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Purpose: To determine whether sacrificing part of the scan time of pseudo-continuous  
arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood 
T

1
 is beneficial in terms of CBF quantification reliability.

Methods: In a simulation framework, 5-minute scan protocols with different scan 
time divisions between PCASL data acquisition and supporting measurements were 
evaluated in terms of CBF estimation variability across both noise and ground truth 
parameter realizations taken from the general population distribution. The entire sim-
ulation experiment was repeated for a single-post-labeling delay (PLD), multi-PLD, 
and free-lunch time-encoded (te-FL) PCASL acquisition strategy. Furthermore, a 
real data study was designed for preliminary validation.
Results: For the considered population statistics, measuring the labeling efficiency and 
the blood T

1
 proved beneficial in terms of CBF estimation variability for any distribution 

of the 5-minute scan time compared to only acquiring ASL data. Compared to single-
PLD PCASL without support measurements as recommended in the consensus state-
ment, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found 
for optimal combinations of supporting measurements with single-PLD, free-lunch, and 
multi-PLD PCASL data acquisition, respectively. The benefit of taking the individual 
variation of blood T

1
 into account was also demonstrated in the real data experiment.

Conclusions: Spending time to measure the labeling efficiency and the blood T
1
 

instead of acquiring more averages of the PCASL data proves to be advisable for 
robust CBF quantification in the general population.
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1  |   INTRODUCTION

Arterial spin labeling (ASL) perfusion MRI is a non- 
invasive method to quantify cerebral blood flow (CBF). 
Over 25 years of research in ASL has brought forth a pleth-
ora of protocols, consisting of different labeling methods, 
readout schemes, and quantification models, along with 
varying choices for certain acquisition settings, such as 
the duration of the post-labeling delay (PLD) and the op-
tion of background suppression. In 2015, a recommended 
implementation of the ASL experiment was published 
in a consensus paper by the perfusion study group of the 
International Society for Magnetic Resonance in Medicine 
(ISMRM) in collaboration with the European consortium 
for ASL in dementia.1 The purpose of this consensus was 
to provide a go-to methodology for ASL perfusion imag-
ing in a clinical setting. The most notable recommenda-
tions were pseudo-continuous labeling, a single-PLD for 
all data acquisition, segmented 3D readout combined with 
background suppression, and a simplified version of the 
single-compartment quantification model. Multiple stud-
ies have shown that ASL experiments adhering to the rec-
ommended settings result in CBF estimates comparable to 
those obtained from gold standard 15O-PET data.2-4

While the single-PLD pseudo-continuous ASL (PCASL) 
experiment in combination with the simplified model 
has proven its reliability, it is prone to several remaining 
sources of quantification errors.5 The most important error 
sources can be divided in 2 categories. First, certain model 
parameters in the consensus model are fixed to literature 
values, while the true underlying values may vary signifi-
cantly in reality. The longitudinal relaxation time of blood 
T1b changes with factors defining its physiological state,6-8 
such as hematocrit, oxygenation fraction, and blood cell pa-
thologies (eg, observed in sickle cell disease9). The labeling 
efficiency α depends on magnetic field inhomogeneities and 
blood flow velocity, and can, therefore, differ between indi-
vidual arteries, subjects and scan sessions.10,11 In the con-
sensus model, T1b and α are fixed to 1.65 seconds and 0.85, 
respectively. The discrepancy between fixing these model 
parameters and the spread of their values in reality may 
result in significant CBF quantification bias. Second, the 
consensus model is an oversimplification of the underlying 
perfusion processes. It is based on 2 main assumptions: the 
entire bolus has arrived in the imaging voxel at the start of 
the readout and the labeled spins stay in the blood compart-
ment during the entire experiment.1 In order for the first 
assumption to be valid, the PLD has to be longer than the 
arterial transit time (ATT), which is the travel time of the 
bolus from the labeling plane to a certain imaging voxel. 
As the local ATT can vary within the brain and between 
subjects,1,12,13 a sufficiently long PLD of 1800ms was rec-
ommended in the consensus experiment. Unfortunately, for 

ATTs that are significantly shorter than the PLD, the sec-
ond assumption is invalidated. In that case, labeled spins 
will have entered the brain tissue where they decay faster, 
since the longitudinal relaxation time of brain tissue (T1t) 
is shorter than T1b. Therefore, depending on the interplay 
between the local ATT and the PLD, quantification with the 
consensus model may lead to relative over- or underestima-
tion of CBF.5

Both error categories described above may lead to local 
CBF quantification errors varying between regions of the 
brain, or global quantification errors varying between differ-
ent subjects or scan sessions, or a combination of both. In 
other words, CBF can be over- or underestimated to vary-
ing degrees due to a certain mixture of these confounders. 
Ultimately, in clinical contexts which depend upon quanti-
tative values, it may impede usability of quantitative ASL 
scans.

CBF quantification accuracy can be increased by per-
forming additional experiments or using alternative versions 
of the ASL experiment. Such additional experiments may 
consist of measuring T1b and α with separate MRI scans,8,14-16  
instead of fixing them to literature values. Sampling the per-
fusion process at multiple time points by means of multi-PLD 
PCASL17,18 or time-encoded PCASL19,20 allows for more ac-
curate CBF quantification along with the possibility to mea-
sure the ATT, contrary to the single-PLD PCASL consensus 
implementation. However, if the total acquisition time is kept 
constant, these suggested alterations will limit the number 
of label-control pairs that can be acquired during the perfu-
sion phase. Ultimately, this will reduce the precision of CBF 
quantification.

Clearly, there is a trade-off between CBF quantification 
accuracy and precision when sacrificing ASL scan time for 
additional measurements or acquisition of ASL data at multi-
ple time points, compared to the single-PLD consensus ASL 
experiment. Yet, accuracy and precision both impact the abil-
ity to compare absolute CBF estimates, both within a subject 
as well as between subjects. Therefore, the goal of the current 
study is to optimize the distribution of scan time for a 5-minute  
protocol between averaging of ASL data versus performing 
supporting measurements.

