not only results in partial blockade of early B- and
T-cell development but also attenuated development of plasmacytoid dendritic cells
(pDC) in murine models.70

Caspase-recruitment domain (CARD)-9 is an important downstream mediator of
signaling frommucosal pattern-recognition receptors (PRR), and genetic associations
suggest a link between defective intestinal mucosal microbial handling and the devel-
opment of PSC.71 Card9–/– mice seem more susceptible to experimentally-induced
colitis and typified by defective IFNg and Th17 responses, as well as reduced
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transcription of the mucosal chemokine CCL20; signifying the critical importance of
CARD9 in the maintenance of epithelial immunostasis.72 Another one of the strongest
non-HLA associations in PSC is macrophage-stimulating (MST)-1, which is also asso-
ciated with UC and Crohn disease. MST-1 is expressed by BEC and involved in regu-
lating innate immune responses to bacterial ligands, as well as modulating lymphocyte
trafficking in lymphoid tissues through integrin- and selectin-mediated adhesion.73–75

Glutathione peroxidase (GPX)-1 is an antioxidant enzyme located close to MST-1, and
polymorphisms in GPX-1 may also confer an increased disease susceptibility to
PSC.29 Moreover, Gpx1/2�/� mice develop a chronic ileocolitis with an increased fre-
quency of colonic malignancy.76

Variants in Fut-2, an enzyme encoding galactoside 2-alpha-L-fucosyltransferase-2,
have also been suggested to confer increased susceptibility to PSC (as well as Crohn’s
disease), although fall short of reaching significance at a genome-wide level.77,78 Fuco-
syltransferase variants alter the recognition and binding of various pathogens to carbo-
hydrate receptors on the mucosal surface and are associated with changes in the
commensal phyla in affected patients with PSC characterized by elevated Firmicutes
and reduced Proteobacteria. These aforementioned microbial changes are akin to
that observed in FUT-2mutations associated with Crohn’s colitis and again links defec-
tive immune responses to the gut microbiota in PSC. Moreover, variants in FUT-2 have
been described as a risk factor for the development of dominant biliary stenosis in PSC,
a putative surrogate of adverse clinical outcomes.34,79

An increased lifetime risk of hepatobiliary carcinoma as well as colorectal malig-
nancy is well recognized in PSC32 and previous studies have indicated that the latter
is associated with altered fucosylation of the adhesion molecule E-cadherin.80 A
recent study in mice has illustrated that congenital E-cadherin deletion results in spon-
taneous periportal inflammation and periductal fibrosis, in addition to an enhanced
susceptibility to hepatobiliary cancer, akin to clinical PSC, implying that cholangitis
and oncogenesis are a direct result of defective pathogen sensing.81
IMMUNO-EPIGENETIC INFLUENCES

Less than 20% of the heritability of autoimmune cholestatic liver diseases have been
uncovered by GWAS, and it is likely that some of themissing risk is attributable to envi-
ronmental triggers or nonhereditary genetic influences. As a female preponderant dis-
ease, the frequency of preferential X-chromosome monosomy on peripheral
lymphocytes seems to increase with age, at a rate significantly greater compared
with normal and non-PBC liver disease-matched controls.82,83 Of further interest is
the increased rate of Y-chromosome loss in men with PBC,84 suggesting that X-linked
alleles or haplotypes predispose to autoimmunity as a result of haploinsufficiency irre-
spective of sex.
Support of this hypothesis has recently been provided by the Milan PBC Epigenetic

Study Group who report striking demethylation of the CXCR3 promoter that inversely
correlated with receptor expression in peripheral blood CD41 T cells.85 This finding is
of particular significance given that CXCR3 is highly expressed on Th1 and Th17 liver-
infiltrating CD41 cells, and the cognate ligands (CXCL9–11) are known to be upregu-
lated on the damaged bile ducts in PBC liver.86 A further epigenetic observation is
reduced methylation of the CD40-ligand promoter regions among patients with PBC
compared with controls,87 which is of particular interest given the importance of
CD40 in T- and B-cell interactions. Of note, elevated circulating levels of CD40 have
been detected in the serum of patients with systemic autoimmune diseases88 and
ectopic B-cell expression reportedly associated with intestinal inflammation.89



Table 1
Conceivable therapeutic targets arising from genetic and epigenetic studies

Pathway Intervention and Rationale Expedients Precedents

IL-12/IL-23 PBC
IL-12 drives differentiation of activated, naı̈ve T-cells to IFNg-producing

Th1 cells, contributing to loss of tolerance in several models of
autoimmunity. Murine models of cholangiopathy also exhibit a milder
hepatobiliary phenotype in the absence of functional IL-12.

IL-23 (which shares a common p40 subunit with IL-12) is also essential for
differentiation of Th17 responses, CD8-mediated IL-17 release and
implicated in the breakdown of immune self-tolerance.

