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ABSTRACT
We introduce a spectrum-adapted expectation-maximization (EM) algorithm for high-
throughput analysis of a large number of spectral datasets by considering the weight of
the intensity corresponding to the measurement energy steps. Proposed method was applied
to synthetic data in order to evaluate the performance of the analysis accuracy and calcula-
tion time. Moreover, the proposed method was performed to the spectral data collected from
graphene and MoS2 field-effect transistors devices. The calculation completed in less than
13.4 s per set and successfully detected systematic peak shifts of the C 1s in graphene and
S 2p in MoS2 peaks. This result suggests that the proposed method can support the
investigation of peak shift with two advantages: (1) a large amount of data can be processed
at high speed; and (2) stable and automatic calculation can be easily performed.
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1. Introduction

Interpretation of spectral data is essential in spectro-
scopy measurements for investigating electronic
properties of new materials and devices [e.g. 1–4].
In the case of X-ray photoelectron spectroscopy
(XPS), as researchers generally adopt suitable para-
meters of fitting curves according to previous reports
and their experiences, peak assignment of core-level
spectra in compounds strongly resorts to the manual
trial and error. This procedure surely affects the effi-
ciency of the spectral data analysis.

The method of spectral data analysis using
machine learning technique has been studied to
improve the resorting to the manual trial and error
[5–11]. For example, Nagata et al. [7] proposed
a Bayesian peak separation with the exchange
Monte Carlo method [12] and estimated an appro-
priate number of peaks while avoiding parameter
solutions trapped into local minima. The effectiveness
of this method was practically demonstrated in the
analysis of synthetic data and reflectance spectral data
for olivine. Murata et al. [9] extended this method [7]
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to time-series spectral dataset, and a highly accurate
analysis was demonstrated to extract latent dynamics
in the dataset. Moreover, Shiga et al. [10] proposed
a new non-negative matrix factorization (NMF) tech-
nique to analyze spectral imaging data, namely elec-
tron energy-loss/energy-dispersive X-ray spectral
datasets from a specified region of interest at an
arbitrary step width. This technique has helped to
resolve problems associated with previous NMF tech-
niques, such as the calculation not always converging
and the number of separated peaks being specified by
the manual trial and error.

Little attention has been paid to the computational
cost because the number of datasets is not so large in
conventional spectroscopy measurements. Recently,
as extremely high brilliant quantum beams such as
synchrotron radiation (SR) X-rays, X-ray free elec-
tron lasers, and neutron beams are available for
probes of spectroscopy, researchers can perform var-
ious kinds of high-resolution analysis (e.g. pump-
probe method with sub-10 fs time resolution and
imaging microscopy with spatial resolution of nm
order) [see 1–4]. Such advanced spectroscopy mea-
surements potentially produce huge number of data-
sets, and then the computational cost has become
a serious problem in the spectral data analysis.

Developing an efficient method for the spectral
data analysis is an urgent issue in the multi-
dimensional measurements. For example, operando
SR X-ray scanning photoelectron microscopy system,
called ‘3D nano-ESCA’ (three-dimensional nanoscale
electron spectroscopy for chemical analysis) [13],
provides spatial, time and electric field dependence
of photoemission spectra. Incident SR X-rays are
focused by a Fresnel zone plate, and the photoemis-
sion spectra are obtained at the beam spot (~70 nm)
on a sample. As a sample is scanned on a piezo-
driven stage, high spatial resolution XPS analysis
can be conducted during device operation by a bias
voltage applying circuit induced in sample stage (i.e.
operando analysis [14,15]). XPS analysis of core-level
spectra typically means peak fitting and assignment of
decomposed peak components determined by the
chemical shifts that takes a particular value depend-
ing on a local chemical environment of a specific
element. In contrast, the 3D nano-ESCA system also
carries out the potential mapping of microstructures
in operating devices by observing the spatial distribu-
tion of the core level peak shift. In other words, ‘the
electric potential shift’ reflects the change of the
vacuum level, the Fermi energy, and the local carrier
density, and the value of the electric potential shift
dynamically fluctuates, unlike the chemical shift.
However, the 3D nano-ESCA has been performed
only for the pinpoint or line-scan analysis that deals
with few tens of spectral datasets by the inefficiency
of peak fitting procedure, although spatial and time-

resolved measurement potentially provides over
thousands of the datasets.

