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Abstract

Motivation: Artificial intelligence, trained via machine learning (e.g. neural nets, random forests) or

computational statistical algorithms (e.g. support vector machines, ridge regression), holds much

promise for the improvement of small-molecule drug discovery. However, small-molecule struc-

ture-activity data are high dimensional with low signal-to-noise ratios and proper validation of

predictive methods is difficult. It is poorly understood which, if any, of the currently available ma-

chine learning algorithms will best predict new candidate drugs.

Results: The quantile-activity bootstrap is proposed as a new model validation framework using

quantile splits on the activity distribution function to construct training and testing sets. In addition,

we propose two novel rank-based loss functions which penalize only the out-of-sample predicted

ranks of high-activity molecules. The combination of these methods was used to assess the per-

formance of neural nets, random forests, support vector machines (regression) and ridge regres-

sion applied to 25 diverse high-quality structure-activity datasets publicly available on ChEMBL.

Model validation based on random partitioning of available data favours models that overfit and

‘memorize’ the training set, namely random forests and deep neural nets. Partitioning based on

quantiles of the activity distribution correctly penalizes extrapolation of models onto structurally

different molecules outside of the training data. Simpler, traditional statistical methods such as

ridge regression can outperform state-of-the-art machine learning methods in this setting. In add-

ition, our new rank-based loss functions give considerably different results from mean squared

error highlighting the necessity to define model optimality with respect to the decision task at

hand.

Availability and implementation: All software and data are available as Jupyter notebooks found

at https://github.com/owatson/QuantileBootstrap.
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1 Introduction

Empirical methodologies guide a significant proportion of early-

stage small-molecule drug discovery (Cumming et al., 2013; Keiser

et al., 2007; Lipinski, 2004). These range from simple rule-based

methods (Lipinski’s rule of 5), to searching over molecules ‘similar’

to those already known, to using more complex regression models.

This work concerns the objective evaluation of the predictive ability

of the latter, namely statistical and machine learning regression

models trained on molecular structure-activity data. The goal of

these models is to characterize the relationship between a high-

dimensional binary vector representation of small molecules (known

as a molecular fingerprint) and the corresponding target specific

in vitro activities. In this context, use of regression modelling is often

known as quantitative structure-activity relationship modelling

(QSAR) (Sliwoski et al., 2014; Van De Waterbeemd and Gifford,

2003), and many different model classes have been used: support

vector machines (Burbidge et al., 2001), ridge regression (Nandi

et al., 2007), neural nets (Ajay et al., 1998; Lenselink et al., 2017;

Nandi et al., 2007; Sadowski and Kubinyi, 1998) and random for-

ests (Svetnik et al., 2003), to name but a few. The success of these

models is in part due to high-throughput screening experiments

which produce large structure-activity datasets (order of magnitude

102–106 datapoints).

Regression with high-dimensional bioinformatic data is known

to be difficult. Problems include the curse of dimensionality, opti-

mization bias, reporting bias and low signal-to-noise ratios

(Boulesteix and Strobl, 2009; Castaldi et al., 2011; Ioannidis, 2005;

Jelizarow et al., 2010; Matveeva et al., 2016; Somorjai et al., 2003;

Zervakis et al., 2009). A major theoretical framework underpinning

the use and interpretation of computational methods for complex

data modalities is cross-validation (Geisser, 1975; Stone, 1974),

which provides an estimate of the predictive error rate (Castaldi

et al., 2011; Molinaro et al., 2005). However, validation strategies

based on random partitioning of datasets, either by K-fold cross-

validation or the bootstrap, are known to be optimistic for

structure-activity modelling (Sheridan, 2013; Wallach and Heifets,

2018; Wu et al., 2018). Multiple alternative strategies have been

proposed, for example, splitting by date of assay (Sheridan, 2013),

constructing local neighbourhoods based on similarity scores or

scaffold splitting (Sheridan, 2013; Wu et al., 2018), or stratified

sampling whereby equal distributions of the activity levels are

assured across training and testing sets (Wu et al., 2018). These al-

ternative strategies can suffer from the same issues as standard

cross-validation or rely on strong data assumptions. A better general

approach is needed.