2  |   METHODS

In order to properly study absolute quantification accuracy, 
the underlying ground truth values of the parameters of in-
terest need to be known. This requirement can be met in 
simulation experiments. The building blocks of the simula-
tion experiment in the context of a PCASL experiment with 
supporting measurements are discussed in Sections 2.1.1-
2.1.4. Subsequently, Section 2.1.5 contains an overview 
of the entire simulation experiment as well as the chosen 
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acquisition strategies for the 5-minute experiment. The 
statistical analysis of the simulation results is described in 
Section 2.1.6. Two slightly different versions of the main 
simulation experiment with potential significant implica-
tions are defined in Section 2.1.7. Finally, the design of a 
real data experiment serving as a first validation is deline-
ated in Section 2.2.

2.1  |  Simulation experiment

2.1.1  |  PCASL data simulation

In this work, the noiseless PCASL difference signal ΔS is 
simulated as a convolution of an arterial input function 
(AIF)21,22 and an impulse residue function (IRF).23 A detailed 
description of the model is given in Appendix A. A vital part 
of realistic simulations is the incorporation of realistic noise. 
As label and control images are usually acquired at low spa-
tial resolutions, resulting in high SNRs, it is reasonable to as-
sume that their signal intensities are Gaussian distributed.24,25 
The resulting difference data will also follow a Gaussian dis-
tribution. Therefore, Gaussian distributed zero-mean noise 
was added to the PCASL difference signals ΔS. An appropri-
ate standard deviation σ for such additive Gaussian noise was 
determined based on a temporal SNR (tSNR) for 3D GRASE 
background suppressed single-PLD PCASL data in gray mat-
ter (GM) reported  by Vidorreta et al.26 A single simulated 
noise disturbed PCASL difference data point ΔM acquired 
with a labeling duration �j at a time point tj = �j+PLDj, 
could thereby be defined as: 

with ej ∼ (0, �) the additive noise.

2.1.2  |  Simulation of supporting 
measurements

The labeling efficiency α and the longitudinal relaxation time 
of blood T1b can be estimated from MRI data acquired in sep-
arate experiments.8,14 In order to realistically simulate these 
supporting measurements, information about the estimation 
precision of the parameter of interest and the associated ac-
quisition time is needed.

Chen et al14 proposed a sequence for measurement of the 
PCASL labeling efficiency α. The stability of this measure-
ment was studied by multiple repetitions of the experiment. 
With cardiac triggering, they found a measurement standard 
deviation �� of approximately 0.04. The scan time per repe-
tition trep was approximately 7 seconds. Assuming the esti-
mation of α is unbiased and �i is the underlying ground truth 

labeling efficiency, the estimate �̂i from data acquired during 
a certain scan time t� can be simulated as 

with �̂i,p an estimate of �i obtained from a single repetition of 
the experiment, 〈·〉 the mean value of the enclosed subset, and 
P = ⌊t�∕trep⌋ the number of repetitions of the experiment, with 
⌊·⌋ the floor operator.

The longitudinal relaxation time of arterial blood can be 
estimated in the carotid artery as proposed by Li et al.8 They 
report an intrasession coefficient of variation (CoV) of 1.1% 
for the estimation of arterial T1b from T1-weighted data ac-
quired in a scan time tref of 69 seconds. For an average T1b of 
1.65s at 3T, the reported CoV results in an estimation stan-
dard deviation �T1b

= CoVT1b
⋅⟨T1b⟩ = 0.018s. Assuming the 

estimation precision scales linearly with the total scan time, 
scaling the acquisition time with a factor R results in a scaling 
of the parameter estimation standard deviation with a factor 
1∕

√
R. Therefore, the estimate of T1b from T1-weighted data 

obtained within a certain scan time tT1b
 and assumed to be 

unbiased can be simulated as 

with T̂1b,i the estimate and T1b,i the true blood longitudinal re-
laxation time.

The methods described in Equations (2) and (3) were 
used to simulate supporting experiments for different 
scan durations with the appropriate associated estimation 
precision.

2.1.3  |  Prior distributions of 
relevant parameters

As it is our goal to assess the CBF estimation over mul-
tiple perfusion states in the general population for certain 
5-minute protocols, the simulations should be repeated over 
a large number of perfusion states. The different perfusion 
processes representative of the general population can be 
approximated based upon literature by a prior distribution 
p(θ) of each parameter that appears in the PCASL data sim-
ulation model as presented in Section 2.1.1 and Appendix 
A (see Table 1). Choosing either a normal or a uniform dis-
tribution for a certain parameter was based on the spread of 
the reported GM values in the considered publications. In 
terms of this simulation experiment, a perfusion process is 
defined by a random draw �i from the prior distribution p(θ) 
defined in Table 1. The ground truth CBF was kept constant 

(1)ΔM(tj, �j)=ΔS(tj, �j)+ej,

(2)�̂i = ⟨{�̂i,p ∼ (�i, ��)}P
p=1

⟩p,

(3)T̂1b,i ∼ 

⎛
⎜⎜⎜⎝
T1b,i,

�T1b�
tT1b

∕tref

⎞
⎟⎟⎟⎠

,
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at f = 50 mL/100 g/min for all perfusion states to allow easy 
interpretation of the results. This has a negligible impact on 
the generality of the results, as the relative quantification 
accuracy and precision are approximately independent of 
the considered CBF value, due to the approximately linear 
relation between the CBF and the PCASL signal in the sin-
gle-compartment quantification model.27 The equilibrium 
blood magnetization M0b was kept constant at unity.

2.1.4  |  Quantification model

After simulating PCASL data and supporting measurements 
for a certain sequence setting and perfusion state, quantifica-
tion of CBF is the final step in the simulation experiment. For 
single-PLD PCASL experiments, the CBF f was calculated as 

with ΔM the mean of the single-PLD PCASL difference data. 
For multi-PLD PCASL or te-PCASL experiments, the CBF 
f and ATT Δt were quantified with a nonlinear least squares 
estimator by fitting the Buxton single-compartment model27 

to the multi-time-point PCASL data. The unit of each estimated 
CBF value was converted from mL/g/s to mL/100  g/min by 
multiplication with a factor of 6000.