In this paper, we adapted an expectation-
maximization (EM) algorithm for the spectral data
to investigate the peak shift by the peak fitting and
assignment of decomposed peak components. We
derived the spectrum-adapted EM algorithm and
demonstrated this method to the synthetic and
experimental data. In the synthetic data analysis, we
evaluated the performances of the analysis accuracy
and calculation cost of the proposed method depend-
ing on the initialization procedure and compared the
performances of the proposed method with those of
the exchange Monte Carlo method, and Newton’s
method. In the experimental data analysis, the pro-
posed method was applied to the datasets that were
collected previously from graphene [14,16] and MoS2
[17] field-effect transistors (FETs) by 3D nano-ESCA.

2. EM algorithm adapted for the
high-throughput peak separation

The EM algorithm is one of the machine learning
techniques for estimating the parameters of the mix-
ture model (i.e., Gaussian mixture model, GMM),
including latent parameters, based on maximum like-
lihood estimation with iterative calculation between
the expectation (E) step and the maximization (M)
step [18–20]. This algorithm has been widely studied
and applied in image processing [21–25].

When the conventional EM algorithm is applied
to the peak separation using a linear superposition
of distributions such as Gaussian distributions, the
analyzed data are required to be one-dimensional
(a1, a2, a3, . . .). However, the spectral data consist
of N measurement steps of energy (x = {x1, . . ., xn,
. . ., xN}) corresponding to the intensity (w = {w1, . . .,
wn, . . ., wN}). Hence, the spectral data (Dat) are
represented in two dimensions:

Dat ¼ x1
w1

. . .

. . .
xN
wN

� �
: (1)

When using the conventional EM algorithm, as
Dat (Equation 1) is converted to be one-
dimensional (x* = {x1;1, . . ., x1;w1 , . . ., xn;1, . . .,
xn;wn . . ., xN;1, . . ., xN;wN }), the size of x* becomes

the sum of the intensity
PN
n¼1

wn

� �
. This size is

significantly larger (103 times or more in general)
than the total number of measurement steps (N),
and the calculation cost increases greatly high.
Therefore, the conventional EM algorithm is
unsuitable for the high-throughput peak separa-
tion in terms of the calculation cost.

We solved this disadvantage by using the intensity
(w) as a weight for each measurement step (x). Here,

Sci. Technol. Adv. Mater. 20 (2019) 734 T. MATSUMURA et al.



we explain this procedure for the peak separation by
using a GMM. The GMM can be written as a linear
superposition of Gaussians (Nðxjμk;πkÞ) as follows:

GMM xjπk;μk;σk
� �¼XK

k¼1

πkNðxjμk;σkÞ; (2)

where K is the number of mixture Gaussian distribu-
tions corresponding to the number of separated
peaks, and πk, μk and σk are, respectively, the mixing-
coefficient of k-th Gaussian distribution (0 � πk � 1

and
PK
k¼1

πk¼ 1), mean and standard deviation

(σk > 0). For a given GMM, the aim of the EM algo-
rithm is to maximize the log-likelihood function with
respect to the parameters (πk, μk and σk) by iterative
calculation between the E-step and the M-step.

The E-step calculates responsibilities γ znkð Þ, which
correspond to posterior probabilities when the mea-
surement steps (x) are observed [26]; they are calcu-
lated using the current parameters (πk, μk and σk) as
follows:

γ znkð Þ¼ πkNðxnjμk;σkÞPK
j¼1 πjNðxnjμj;σjÞ

; (3)

where znk is a latent variable associated with xn. In
GMM, xn is assumed to be generated from one of the
Gaussian components. znk represents the component
that generated xn; i.e. znk is equal to 1 when xn is
generated from k-th component, otherwise znk is
equal to 0. Theoretical details of znk are described
by McLachlan and Krishnan, and Bishop [20,26].