Anti-IL-12/23 (ustekinumab)

Anti-IL-17A (secukinumab/
ixekizumab)

Anti-IL17RA (brodalumab)

Crohn disease93

Psoriasis
Psoriasis94

Uveitis
Ankylosing spondylitis
Crohn disease94

NFkB PBC and PSC
Nuclear transcription factor with pleiotropic effects, including regulation

of expression of human endothelial adhesion molecules responsible
for leukocyte recruitment (eg, VAP-1 and MAdCAM-1), as well as
pathways involved in T-cell activation (eg, CD80/CD86).

Anti-CD80 (abatacept)
Anti-a4b7 - cognate integrin
for MAdCAM-1
(vedolizumab)

Intestinal inflammation95,96

CD40–CD40L PBC
CD40–CD40L interactions are critical for T-cell–B-cell interactions and

elevated circulating CD40 levels recognized in a host of human
autoimmune diseases. CD40 antagonists have been shown to be
effective in inducing remission from experimentally induced colitis,
hematological malignancies and autoimmune encephalitis.

Anti-CD40 (dacetuzumab/
lucatumumab)

Multiple sclerosis97 (preclinical)
Chronic lymphatic leukemia,

non-Hodgkin lymphoma,
multiple myeloma98

CXCR3–
CXCL9/10/11

PBC
CXCR3 expression is upregulated on liver-infiltrating Th1 and Th17 cells in

early stage PBC and the corresponding ligands secreted in larger
quantities by inflamed (versus noninflamed) BEC.

Anti-CXCL10 (MDX-1100) Rheumatoid arthritis99

(continued on next page)
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Table 1
(continued )

Pathway Intervention and Rationale Expedients Precedents

CXCR5–CXCL13 PBC
This chemokine axis guides both B- and T-cell positioning along CXCL13

chemokine gradients and facilitates migration to germinal centers.

Anti-CXCL13 (MAb 5261) (Preclinical development)100

CCL20–CCR6 PBC
Responsible for the recruitment and positioning of T-cells

(predominantly Th17 cells) around inflamed BEC.

Anti-CCR6 (Preclinical development)

ORMDL3 PBC
Represents one of several putative risk genes at the 17q12–21 locus and

regulates eosinophil trafficking and coexpression of a4 integrins.
ORMDL3 is also observed to predict response to corticosteroids in
childhood asthma.101,102

May help to identify
corticosteroid response
in selected patients

-

GPR35 PSC
Expressed by intestinal epithelial cells in the intestine and in multiple

leukocyte subtypes. Specific activation of GPR35 has been
demonstrated to significantly reduce IL-4 release from natural killer T
cells. PRKD2 polymorphisms are associated with early onset IBD.103,104

Anti-GPR35 Antibody recently developed;
clinical applications not yet
specified105

PRKD2/HDAC7/
Nur77/SIK2

PSC
A serine-threonine protein kinase, which phosphorylates HDAC7; this

gives rise to nuclear exclusion and loss of gene regulatory functions,
ultimately resulting in apoptosis and negative selection of immature T
cells due to a loss of HDAC7-mediated repression of Nur77, which is
regulated by SIK2.

Anti-PRKD2 (Preclinical development)106
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THERAPEUTIC CONSIDERATIONS AND FUTURE OUTLOOK

The combined output from GWAS and associated works thus far provides explana-
tion for less than 20% of disease heritability in PBC and PSC.1 Therefore, clinical
merits of genomic studies will only be fully realized when genetic and epigenetic
data can link to the gut microbiome and environmental influences that collectively
occupy the complex orchestra of disease pathogenesis, akin to that which has
been described for celiac disease.90

Simultaneously, a stratified approach to therapy is hoped to arise that focuses on
carefully selected patient populations and structured care delivery.34 For instance,
specific transcriptional signatures enriched for genes involved in memory T-cell gen-
eration and receptor-signaling (including IL-7) have been described in UC and Crohn’s
disease that accurately predict colectomy risk from the point of diagnosis; it is plau-
sible that such bioindicators also exist in immune-mediated liver diseases given the
overlapping defects in mucosal immunogenicity.91 A further, major aim of genetic
studies in PBC and PSC has been in the identification of ostensible avenues for future
therapeutic exploration. The wealth of overlapping susceptibility loci that are shared
with other autoimmune diseases has been extensively discussed in several recent ar-
ticles,1,3,4,92 which collectively imply a common genetic architecture underlying
immune-mediated tissue injury. This hypothesis needs to be tested and confirmed
but, if correct, suggests novel approaches to treatment in which regulatory pathways
are enhanced or effector responses suppressed by preventing the activation and
recruitment of immunopathogenic cell populations (Table 1).
Presently, there is a large shortfall between the available genetic information to date

and permeation into clinical practice, a providence that PBC and PSC share with other
complex diseases studied on a genome-wide scale. Nevertheless, the advances to
date in understanding genetics of chronic cholestasis speak broadly to the ultimate
goal of all such studies: to guide treatment that is biologically driven and mechanisti-
cally linked.
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