If scan time was assigned to the additional experiments, 
α and T1b in Equations (4) and (5) were set to the estimated 
values as defined in Equations (2) and (3), respectively, oth-
erwise standard literature values were assumed (α = 0.8 and 
T1b = 1.65  seconds). Measurement of M0b was simulated in 
each quantification by randomly selecting a value from a nor-
mal distribution  (1.00, 0.09), which represents the variability 
in different measurement methods for M0b.

28 For multi-time- 
point PCASL data, the tissue longitudinal relaxation time T1t 
was fixed at 1.45 seconds,29 compatible with a 3T scanner.

2.1.5  |  Overview of the entire 
simulation experiment

The building blocks of the simulation experiment, discussed 
in Section 2.1, are summarized in a flowchart in Figure 1. 
The framework starts with the selection of a ground truth 
perfusion process, simulates the relevant data and measure-
ments, and ends with the quantification of the CBF. The en-
tire simulation experiment was formed by repeating the steps 
in this framework on 3 distinct levels.

First, multiple 5-minute protocols were examined. On 
the one hand, distribution of the 5-minute scan time Ttot  

between acquisition of PCASL data and supporting scans 
was varied. The percentages of scan time assigned to mea-
surement of α and T1b were increased from 0 up to 40% of Ttot 

(4)f =
ΔM exp (PLD∕T1b)

2�T1bM0b(1−exp (−�∕T1b))
,

(5)g(t)=

⎧⎪⎨⎪⎩

0 0< t<Δt

n𝛼M0bfT1t exp (−Δt∕T1b)
�

1−exp (−
t−Δt

T1t

)
�

Δt< t<𝜏+Δt

n𝛼M0bfT1t exp (−Δt∕T1b) exp (−
t−𝜏−Δt

T1t

)
�
1−exp (−𝜏∕T1t)

�
t>𝜏+Δt

  Parameter Parameter distribution

Parameters labeling efficiency α [ ]  (0.80, 0.06) [39,40]

longitudinal relaxation time of 
blood T1b

 [s]
 (1.65, 0.12) [7,8,41]

Specific IRF parameters longitudinal relaxation time of 
tissue T1t

 [s]
 (1.45, 0.14) [29]

blood-to-tissue water transit time 
�trans [s]

 (0.30, 3.60) [42-44]

arterial microvascular transit time 
�

a
 [s]

 (0.30, 1.00) [45-47]

tracer capillary distribution 
volume V

c
 [mL/100g]

 (2.0, 4.0) [37,48]

tracer venous distribution volume 
V

v
 [mL/100 g]

 (1.0, 3.0) [49,50]

Specific AIF parameters arterial transit time Δt [s]  (0.82,0.15) [12,13]

center-of-vessel travel time t0 [s]  (0.10, 0.01) [21,22]

Note: A normal distribution is described as  (�, �) with μ the mean and σ the standard deviation; a uniform 
distribution is described as  (l, u) with l and u the lower and upper bound, respectively.

T A B L E  1   The prior distribution 
p(θ) of the model parameters 
� = {�, T1b

, T1t
, �trans, �a

, V
c
, V

v
,Δt, t0} in GM 

in the general population
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in increments of 2%, including all possible combinations. 
On the other hand, 3 acquisition strategies were considered 
for PCASL: single-PLD, equidistant sequential multi-PLD 
and a free-lunch version of te-PCASL (te-FL PCASL). 
Details of the PCASL acquisition settings are summarized 
in Table 2. Each of these PCASL sampling protocols were 
repeated maximally within the scan time Ttot− t�− tT1b

 to 
obtain multiple averages. This process is straightforward 
for single-PLD and te-FL PCASL: fit as many repeats of 
label-control pairs or the Hadamard acquisition scheme 
within the available scan time. For multi-PLD, after repeat-
ing the entire imaging sequence maximally, the remaining 
scan time was used to acquire data points at a randomized 
subset of the PLDs.

Second, for each of these 5-minute protocols, the simu-
lation framework was run for 1000 ground truth perfusion 
states �

i
 randomly drawn from the prior distribution p(θ) as 

defined in Table 1.

Third, for each 5-minute experiment and for each ground 
truth perfusion state, 100 repeats of data simulation and 
quantification were performed with different noise realiza-
tions. In this setting, different noise realizations are equiva-
lent to repeated simulation of PCASL data {ΔM(tj, �j)}

N
j= 1

 
and estimates �̂i and T̂1b,i.

2.1.6  |  Statistical analysis

The goal of the current study is to find the 5-minute proto-
col that attains the lowest level of CBF estimation variabil-
ity across all considered confounding sources of variation, 
namely differences in the underlying perfusion states and 
random noise in the data. For a certain 5-minute protocol, 
multiple runs of data simulation, as described in Figure 1, 
will result in datasets from different perfusion states �i and 
with varying random noise, yet with the same underlying 

F I G U R E  1   Flowchart of one run of the simulation experiment for a certain 5-minute protocol and a certain ground truth perfusion state. The 
amount of PCASL difference data points N depends on the available scan time Ttot − t�− t

T1b
 and the acquisition strategy (single-PLD, multi-PLD or 

time-encoded)

T A B L E  2   Details of the PCASL acquisition strategies used in the simulation experiment

Acquisition strategy Labeling duration [s] PLD [s] # PLDs

Single-PLD 1.8 1.8 1

Equidistant multi-PLD 1.8 0.2, 0.4, 0.6, 0.8, 1.0, 10

  1.2, 1.4, 1.6, 1.8, 2.0  

Free-lunch time-encoded 1.8, 0.175, 0.175, 0.175, 1.8, 1.625, 1.45, 1.275, 11

0.175, 0.175, 0.175, 0.175, 1.1, 0.925, 0.75, 0.575,  

0.175, 0.175, 0.175 0.4, 0.225, 0.05  
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CBF value. A 5-minute protocol is then considered to have 
a low CBF estimation variability if the spread in the entire 
pool of obtained CBF estimates is low. A suitable metric to 
describe this estimation variability is the standard deviation s 
of the set of CBF estimates quantified from the Q = 100 rep-
etitions of noisy datasets from each of the P = 1000 consid-
ered perfusion processes, that is, the standard deviation over 
100.000 CBF estimations: 

with f̄  the sample mean.
It is important to stress that the standard deviation of 

such a set of CBF estimates, described by Equation (6), 
captures CBF estimation variability of a certain protocol on 
a population level. Statistical measures describing such a 
set of estimates, like its standard deviation and mean, need 
to be differentiated from statistical concepts that describe 
the estimator used for CBF quantification, namely the 
accuracy (or bias) and precision. Indeed, when referring 
to the bias or precision of an estimator of CBF, a single 
underlying perfusion state (ie, fixed α, T1b, T1t and Δt) is 
assumed. This difference in terminology is followed rigor-
ously in what follows.