Then, in the M-step, the parameters are updated
by using the current responsibilities and intensities
(w = {w1, . . ., wn, . . ., wN}) that correspond to the
measurement steps of energy (x = {x1, . . ., xn, . . ., xN})
as follows:

πnewk ¼ NkPN
n¼1 wn

; (4)

μnewk ¼ 1
Nk

XN
n¼1

wnγ znkð Þxn (5)

and

σnewk ¼ 1
Nk

XN
n¼1

wnγðznkÞðxn�μnewk Þðxn�μnewk ÞT ; (6)

where

Nk¼
XN
n¼1

wnγðznkÞ: (7)

Using these parameters (πnewk , μnewk , σnewk ), the log-
likelihood value is updated as follows:

ln pðxnjπnew; μnew; σnewÞ

¼
XN
n¼1

wn ln
XK
k¼1

πnewk N xnjμnewk ; σnewk

� �( )
:

(8)

The log-likelihood value monotonically increases in
iterative calculation between E-step and M-step, and
the parameters are converged to a local optimal solu-
tion [27].

Convergence criterion of the iterative calculation is
defined as the distance of the log-likelihood values
between Equation (8) and that at the step immedi-
ately before the update. When this distance is more
than 1 × 10−8 after the M-step, the calculation is
returned to the E-step. In contrast, when the distance
is below 1 × 10−8, the calculation is determined to
have converged and the parameters (πnewk , μnewk , σnewk )
at that time are adopted as the solution.

Calculation was conducted by using our own source
code developed in R (http://cran.r-project.org/). R is
an open-source programming language and software
environment for statistical analysis and graphics. The
reason for using our own code is that major
R packages for the calculation of the EM algorithm
[e.g. 28] cannot deal with the weight at each data
point. The computer carrying out the calculations
had an Intel(R) Core(TM) i7 CPU with four cores at
2.9 GHz with 16 GB memory.

3. Application to the synthetic data

We applied the proposed method to synthetic data 1
and 2 in order to evaluate its spectral analysis cap-
ability. The synthetic data 1 were used for the exam-
inations of initialization procedures in the proposed
method. The synthetic data 2 were used for the com-
parison of the analysis accuracy and calculation time
with the proposed method, exchange Monte Carlo
method and, Newton’s method (see also Appendix).

3.1. Synthetic data 1

Synthetic data 1 consist of step (x) and intensity (y),
and true step-intensity function gðxÞ was the sum of
two Gaussian functions

g xð Þ¼
X2
k¼1

π�kNðxjμ�k; σ�kÞ: (9)

The parameters were given as {π�1, π
�
2} = {0.3, 0.7},

{μ�1, μ
�
2} = {1.0, 1.8} and {σ�1, σ

�
2} = {0.3, 0.3}. Here, μ�2

was increased by 0.02 from 1st to 100th of the spectral
datasets. Hence, 100 sets of synthetic data 1 were
generated and {μ�1, μ�2} varies from {1.0, 1.8} to
{1.0, 2.0}.

The step (x) was collected from the range [0:3] in
steps of 0.02 so that the total number of steps was
151. The intensity (y) was given by 106 × gðxÞ, and
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each data point is added the noise following Gaussian
that is one of the most common noise models [10].
The intensity including the noise of each data point
(y�) was calculated as follows:

y�¼ Nðyjy;σeÞ; (10)

where σe is the magnitude of noise (σe = {103, 104,
5 ×104}). These procedures generated the synthetic
datasets practically simulating spectral datasets.

At the calculation, the number of peaks (K) were
K = 2, and we demonstrated three initialization pro-
cedures; (1) manual, (2) random and (3) heuristic. In
the manual initialization, the initial values of each
parameter (πk, μk and σk) were {0.5, 0.5}, {1, 1.9}
and {1, 1}, respectively. In the random initialization,
the initial values of each parameter were randomly
collected from the range [0:1], [0:3] and [0.1:3.0],
respectively. In the heuristic initialization, random
initialization was repeated 5 times, and the result
with the maximum value of Equation (8) was
selected.

3.2. Synthetic data 2

Synthetic data 2 consist of step (x) and intensity (y),
and true step-intensity function hðxÞ was the sum of
three Gaussian functions

h xð Þ¼
X3
k¼1

π�kNðxjμ�k; σ�kÞ: (11)

The parameters were {π�1, π
�
2, π

�
3} = {0.2, 0.5, 0.3}, {σ�1,

σ�2, σ
�
3} ={0.15, 0.15, 0.15} and {μ�1, μ

�
2, μ

�
3} = {1.1, 1.5,

1.9}. The step (x) was collected from the range [0:3]
in steps of 0.02, so that the total number of steps was
151. The intensity (y) was given by 106 × hðxÞ, and
the intensity including the noise (y�) was calculated
from Equation (10).