2 Approach

This work reiterates that standard validation approaches—K-fold

cross-validation and the bootstrap—based on random partitioning

of available data, will not target the true predictive model error in

the context of small-molecule drug discovery. We give a theoretical

justification for this claim and show it empirically using 25 publicly

available datasets. We propose a simple alternative partitioning

method—the quantile-activity bootstrap—which splits datasets on

quantiles of the activity distribution function. This univariate para-

metrization of the training set construction allows for inference on

the predictive ability of different regression methods in the limit: as

information in the training set is reduced to almost zero. In addition,

we argue that out-of-sample model performance should be eval-

uated from a decision-theoretic perspective (Savage, 1954) using

loss functions, which reflect as best possible the process of drug dis-

covery. Tailor-made loss functions will better determine truly opti-

mal model classes compared with standard goodness-of-fit metrics.

We propose simple rank-based loss functions to evaluate out-

of-sample model prediction accuracy. We show that in these

low signal-to-noise settings (Cortés-Ciriano and Bender, 2016;

Kalliokoski et al., 2013a, b; Kramer et al., 2012), models with

greater structural constraints (ridge regression and linear kernel sup-

port vector regression) outperform less constrained machine learn-

ing algorithms (neural nets and random forests).

3 Materials and Methods

3.1 Cross-validation with biased data
3.1.1 Problem setting

This section outlines the formal framework and notation we use

throughout the article. We consider the general problem of compar-

ing the performance of multiple predictive models (statistical and

machine learning) with respect to a given dataset. ‘Optimality’ of

these predictive models is evaluated with respect to a subjective loss

function.

The context investigated here is finding ‘active’ molecules within

molecular space. ‘Active’ is defined as having activity level above a

given threshold. This activity is target specific. Conditional on a

given initial dataset, the overall loss (negative utility of the model) is

defined as a function of the number of new molecules needed to be

tested until an active molecule is reached.

Each molecule is represented by its ‘molecular fingerprint’, a

P-dimensional binary vector. We denote this as xi ¼ fxj
ig

P
j¼1, where

i indexes the molecule and j indexes the feature (as referred to in

the machine learning literature) or covariate (statistics literature).

We have P¼128 for the fingerprint representation used in this ana-

lysis. Each molecule xi has a target specific activity yi which corre-

sponds to the negative logarithmic in vitro half-inhibitory

concentration (p-IC50: higher values correspond to increased activ-

ity). In this section, we ignore the target specificity as each dataset

has an associated target and the datasets are analysed independently.

We do not consider multi-objective regression models here. We de-

note the (unknown) functional relationship between the fingerprint

and the outcome (activity) as y ¼ GðxÞ þ �, where � is experimental

error (general regression framework).

Given a choice of models M1; . . . ;MT , respective performances

are commonly evaluated using K-fold cross-validation (Molinaro

et al., 2005; Stone, 1974) [detailed description given in Friedman

et al. (2001), Chapter 7], or the bootstrap (Efron, 1983) which is

closely related. Standard K-fold cross-validation proceeds by divid-

ing the data fðxi; yiÞgNi¼1 into a partition of K>1 equally sized

subsets S1; . . . ; SK. For the kth subset, we train (fit) our model Mt

using the data Strain ¼ [m6¼k Sm. The out-of-sample expected loss

is then estimated by testing on elements in Sk: lk ¼ L½fyigi2Sk
;

M̂tðfyigi2Sk
jStrainÞ�. The overall expected loss estimate is 1

K

PK
k¼1 lk.

The notation for the expected loss over each test set is deliberately

not summed over the indices of the testing data as this article consid-

ers non-additive loss functions, e.g. aggregate functions of the test-

ing data. The choice of the number of folds K is context dependent

and relates to a bias-variance trade-off: smaller K implies a smaller

training set and thus increased positive bias in the error rate esti-

mate, however, smaller K also forces greater dissimilarity between

the training sets and thus lowers variance in the overall error esti-

mate. The bootstrap is similar to 3-fold cross-validation, whereby

approximately two-thirds of the data are used in the training set
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taken as a bootstrap sample of size N, constructed by bootstrapping

(sampling with replacement). Predictive error estimation is then

done by averaging the out-of-bag errors. The bootstrap generally

improves on standard K-fold cross-validation as it smooths the pre-

dictive error when using discontinuous loss functions.