2.1.7  |  Simulation sub-studies

In the main simulation experiment, a more realistic, more 
complicated model is used for data simulation than for quan-
tification (see Appendix A). While this option was chosen in 
order to match a real data experiment as closely as possible, it 
adds a potential source of bias to the quantification. Therefore, 
the entire simulation experiment described in Section 2.1.5 
was repeated using the single-compartment model (Equation 
(5)) for data simulation as well as quantification. The result-
ing CBF estimate distributions were compared to the ones 
from the main simulation experiment in order to separate the 
contribution of supporting measurements to a reduced CBF 
estimation variability from potential bias caused by an over-
simplified quantification.

Simulation of the supporting measurements, as described 
in Section 2.1.2, assumes estimation of the respective pa-
rameters is unbiased. As in reality such supporting measure-
ments could be biased, the entire simulation experiment was 
also repeated assuming a consistent relative overestimating 
bias of 5% in both supporting measurements. With this sub- 
experiment, it was examined whether such a bias has a detrimen-
tal effect on potential benefits of the supporting measurements 
by comparing the CBF estimate distributions linked to the unbi-
ased and biased versions of the supporting measurements.

2.2  |  Real data validation experiment

As a first validation of the simulation results, a real data 
study was designed that allowed for a comparison between 
CBF quantification using either the population average T1b 
value or individually estimated T1b values. From a population 
study with healthy volunteers in which single-PLD PCASL 
data (scanner: Siemens 3.0 T, readout: 3D GRASE, spatial 
resolution = 4 × 4 × 5 mm3, number of segments for whole-
brain coverage = 2, labeling duration = 1.8 s, PLD = 1.8 s, 
number of averages = 4, TR = 5 seconds, total acquisition 
time = 80 seconds) and blood samples prior to scanning were 
acquired, 5 subjects with a low hematocrit (Hct = 0.345 ± 
0.011) and 5 subjects with a high hematocrit (Hct = 0.464 ±  
0.015) were selected. From each hematocrit measurement, 
the T1 of blood was estimated.7 Furthermore, for each subject, 
an equilibrium magnetization image (‘M0t’) (sequence: 3D 
GRASE, spatial resolution = 4 × 4 × 5 mm3 mm, number of 
segments for whole-brain coverage = 2, TR = 5 seconds, TE =  
18 ms), for absolute quantification of the CBF, and a high-
resolution anatomical image (sequence: MPRAGE, spatial 
resolution = 1 × 1 × 1 mm3, TR = 2250 ms, TE = 4 ms, TI = 
900 ms), for tissue segmentation, were acquired.

The data for each subject was analyzed as follows. First, all 
relevant MRI data (label images, control images, and the pro-
ton density ‘M0t’ image) were mutually registered. Second, an 
averaged perfusion-weighted image was obtained by pair-wise 
subtraction of label-control pairs and subsequent averaging of 
the resulting difference images. Third, CBF quantification was 
performed twice, once using the population average T1b value, 
and once using the individually estimated T1b value. Finally, 
CBF values from GM voxels were isolated by downsampling 
and coregistering a GM mask to the CBF maps, following 
the procedure described in the work of Bladt et al.30 The GM 
mask was obtained from a high-resolution anatomical image 
by means of multilevel image thresholding.31 Potential differ-
ences in CBF estimation variability between using the recom-
mended population average T1b value and using individually 
estimated T1b values were assessed by comparing the standard 
deviations of the set of GM CBF estimates, pooled over all 
subjects, for both quantification methods.

As this real data experiment is a simplified version of the 
main simulation setup, a modified version of the simulation 
experiment mimicking the real data protocol was also run. 
For this purpose, the framework of the simulation experiment, 
described in Section 2.1.5, was slightly adapted: instead of 
generating 1000 perfusion states with randomized T1b values 
and a fixed CBF, 1000 perfusion states were generated with 
randomized CBF values for each of the 10 individually esti-
mated T1b values from the real data experiment; random CBF 
values were drawn from a normal distribution of GM CBF 
values (ie,  (54, 11) mL/100 g/min) reflecting reported lit-
erature ranges32; the set of 1000 perfusion states per T1b value 

(6)s=

√√√√ 1

P+Q−1

P∑
i=1

Q∑
k=1

(f̂i,k − f̄ )2,
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simulates the underlying perfusion variations over different 
parts of the brain of an individual. Single-PLD PCASL data 
were simulated according to the real data acquisition proto-
col. Subsequently, CBF was quantified from the simulation 
data twice for each perfusion state: once using the fixed T1b 
value of 1.65 seconds, which is the recommended population 
average for T1b, and once using the appropriate individual T1b 
value. The distributions of the CBF estimates resulting from 
the real data experiment and those of the modified simulation 
experiment were compared in terms of the overall CBF esti-
mation variability, allowing for an assessment of the validity 
of the simulation experiment.