We generated three synthetic datasets with differ-
ent magnitude of noise (σe = {103, 104, 5 ×104}) and
repeated the calculation 100 times. At the calculation,
we set K = 3, and the parameters (πk, μk and σk) were
collected by the random initialization from the range
[0:1], [0:3] and [0.1:3], respectively.

3.3. Result in the analysis of synthetic data 1

Figure 1 shows the example of the peak separation for
synthetic data 1. As fitting curves showed good fitting
in each data (Figure 1), the proposed method could
perform reasonable analysis. The relationship
between estimated and true peak positions (μ�1 = 1.0
and μ�2 = 1.8 to 2.0) is shown in Figure (2). Analyzing
low and medium noise data (σe = 103 and 104),
estimated peak positions were close to the true; shift-
ing peak (μ�2 = 1.8 to 2.0) and fixed peak (μ�1 = 1.0)
were clearly observed. In contrast, when σe = 5 ×104,

estimated peaks were occasionally deviated from the
true position (Figure 2).

Table 1 respectively shows the root-mean-square
error (RMSE) between the estimated and true peak
position and the calculation time (s) in each initiali-
zation. There was almost no difference in the RMSE
between these initializations when σe = 103. In con-
trast, the random initialization showed larger RMSE
than the others when σe = 104, and the heuristic
initialization showed smaller RMSE than the others
when σe = 5 ×104. The calculation times were
11.4–11.8 s, 11.4–12.4 s and 54.1–59.8 s in manual,
random and heuristic initialization for analyzing 100
sets of synthetic data 1 with noise (σe = 103, 104 and 5
×104), respectively. There is little difference in calcu-
lation time due to the magnitude of noise, although
the heuristic initialization requires relatively large
calculation time.

3.4. Result in the analysis of synthetic data 2

Figure 3 shows an example of the peak separation
using the proposed method, exchange Monte Carlo
method and Newton’s method. The proposed method
showed good fitting curve for synthetic data 2 with
low noise, whereas unclear peak (= 1.1) could not be
detected for the data with medium and high noise. In
contrast, the exchange Monte Carlo method could
detect an accurate peak position regardless of the
magnitude of noise. Newton’s method occasionally
failed to detect the peaks because the parameter solu-
tion did not converge. For example, appropriate
peaks were not detected for a set of data with med-
ium and high noise (Figure 3).

Table 2 shows the median of RMSE and average
calculation time (s) by using each method, respec-
tively. The median of RMSE shows that the exchange
Monte Carlo method could perform a more accurate
analysis than the other methods. In contrast, the
proposed method and Newton’s method completed
the calculation over 1000 times faster than the
exchange Monte Carlo method. However, Newton’s
method showed significantly large RMSE. Thus, the
proposed method could analyze more accurately than
Newton’s method at the same order of calculation
time. This result strongly suggests that the proposed
method, and the exchange Monte Carlo method have
a trade-off relationship between the analysis accuracy
and calculation time. In contrast, as Newton’s
method showed insufficient accuracy, it is difficult
to use it for the high-throughput analysis.

We also examined the efficiency of the proposed
method relative to the conventional EM algorithm by
using synthetic data 2 in σe = 103. The proposed
method and conventional EM algorithm with the
same initial values required 1775 and 1166 iterations
of the E- and M-step loop, respectively. However, the
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total calculation times to reach the convergence were
1.1 s and 21611.4 s, respectively. Therefore, the pro-
posed method significantly improves the efficiency of
the E- and M-step loops. Moreover, the accuracy of
the proposed method is better than the conventional
method; RMSE obtained by the proposed method is
8607.1, whereas that by the conventional method is
41371.9. These results suggest that the proposed
method successfully adapted the conventional
method to the spectrum fitting.

4. Application to the experimental data

4.1. Experimental datasets

The experimental datasets were systematically collected
from the FETs [14,16,17] by the 3D nano-ESCA system

in order to investigate the local electronic states in the
structures of devices [13,29,30]. Fukidome et al. [14]
collected spectra for the graphene FET on the gra-
phene channel region applying gate biases (Vg). Suto
et al. [17] collected spectra by line scanning on the
interface between a Ni electrode and a four-layer
MoS2 sheet. Nagamura et al. [16] collected spectra
by line scanning on the interface between a metal
electrode and a monolayer graphene sheet. The pre-
vious works [14,16,17] have reported systematic core
level peak shifts (i.e. the electric potential shift) for
the C 1s in graphene [14,16] and S 2p in MoS2 [17]
peaks. These datasets from Fukidome et al. [14],
Suto et al. [17] and Nagamura et al. [16] are labeled
here as Graphene FET-1, MoS2 FET, and Graphene
FET-2, respectively. The background was processed
as a linear background.

Figure 1. Example of the fitting curve for the sets of synthetic data 1 at each noise (σe = 103 (Low noise), 104 (Medium noise),
5 × 104 (High noise)) by using the random initialization. Circles show the generated intensity (y*) at each step (x). Blue solid line
is fitting curve, and the dotted blue line is each Gaussian distribution.

Sci. Technol. Adv. Mater. 20 (2019) 737 T. MATSUMURA et al.



4.2. Initial condition for the analysis

Decomposed number of peaks (K) were K = 2, 2 and 3
for the Graphene FET-1, MoS2 FET and Graphene
FET-2, respectively. The initial values of the parameters
(πk, μk and σk) were, respectively, collected by the
heuristic initialization from the range [0:1], [711:713
eV] and [1:3] for Graphene FET-1; [0:1], [832:834 eV]
and [1:3] for MoS2 FET; and [0:1], [709:713 eV] and
[1:3] for Graphene FET-2.

4.3. Result in the analysis of experimental data

4.3.1. Graphene FET-1
Analysis using the spectrum-adapted EM algorithm
for the Graphene FET-1 determined the fitting

Figure 2. Relationship between the number of datasets and estimated two peak positions at each noise (σe = 103 (Low noise),
104 (Medium noise), 5 × 104 (High noise)). Initialization (1), (2) and (3) are manual, random and heuristic initialization,
respectively. Green and yellow dots show each estimated peak position. Red dashed line represents the true peak position.

Table 1. Analysis accuracy and computational cost of each
initialization. Initialization (1); manual, initialization (2);
random, and initialization (3); heuristic. RMSE values
were calculated from the difference between true peak
position and estimated peak position. Time (s) represents
the calculation time to complete the analysis for 100 sets
of data.

Low noise Medium noise High noise

RMSE in Peak 1
Initialization (1) 0.002 0.009 0.203
Initialization (2) 0.002 0.038 0.212
Initialization (3) 0.001 0.009 0.151
RMSE in Peak 2
Initialization (1) 0.001 0.004 0.036
Initialization (2) 0.001 0.010 0.041
Initialization (3) 0.001 0.004 0.027
Time (s)
Initialization (1) 11.8 11.6 11.4
Initialization (2) 12.2 12.4 11.4
Initialization (3) 59.8 57.5 54.1
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curves of the GMM that fit the spectral data well.
The calculation for 13 sets of spectral data (each
with 211 measurement steps) was completed in
14.5 s (1.1 s per set) to separate each spectrum into
two Gaussian distributions. Figure 4(a) shows the

example of the fitting curve and the two decom-
posed Gaussian distributions. In the previous study
of Fukidome et al. [14], as peak fitting was performed
with two components, we adopt K = 2. The component
at higher kinetic energy is interpreted as C 1s core level
spectrum derived from graphene sp2 bonds, whereas
that at lower kinetic energy is ascribable to carbon
oxide contaminants. The fitting curves showed that
the graphene peak position is systematically shifted by
~130 meV depending on the gate bias (Vg) in the range
−40 to −5 V (Figure 4(b)). This peak shift is consistent
with the peak shift of about 200 meV corresponding to
the gate bias (in the range −40 to 0 V) in Fukidome
et al. [14]. Here, the binding energy of graphene is
expressed in terms of the gate bias (Vg) [14,31–33]:

EBE Gð Þ ¼ EBE DPð Þ � 6:0� 10�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VCNP�Vg

p
; (12)

where the EBE(G) and VCNP are the binding energy of
the graphene and the charge neutrality point (VCNP =
28 [14]), respectively. Also, EBE(DP) is the binding

Figure 3. Example of fitting curve for synthetic data 2 at each noise (σe = 103 (Low noise), 104 (Medium noise), 5 × 104 (High
noise)). Circles show the generated intensity (y*) at each step (x). Blue solid and dotted line are fitting curve and each gaussian
distribution estimated by the proposed method. Red solid and dotted line are fitting curve and each gaussian function
estimated by the exchange Monte Carlo method. Green solid and dotted line are fitting curve and each gaussian function
estimated by Newton’s method.