3  |   RESULTS

3.1  |  Simulation experiment

Figure 2 shows the standard deviation s of the CBF estimates 
as defined in Section 2.1.6 for all considered 5-minute pro-
tocols. The value in the top left of Figure 2A, highlighted in 
black, depicts the CBF estimation variability in the recom-
mended single-PLD PCASL implementation when separate 
estimates for and T1b are not made. It serves as a starting point 
reflecting how differences in perfusion states and noise within 
and between subjects affect CBF estimation. If the standard 
deviation s, defined in Section   2.1.6, is a measure for the 
absolute variability of CBF estimation, the relative variabil-
ity can be defined as the ratio between s and the underlying 
ground truth CBF value. For single-PLD PCASL without 
supporting measurements, a relative variability of 12.2% was 
found. While there is no literature study that matches one-
to-one with this simulation experiment, the between-subject 
standard deviation reported in the QUASAR reproducibility 
study13 is closely related to the CBF estimation variability 

reported in this simulation study. The ratio of the reported av-
erage between-subject standard deviation and average mean 
GM CBF value in13 is equal to 11.6%, which shows that the 
relative variability reported above reflects reality. The stand-
ard deviations shown in the top left corners of Figure 2B,C 
represent the CBF estimation variability for the te-FL and 
multi-PLD PCASL protocol without supporting measure-
ments, respectively. The relative variabilities of these proto-
cols (12.6% and 12.2%, respectively) are comparable to the 
one of their single-PLD counterpart.

For each ASL acquisition strategy, the standard devi-
ation s reduced when allocating scan time for supporting 
measurements. The protocols with the lowest standard de-
viation are highlighted in red in Figure 2 for each ASL ac-
quisition type. For these protocols, a relative variability of 
8.6%, 8.0%, and 7.2% was found for single-PLD, te-FL, and 
multi-PLD PCASL, respectively. Compared to the result of 
the single-PLD protocol without supporting measurements 
shown above, this implies a reduction in relative variability 
of 26%, 33%, and 42% for single-PLD, te-FL, and multi-PLD 
PCASL, respectively. Note that the standard deviation land-
scapes shown in Figure 2 are relatively flat. In other words, 
for all 3 ASL acquisition strategies, there is a rather wide 
range of scan time distributions that result in a similar CBF 
estimation variability as for the protocols highlighted in red.

Each standard deviation of the set of CBF estimates for 
each protocol shown in Figure 2 is the combined result of bias 
from different perfusion states and noise in the data. Each 
protocol suffers from both effects to a different degree, which 
is shown in more detail in Figure 3. Figure 3A visualizes the 
contrast between only acquiring ASL data and combining it 
with the measurement of α and T1b by demonstrating the CBF 
estimation bias and precision for different underlying physio-
logical perfusion states. It shows the trade-off when sacrific-
ing ASL scan time; a reduced spread in estimation bias comes 

F I G U R E  2   The standard deviation of the set of CBF estimates {f̂
i,k}

1000,100

i=1,k=1
 for 5-minute combinations of a (A) single-PLD (B) free-lunch 

time-encoded (te-FL) and (C) equidistant multi-PLD PCASL experiment with supporting experiments to estimate α and T1b
. The standard 

deviations linked to the single-PLD, te-FL, and multi-PLD protocols without supporting measurements are highlighted with black boxes, while the 
protocols with the lowest standard deviation in each ASL modality are highlighted with a red box

(A) (B) (C)
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at a cost of lower individual estimation precision. When the 
decision is made to perform supporting measurements, there 
is again a trade-off between improving the estimation of α 
and T1b and maintaining a sufficient SNR of the PCASL data 
(Figure 3B). On the one hand, when a very small percentage 
of time is used for supporting measurements, estimation of α 
and T1b is very imprecise. On the other hand, when support-
ing measurements take up most of the scan time, the SNR of 
the ASL data is very low. Both extremes lead to lower CBF 
estimation precision, which is ultimately reflected in a higher 
variability. The optimal distribution of scan time lies in be-
tween these extreme cases.

While the results in Figure 2 describe the main statistical 
entity of interest, that is, the CBF estimation variability, it 
provides no information about the overall mean of the set of 
CBF estimates of each protocol. Therefore, the distribution 
of the set of CBF estimates is showcased in Figure 4 for the 6 
protocols highlighted in Figure 2.

The results of the simulation sub-studies, defined in 
Section 2.1.7, are summarized in Figure 5. In Figure 5A, CBF 
estimate distributions are shown when using the same model 
for data simulation as for quantification in a comparison to the 
distributions obtained from the main implementation of the 
simulation experiment. In terms of CBF estimation variabil-
ity, a difference in the complexity of data simulation clearly 
has no significant effect. In terms of a bias offset, there is only 
a significant difference between both implementations of the 
simulation experiment for single-PLD protocols. The results 
of the second sub-experiment are summarized in Figure 5B. 
Having an offset bias in the estimation of α and T1b from the 
supporting experiments has no effect on the CBF estimation 
variability compared to having unbiased supporting measure-
ments. It only causes a fixed global bias in CBF estimation, 
consistent with the relation between α and T1b on the one hand 
and CBF on the other hand in the quantification model, inde-
pendent of the underlying perfusion state or noise in the data.

F I G U R E  3   (A), A visualization of the trade-off between the estimation precision on a voxel level and the spread in estimation bias on a 
population level. Each normalized distribution represents the fit to the histogram of CBF estimates originating from 100 data simulation repeats for a 
specific ground truth perfusion state �

i
. These fits were performed for estimates from 10 of the 1000 considered ground truth perfusion states, for the 

case of only single-PLD data and the combination of single-PLD data acquisition with supporting measurements with the lowest variability of CBF 
estimation in Figure 2A. (B), The average relative standard deviation for estimating α and T1b

 is contrasted with the average inverse of the single-PLD 
PCASL data SNR for the protocols represented on the diagonal in Figure 2A. For these protocols, the scan times for both supporting measurements 
are equal. The scan time shown on the x-axis in (B) is the sum of both scan times. The SNR of single-PLD PCASL data is defined as the ratio of the 
mean and standard deviation of the set of difference data repeats, where the number of repeats depends on the allocated ASL scan time

(A) (B)

F I G U R E  4   The normalized 
distribution of CBF estimates from the 
6 protocols highlighted in Figure 2: the 
protocol with only single-PLD PCASL data, 
only te-FL PCASL data, and only multi-
PLD PCASL data, as well as the optimal 
protocol for each considered ASL modality
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3.2  |  Real data validation experiment

The distribution of the set of estimated CBF values, pooled 
over the considered population, for both quantification 
strategies is shown in Figure 6A. On a population level, 
there is a lower CBF estimation variability when using indi-
vidual T1b estimates, indicated by the standard deviation of 
the set of CBF estimates dropping from 21.0 mL/100 g/min 
when using a fixed T1b value to 17.6 mL/100 g/min when 
using individually measured T1b values. Note that, in con-
trast to the main simulation experiment, there are no ground 
truth CBF values to compare the estimated CBF values to 
and that those underlying ground truth CBF values differ in 
each considered voxel (ie, not fixed to 50 mL/100 g/min). 
Despite that, the standard deviation of the set of CBF esti-
mates is still indicative of CBF estimation variability.