Table 2. Analysis accuracy and computational cost of the
proposed method, exchange Monte Carlo method and
Newton’s method. Median of RMSE was obtained from the
100 calculations of the peak separation. Each RMSE value was
calculated from the difference between estimated and true
fitting curve. Time represents the average calculation time (s)
of the 100 calculations of the peak separation.

Low noise Medium noise High noise

Proposed method
Median of RMSE 8607 65,089 64,575
Time (s) 0.77 0.32 0.43
Exchange Monte Carlo method
Median of RMSE 138 1375 6849
Time (s) 610.82 472.95 404.95
Newton’s method
Median of RMSE 537,532 533,865 537,728
Time (s) 0.17 0.18 0.48
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energy of graphene when the Fermi level coincides
with the Dirac point, i.e., the energy difference
between the Dirac point energy and the C 1s core
level of graphene [14]. The theoretical curve
(Equation 12) fitted to the graphene peak position
at Vg = −40 – −5 V shows EBE(DP) as 283.95 eV and
VCNP as 28 V [14] (Figure 4(b)). The value of EBE
(DP) (283.95 eV) is close to the binding energy of
neutral graphene (284.4 eV) [34]. The slight
difference between the binding energy of EBE(DP)
(283.95 eV) and neutral graphene (284.4 eV) may
be ascribable to minute uncertainties in the incident
photon energy or Fermi-edge measurements used to
determine the binding energies [14]. However, the

binding energy of graphene peak at Vg = 0 was
underestimated about 300 meV relative to the theo-
retical curve (Equation 12) in the previous study [14].
This is because that the contaminant component
derived from the 0 th order of diffracted beam of
the Fresnel zone plate would be large in the case of
Vg = 0. Estimation of the appropriate peak position
using GMM may not be successful when the con-
taminant component is large or the asymmetry of the
peak shape cannot be negligible.

4.3.2. MoS2 FET
The proposed method showed GMM fitting curves and
S 2p3/2 and S 2p1/2 peak positions from the MoS2 FET

Figure 4. (a) Example of GMM fitting curve for the spectra of Graphene FET-1 at gate biases of −5 and −40 V. The horizontal axis
is the kinetic energy (eV), the vertical axis is the intensity (arbitrary units), and the open black circles show the observed spectral
data. Blue solid and dotted line are fitting curve and each Gaussian distribution. Red dot indicates the peak position of the
graphene (712.85 and 712.98 eV at gate biases (Vg) of −5 and −40 V, respectively). (b) The graphene peak shift of the binding
energy (EBE(G)) against the gate bias (Vg). Red dotted curve is the fitting curve given by Equation (12) using EBE(DP) = 283.95 eV
and VCNP = 28 V [14]. The binding energy (eV) is obtained by converting the kinetic energy; i.e., binding energy = 996.45 −
kinetic energy.
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spectral data (Figure 5). In Suto et al. [17], peak fitting
was performed with two components of S 2p3/2 and
S 2p1/2, so that we also adopt K = 2. The calculation to
separate each of the 347 individual spectral data (each
with 76 measurement steps) into two Gaussian distri-
butions was completed in 30.6 s (0.09 s per set). This
calculation completed in a significantly short time
because the spectra of MoS2 FET consists of relatively
small measurement steps. Figure 5(a) shows the exam-
ple of GMM fitting curves and the two decomposed
Gaussian distributions. The fitting curves show that
S 2p3/2 and S 2p1/2 peak positions systematically shifted
by ~150 and ~100 meV from 5800 nm to 7000 nm,
respectively (Figure 5(b)). This peak shift is observable
near the interface between the Ni electrode and MoS2
sheet (approximately 5750~ nm). Suto et al. [17]
reported that such systematic peak shift overlaps with
a charge transfer region; they detected this region at the
MoS2/metal–electrode interface expanding over ~500
nm, with the electrostatic potential variation of binding
energy (~70 meV) mainly causing the transfer of
charges by contacting MoS2 with the Ni metal elec-
trode. This peak shift has been considered due to band
bending in the MoS2 electronic structure with a Fermi
level shift [17,35,36].