In Figure 6B, the CBF estimates are shown resulting 
from the modified simulation experiment, which mimics the 
real data experiment. There is a similar relative reduction in 

estimation variability. The absolute estimation variability is 
higher in the real data experiment, which is likely caused by 
partial volume effects, resulting in very low CBF estimates, 
and data outliers or remaining macrovascular signal, result-
ing in CBF overestimation. Such effects are not present in the 
simulation experiment. Both in real data and in simulations, 
there is a difference in the mean CBF value for both quan-
tification methods. This can be attributed to the difference 
between the recommended quantification value for T1b (ie, 
1.65  seconds) and the mean of the estimated T1b values in 
this specific population (ie, 1.75 seconds). Overall, the real 
data and simulation results, shown in Figure 6, clearly align.

4  |   DISCUSSION AND 
CONCLUSIONS

In this work, a range of 5-minute MRI protocols was examined 
with respect to the CBF estimation variability for a multitude 
of physiological situations, as would be expected to be found 
in the general population. It was shown that there is a clear 
benefit in sacrificing some averages of PCASL for supporting 

F I G U R E  5   Results for 4 protocols are shown: the protocol 
with only single-PLD PCASL data and the optimal protocol for each 
considered ASL modality. The black curves in subfigures (A) and 
(B) represent the normalized distributions of CBF estimates obtained 
from the main implementation of the simulation experiment with the 
realistic data simulation model. The cyan curves in subfigure (A) 
represent CBF estimate distributions for the exact same protocols, yet 
for data simulation using the single-compartment model (SCM) as 
defined in Equation (5). In subfigure (B), the cyan curves represent 
CBF estimate distributions for the same protocols with an offset bias of 
5% overestimation of both α and T1b

. Note there is no difference for the 
protocol with only single-PLD PCASL data in (B), as no measurement 
of α and T1b

 is performed in that protocol

(A)

(B)

F I G U R E  6   (A), Normalized distribution of the set of estimated 
GM CBF values, pooled over the considered population of 10 healthy 
volunteers, for quantification with a single population average for 
blood T1 (blue) and with individual blood T1 values (orange), estimated 
from a hematocrit measurement. (B), Normalized distribution of the 
set of estimated GM CBF values for the simulation experiment that 
closely mimicked the real data experiment

Real data experiment

Simulation experiment

(A)

(B)
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measurements of the labeling efficiency α and the longitudi-
nal relaxation time of blood T1b. Combining these additional 
experiments with multi-delay PCASL modalities instead of 
a single-PLD PCASL scheme further reduced the estimation 
variability. The results presented above and discussed in this 
section are for a total scan time of 5 minutes. The simulation 
experiment was repeated for a total scan time of 2 and 10 min-
utes (results not shown), which resulted in the same general 
trends as described above regarding optimal scan time distri-
bution and relative differences in CBF estimation variability 
between the 3 considered PCASL acquisition strategies.

The variability measures visualized in Figure 2 show that, 
compared to only acquiring PCASL data, it is beneficial to 
sacrifice part of the PCASL scan time for the measurement of 
α and T1b. While optimal protocols were highlighted for each 
ASL acquisition strategy, many other protocols with different 
scan time distributions show comparable variabilities of CBF 
estimation. It is only when a supporting measurement is not 
performed or when very few ASL data are acquired that the 
CBF estimation variability significantly increases. The stan-
dard deviation landscape for the te-FL PCASL acquisition 
strategy does, however, show some different behavior in the 
form of discrete jumps. This is mainly related to the temporal 
footprint of data acquisition of time-encoded ASL, which is 
bound to repetitions of the entire set of Hadamard-encoded 
images, while single- and multi-PLD PCASL allow for more 
fine steps in allocating ASL scan time.

Comparing the results for the protocols without support-
ing measurements to the ones with supporting measurements 
for all 3 considered PCASL sampling strategies in Figure 4  
allows to clearly isolate the benefit of using a percentage 
of the total scan time for estimation of α and T1b. It is vital 
to emphasize that this benefit occurs on a population level. 
Estimating α and T1b, compared to fixing it to a population 
average, reduces CBF estimation bias. On a population level, 
where α and T1b can vary considerably, this leads to a reduced 
spread in CBF estimation bias (see Figure 3A). As a result, 
the CBF estimation variability on a population level de-
creases (see Figure 4). In short, reducing bias by performing 
the supporting measurements reduces the standard deviation 
of the total set of CBF estimates obtained from a large pop-
ulation, which might have seemed paradoxical at first. The 
priorities are different when considering a single individual. 
In a single diagnostic perfusion scan, T1b is constant and α 
should not vary too much between different feeding arteries; 
estimating α and T1b will only result in a global scaling of the 
CBF map, which for many diagnostic scans is not worth the 
accompanying loss in CBF estimation precision.

The optimal combinations of both multi-delay PCASL 
modalities with supporting measurements outperform the 
optimal single-PLD experiment in terms of CBF estimation 
variability (Figure 4). In fact, this is the case for most 5-minute  
protocols (Figure 2). There are  2 main reasons. First, 

estimating the ATT alongside the CBF eliminates a source of 
bias, as not accounting for the ATT is known to lead to under- 
or overestimation. Second, for the considered prior distri-
bution of the ATTs (see Table 1), both multi-delay PCASL 
acquisition strategies sample the perfusion signal more op-
timally in terms of precise parameter estimation compared 
to the single-PLD PCASL scheme. This statement is trivial 
for the te-FL PCASL acquisition strategy, as the waiting pe-
riod of the single-PLD sequence is used to obtain extra data 
without affecting the temporal SNR of the data linked to the 
long labeling, that is, the perfusion block.20 For the equi-
distant multi-PLD sequence, the spread in PLDs guarantees 
sampling of the PCASL signal around its peak for most of 
the ATTs in the prior distribution. Moreover, the PLD of the 
recommended single-PLD experiment is chosen to be longer 
than most ATTs that can be expected in the general popula-
tion. Therefore, this PLD is much longer than the majority of 
ATTs from the considered distribution (see Table 1), result-
ing in an unnecessary large signal loss due to T1 decay. Note 
that these statements are specifically in reference to CBF esti-
mation variability. The qualitative perfusion map for a single 
subject obtained from the single-PLD or from the first block 
of the te-FL PCASL experiment will still have a higher SNR 
than the averaged difference maps obtained only from the 
longest PLDs of the multi-PLD PCASL experiment, due to 
the difference in the number of repetitions.