4.3.3. Graphene FET-2
Analysis using the proposed method for the
Graphene FET-2 spectral data showed fitting
curves, three decomposed Gaussian distributions

(Figure 6(a)) and the profile of the graphene peak
positions (Figure 6(b)). The calculation to separate
each of the 44 sets (each with 211 measurement
steps) into three Gaussian distributions was com-
pleted in 589.7 s (13.4 s per set). Nagamura et al.
[16] performed peak fitting to the Graphene FET-2
spectral data with two components: the higher-
kinetic-energy component is interpreted as the
C 1s core level spectrum derived from graphene
sp2 bonds, and the lower-kinetic-energy component
is interpreted as that from surface contaminants.
However, we adopt K = 3 in these data because it is
better to consider multiple components of the sur-
face contaminants from polymer residue in the
device fabrication process and naturally involved
amorphous carbon [37–39]. The graphene peak
position is systematically shifted by ~140 meV to
~700 nm from the vicinity of the interface between
the metal electrode and the monolayer graphene
sheet (Figure 6(b)). Such a peak shift overlaps
with a charge transfer region at the graphene/
metal-electrode boundary [40,41]. Nagamura et al.
[16] reported a ~60 meV peak shift at ~500 nm of
the charge transfer region in graphene at a metal
boundary. Assuming the measurement energy step
containing ~±50 meV error due to the resolution of
equipment, the proposed method could detect
acceptable peak position and the same order of
energy shift relative to the result in the previous
research [16].

Figure 5. (a) Example of GMM fitting curve for the spectra of MoS2 FET at the Ni/MoS2 interface. The horizontal axis is the kinetic
energy (eV), the vertical axis is the intensity (arbitrary units), and the open black circles indicate the observed spectral data. Blue
solid and dotted line are fitting curve and each Gaussian distribution. Red dots indicate the positions of the S 2p1/2 and S 2p3/2
peaks of the MoS2 sheet at 6000 nm (832.18 and 833.35 eV) and 6800 nm (832.08 and 833.29 eV) of the relative position (Figure
5(b)), respectively. (b) Plot of the S 2p3/2 (green point) and S 2p1/2 (yellow point) peak position of the binding energy against the
relative position. The S 2p3/2 and S 2p1/2 peak position focusing on the spectral data at the vicinity of the contact of a Ni
electrode with 4-layer MoS2. The binding energy (eV) is obtained by converting the kinetic energy; i.e. binding energy = 995.690
− kinetic energy.
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5. Discussion and implication

The spectrum-adapted EM algorithm was proposed
and successfully applied to synthetic and experimen-
tal datasets. The advantage of the proposed method is
the fast and stable calculation. The peak separation
for the synthetic and experimental datasets was com-
pleted less than 1.0 and 13.4 s per set of the data,
respectively. As the parameters are converged to
a local optimal solution by monotonically increasing
log-likelihood value in the iterative calculation, the
proposed method can stably conduct the peak separa-
tion. Thus, it is unnecessary to conduct the manual
trial and error in order to converge the parameter

solution in using ordinary gradient methods such as
Newton’s method. In contrast, the exchange Monte
Carlo method can perform a more accurate analysis
than the proposed method (Figure 3). Moreover, the
appropriate number of peaks can be determined by
calculating the model selection criteria such as the
marginal likelihood [7]. However, the exchange
Monte Carlo method requires high computational
cost, and it is not easy to set a suitable prior distribu-
tion and inverse temperature for non-expert. As such
a setting is unnecessary to use the proposed method,
the peak shift analysis can be performed easily.

The random and heuristic initialization are suita-
ble initialization procedures for the high throughput