Apart from a lower CBF estimation variability, quantifi-
cation in multi-delay PCASL methods clearly results in more 
accurate estimation of CBF on average compared to single- 
delay PCASL protocols (Figure 4). This is caused by the 
difference in quantification model (Equation (4) and (5)). In 
multi-delay methods, the ATT is taken into account and part 
of the longitudinal relaxation is assumed to be governed by the 
T1 of tissue. Of course, this increased accuracy is a result of 
the way the simulation data were generated, which resembled 
the multi-delay quantification model more than the single- 
delay model (see also the study limitations). Furthermore, it is 
noteworthy that the mean of the set of CBF estimates for the 
optimal multi-delay protocols almost coincides with the true 
underlying CBF value (Figure 4). This is not trivial, as PCASL 
data were simulated with a complex multi-compartment  
perfusion model that includes dispersion effects, while CBF 
was quantified with a single-compartment model. It is a clear 
indication of the value of the single-compartment model 
(Equation (5)) as a valid approximation of more complex 
models with multiple compartments and dispersion effects.

Two sub-studies of the main implementation of the simu-
lation experiment were performed. First, PCASL data were 
simulated with the same model as used for quantification. 
As using this model for data simulation only results in a 
bias offset in quantification for the single-PLD experiment 
(Figure 5A), reported differences in the CBF estimation 
variability between different protocols obtained from the 
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main implementation of the simulation experiment can be 
attributed with confidence to the supporting measurements.  
In terms of bias offset, it is not surprising that there is no 
significant difference between both implementations of the 
simulation experiment for the multi-PLD and te-FL pro-
tocol, as the main implementation of the experiment with 
a mismatch between simulation model and quantification 
model already hardly showed a bias offset compared to 
the underlying ground truth CBF value. Remarkably, the 
single-PLD quantification model (Equation (4)) estimates 
CBF more accurately when data were simulated with the 
more complicated model, compared to the single-compart-
ment model. Second, when an offset bias is introduced in 
the simulated supporting measurements, it results in an off-
set bias in the set of CBF estimates (Figure 5B). As there 
is no impact on the CBF estimation variability compared to 
unbiased supporting measurements, incorporating slightly 
biased supporting measurements would still be beneficial 
compared to only acquiring ASL data in terms of how com-
parable CBF estimates are between different subjects and/
or different scan sessions.

The real data validation experiment showed a first indi-
cation of the potential benefit of supporting measurements 
in terms of decreasing the CBF estimation variability. 
However, it has multiple limitations compared to the main 
simulation experiments of this work. First, only the effect 
of T1b measurements was studied, while simulation results 
indicate that measuring both T1b and α will reduce CBF esti-
mation variability more drastically (see Figure 2A). Second, 
only single-PLD data were considered, while combining  
multi-time-point PCASL data with supporting measurements 
is expected to be more beneficial (see Figure 4). Third, T1b 
was only estimated once in each subject. Repeated estimation 
of the T1 of blood and the labeling efficiency from additional 
scans and repeated PCASL data acquisition would allow one 
to study the interplay of sacrificing ASL scan time and mea-
surement variability within a fixed total acquisition time, as 
was studied in the main simulation experiments. Nonetheless, 
the close agreement between the results of the real data 
experiment and those of the simulation sub-experiment, 
 mimicking the real data experiment, supports the validity of 
the simulation experiments performed in this work.

There are several limitations to the simulation experi-
ment performed in this study. First, the prior distributions 
of the respective parameters in the perfusion model used for 
data simulation play a central role. Each prior distribution 
represents the variability of a certain parameter in the con-
sidered population. Therefore, the importance of estimating 
α, T1b and Δt is directly related to their underlying prior 
distribution. In this study, emphasis was put on carefully 
selecting prior distributions that match reported literature 
values in the general population, in order to maximize the 
confidence to extrapolate these results from simulation to 

real data. Optimal scan time distributions will be different 
when the underlying prior distributions of relevant param-
eters would be different, for example when more robust 
tagging techniques become mainstream or when dealing 
with specific patient populations. Note that in such cases, 
this simulation experiment should be rerun with adjusted 
parameter prior distributions to indicate the potential use 
of supporting measurements. However, it can still be ex-
pected that the general conclusion that some time should 
be attributed to support measurements will remain valid. 
Second, any data simulation model, regardless of its com-
plexity, is an imperfect approximation of the underlying 
biophysical PCASL perfusion process. Nevertheless, in 
this study, a simulation model was used with the aspira-
tion to match the biophysical reality as closely as possible. 
Ideally, these results need in vivo validation. Note that this 
would require a large subject group to sufficiently capture 
population variability. Furthermore, the analysis of the 
results would be challenging due to a lack of knowledge 
about the underlying ground truth parameter values. Third, 
the presented results are dependent on the parameter esti-
mation method. In this study, parameter estimation from 
multi-delay PCASL data was performed with a nonlinear 
least squares estimator. An alternative to this strategy is 
Bayesian inference,33,34 which would also allow for the es-
timation of extra parameters with limited prior uncertainty 
alongside the CBF and ATT. However, it should be stressed 
that T1b and α are not good candidates for estimation along-
side the perfusion parameters. The T1 of arterial blood can 
be considered as a global constant parameter throughout the 
brain. Estimating it separately in every voxel will result in 
local differences in T1b that have no clear physical mean-
ing. Regarding the labeling efficiency, it is impossible to 
estimate it alongside the CBF as they are not independently 
identifiable in the quantification model. Finally, the 3 ASL 
acquisition strategies selected in this study were selected 
pragmatically. The recommended single-PLD implemen-
tation served as an evident benchmark. The time-encoded 
free-lunch PCASL protocol is a simple extension of the 
single-PLD experiment and an equidistant version of the 
multi-PLD PCASL experiment is the conventional imple-
mentation in most multi-delay ASL studies. Estimation pre-
cision could be further increased for each of these 3 ASL 
modalities by means of experiment design optimization 
using Cramér-Rao lower bound theory.35 Nonetheless, the 
fact that it proves to be beneficial to sacrifice part of the 
ASL scan time for supporting measurements in 3 entirely 
different ASL sampling strategies (see Figure 4) strongly 
suggests that the merit of these supporting measurements is 
independent of the chosen sampling strategy. Indeed, it was 
shown that reducing estimation bias by means of supporting 
measurements is the driving force behind reducing the CBF 
estimation variability on a population level (see Figure 3A).
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In conclusion, we demonstrated the benefit of sacrificing 
part of the ASL scan time for supporting measurements to 
estimate the labeling efficiency and the blood longitudinal 
relaxation time in terms of CBF estimation variability by 
means of a simulation experiment. When absolute quantifi-
cation of CBF from PCASL data is required, such supporting 
experiments turn out to be indispensable. Furthermore, for 
the considered population statistics, multi-time-point PCASL 
methods seem to further improve CBF estimation reliability 
compared to the recommended single-PLD PCASL acquisi-
tion strategy.
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APPENDIX A
The dynamic ASL perfusion signal can be described math-
ematically as a system of modified Bloch equations,36,37 or 
as a convolution of an arterial input function (AIF) and an 
impulse residue function (IRF).23,27 For the purpose of this 
work, the latter approach is adopted as it allows for a higher 
level of complexity, and hence accuracy of data simulation. 
The IRF describes the ASL signal decay, and therefore, de-
pends on the local  T1  relaxation of spins in the voxel. An 
IRF closely matching reality is given by the single-pass 
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approximation model with a venous contribution proposed 
by St. Lawrence et al,23 which was extended with a microvas-
cular arterial compartment for the current study: 

with �a, �c and �v the transit times through arterial, capillary, 
and venous space, respectively, � = 1∕(1+�RVc∕PS), with 
�R = 1∕T1b−1∕T1t, Vc the distribution volume of tracer in 
the capillary space and PS the capillary permeability-surface 
area product, ER = 1−exp (−PS∕f −�R�c), with f the CBF, 
and E = 1−exp (−PS∕f ). The restricted exchange of water 
through the capillary wall is described by the blood-to-tissue 
water transit time �trans = Vc∕PS.

The delivery of the labeled bolus to the destination voxel 
is described by the AIF. A realistic AIF incorporating  
dispersion effects using principles of fluid dynamics can 
be modeled as a convolution of a transport function with a  
rectangular bolus21,22: 

with α the labeling efficiency, w(t, τ) = Θ(τ−t) the bolus gen-
erated at the labeling site, where Θ(·) is the unit step function, 
and τ is the labeling duration, and with H(t) the total transport 
function, which depends on the local arterial transit time Δt and 
the center-of-vessel travel time t0, as defined in.21,22

Throughout this work, a PCASL difference signal ΔS, ac-
quired with a labeling duration �j at a time point tj = �j+PLDj, 
is simulated by a convolution of the IRF defined in Equation 
(A1) with the AIF defined in Equation (A2): 

with M0b the equilibrium magnetization of arterial blood and 
n = 2 for single- or multi-PLD PCASL or n = K for time-en-
coded PCASL (te-PCASL), with K the order of the Hadamard 
matrix coupled to the te-PCASL acquisition scheme.

A vital part of realistic simulations is the incorporation 
of realistic noise. As label and control images are usually 
acquired at low spatial resolutions, resulting in high SNRs, 
it is reasonable to assume that their signal intensities are 
Gaussian distributed.24,25 The resulting difference data will 
also follow a Gaussian distribution. Therefore, Gaussian 
distributed zero-mean noise was added to PCASL differ-
ence signals generated with Equation (A3). An appropriate 
standard deviation �PCASL for such additive Gaussian noise 
was determined based on a temporal SNR (tSNR) for 3D 
GRASE background-suppressed single-PLD PCASL data 
in GM reported  by Vidorreta et al.26 A single simulated 
PCASL difference data point ΔM(tj, �j) could thereby be 
defined as 

with ej ∼ (0, �) the additive noise, with � = �PCASL for  
single- and multi-PLD PCASL or � = �PCASL∕

√
K∕2 for  

te-PCASL data as it is the result of a linear combination of K 
images, instead of2 in the case of one PCASL signal in a single-  
or multi-PLD sequence38. Ultimately, a PCASL difference 
dataset of N data points can be defined as {ΔM(tj, �j)}

N
j= 1

  
acquired at time points t = {tj}

N
j= 1

 and with labeling durations 
� = {�j}

N
j= 1

, where tj = �j+PLDj. Note that acquisition of 
multiple segments in a 3D readout leads to comparable noise 
averaging as acquisition of multiple averages.

(A1)q(t)=

⎧
⎪⎪⎨⎪⎪⎩

exp (− t∕T1b) t≤ 𝜏a

𝛽 exp (− t∕T1t)+ (1−𝛽) exp (− (PS∕Vc+1∕T1b)t) 𝜏a < t≤ 𝜏a+𝜏c

𝛽ER exp (− t∕T1b)+ (1−E) exp (− t∕T1t) 𝜏a+𝜏c < t≤ 𝜏a+𝜏c+𝜏v

𝛽ER exp (− t∕T1b) 𝜏a+𝜏c+𝜏v < t,

(A2)c(t, �)=�[w(t, �)∗ (H(t) exp (− t∕T1b))],

(A3)ΔS(tj, �j)=nM0bf [q(t)∗ c(t, �j)]|t=tj
,

(A4)ΔM(tj, �j)=ΔS(tj, �j)+ej,