Figure 6. (a) Example of GMM fitting curve for the spectra of Graphene FET-2 at the interface between the metal electrode and
the monolayer graphene sheet. The horizontal axis is the kinetic energy (eV), the vertical axis is the intensity (arbitrary units),
and open black circles indicate the observed spectral data. Blue solid and dotted line are fitting curve and each Gaussian
distribution. Red dot indicates the position of the C 1s peak of the graphene (711.88 and 711.76 eV at the 0 nm and 450 nm of
the relative position (Figure 6(b)), respectively). (b) Profile for the binding energy of the graphene peak position (black dots)
against the relative position of the spectra. The binding energy (eV) is obtained by converting the kinetic energy; i.e. binding
energy = 995.996 − kinetic energy.
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analysis because these procedures can automatically
process the spectral data. Especially, heuristic initia-
lization helped to find a reasonable solution in the
analysis of noisy data (Figure 2) and showed accep-
table performance in the peak shift analysis of the
experimental data (Figures 4–6). These applications
suggest that the proposed method with the heuristic
initialization may be applicable to other spectral
deconvolution problems for investigating electronic
properties of materials and devices at an adequately
small computational cost. However, it is necessary to
sophisticate the initialization procedure because
heuristic initialization cannot systematically select
an appropriate number of peaks, and the computa-
tional cost remains relatively higher than the others
(Table 1). Moreover, further studies are needed to be
able to use other common fitting functions such as
Lorentzian and Voigt function, and asymmetric line-
shape functions such as the Doniach–Sunjic function
[42] according to Section 4.3.1. To overcome these
disadvantages is important for further improvement
of the high throughout the method.

6. Conclusions

We proposed the spectrum-adapted EM algorithm as
a high-throughput method to investigate the peak shift
from a large number of spectral datasets. Application to
the synthetic datasets suggested that heuristic initializa-
tion can perform more accurate analysis than other
initializations with relatively large calculation time,
and the proposed method, and the exchange Monte
Carlo method have a trade-off relationship between the
analysis accuracy and calculation time. Moreover, the
proposed method was applied to experimental datasets
collected from two graphene [14,16] and one MoS2
[17] FETs and detected the systematic peak shifts
close to the results in the previous works [14,16,17] in
less than 13.4 s per set. These applications suggest that
the proposed method has acceptable accuracy to inves-
tigate the peak shift at high speed. Even a non-expert
analyst can easily and automatically use this method for
the spectral data analysis.
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Appendix. Procedure of the peak separation
using the Newton’s method and the exchange
Monte Carlo method

Here, we describe the procedure of the peak separation
using the Newton’s and exchange Monte Carlo method to
the synthetic data 2. The peak separation model is used the
sum of three Gaussian functions s(x):

sðxÞ ¼
X3
k¼1

ak exp � bk
2
ðx� μkÞ2

� �
(A1)

where ak, bk and μk are the strength, bandwidth, and center
of k-th Gaussian function. The set of parameters θ ¼
fak; bk; μkgKk¼1 are optimized by minimizing the mean-
squared error function EðθÞ between the synthetic data
fxn; y�ngNn¼1 and the function (Equation A1):
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EðθÞ ¼ 1
2N

XN
n¼1

ðy�n � sðxn; θÞÞ2 (A2)

We applied Newton’s method to the optimization of EðθÞ.
The initial values of parameters fak; bk; μkgare randomly
chosen from the ranges [500,000–150,000], [1–100] and
[0–3].

Using EðθÞ (Equation A2), we also performed Bayesian
peak separation by the exchange Monte Carlo method
(theoretical details are shown in Nagata et al. [7]).
Application of the exchange Monte Carlo method
requires to set (1) Prior densities, (2) Inverse tempera-
ture, and (3) Initial condition. These settings are shown
below.

(1) Prior densities
The prior densities φðakÞ, φðbkÞ and φðμkÞ of the

parameters were, respectively, defined in terms of the
following Gamma, Gamma and Gauss distribution:

φðakÞ ¼ Gamma ðak; ηa;λaÞ (A3)

φðbkÞ ¼ Gamma ðbk; ηb;λbÞ (A4)

φðμkÞ ¼ N ðμk; η0; λ0Þ (A5)

The hyperparameters fηa; λag, fηb; λbg and fη0; λ0g were
{10, 1e-5}, {10, 1/5} and {1.5, 1/5}, respectively. The determina-
tion of the prior densities and hyperparameters is heuristics in
this study.

(2) Inverse temperature
According to Nagata et al. [7] and Nagata and Watanabe

[43,44], the number of inverse temperatures L was 24, and
the inverse temperature was given by

βl ¼
0 ðif l ¼ 1Þ

1:5l�L ðotherwiseÞ
�

(A6)

βl is each inverse temperature ð0 ¼ β1 > β2 > . . . >
βL�1 > βL ¼ 1Þ.

(3) Initial condition
The initial values of parameters fak; bk; μkg are randomly

chosen from the range [500,000–150,000], [1–100] and [0–3],
respectively. The iteration was set as 10,000 steps for the burn-
in period, and 2000 steps for the expectation value calculation.
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