K-fold cross-validation and the bootstrap provide nearly unbiased

estimators of the conditional expected loss if the empirical distribution

F̂x (in this context x denotes a molecule) is an i.i.d. draw from the true

underlying data-generating distribution (Devroye et al., 1996). In appli-

cations where the goal is to accurately predict the outcome of new data

drawn at random with respect to a given data-generating process, these

are the correct methods for selecting an optimal predictive model.

However, drug (lead candidate) discovery is better thought of as a com-

plex optimization problem rather than a passive data prediction prob-

lem. The goal here is to generalize (extrapolate) from a model trained

on a relatively small dataset to find active molecules in a high-dimen-

sional space (2P possibilities in total).

The data-generating distribution (e.g. the underlying processes which

gave rise to the data at hand: this can be thought of as the experimental

protocols which lead to the data-generating assays) will be substantially

different from the uniform distribution over the subset of feasible mole-

cules within the 2P possibilities (Wallach and Heifets, 2018). This subset

of feasible molecules is unknown and extra modelling procedures are

needed to approximate it (Firth et al., 2015). Validation methods based

on random partitioning of available data give biased estimates of the

true out-of-sample loss (Braga-Neto et al., 2014; Wood et al., 2007). For

example, the data might be clustered together (with respect to

Manhattan distance over the space of fingerprints) and therefore the out-

of-sample estimate may in fact be highly skewed towards the in-sample

estimate, leading to overconfidence. Therefore, it is necessary to partition

the data in such a way that the out-of-sample testing subset is truly dis-

tinct from the in-sample data. We argue here that ‘distinct’ may not

exactly map onto chemical dissimilarity measures but should be defined

with respect to the outcome of interest. In this way, the partition should

reflect the decision problem at hand and give reliable expected loss esti-

mates which do not favour models that overfit to the training data. We

next describe non-random data partitions which create ‘distinct’ training

and testing sets motivated from a decision-theoretic perspective.

3.1.2 Activity dependent model validation

In theory, it would be possible to determine whether a given training

set is ‘close’ to a test set using a similarity metric on the molecular

fingerprint space. In this context, ‘close’ is relative to the metric of

choice. Metrics such as the Manhattan distance may be a poor proxy

of this true (target specific) distance between subsets of data.

Instead, we propose using the observed outcome (activity) y as the

discriminant measure between molecules. Data partitions based on

the activity function G (function relating the molecular fingerprint

to the p-IC50) instead of random partitions force dis-similarities be-

tween subsets in the partition. If Gðx1Þ � Gðx2Þ, we assume that x1

is experimentally significantly different from x2.

The following validation design is proposed. Let F̂y be the empir-

ical distribution over the activities fyigN
i¼1. Let q 2 ð0;1Þ be a fixed

fraction of the data used to determine the training set. With respect

to the empirical distribution F̂y , this maps onto an activity threshold

Yq (the qth quantile of F̂y ). The training set is then constructed by

bootstrapping the molecules with activity less than Yq. The testing

set contains all the molecules with activity greater than Yq. This is

the opposite of standard balanced or stratified cross-validation

where one assures equal distributions of outcomes across the testing

folds (Breiman et al., 1984) and is not a ‘cross-validation’ design as

the test data are never used as training data.

Multiple bootstrapped iterations are then computed in order to

construct confidence intervals around the out-of-sample expected

loss estimate. This can be thought of as a stabilizing process within

the validation procedure (Efron, 1983).

In the following, we assume that the molecule index corresponds to

the rank of the activities: y1 � y2 � . . . � yN. Let Nq ¼ bN � qc be

the number of elements in the training set based on the qth quantile.

For each model Mt, evaluate for a ¼ 1; . . . ;A independent iterations:

• Sample with replacement Nq elements from fxigNq

i¼1 to get a boot-

strapped training dataset Xq
a .

• Compute la ¼ L½fyigN
i¼Nqþ1;MtðfyigN

i¼Nqþ1jXq
aÞ�, where two pro-

posals for the loss function L are given in the next section.

The set fl1; . . . ; lAg is then used to estimate the mean expected

loss, 1
A

PA
a¼1 la, and the 95% confidence intervals.

3.1.3 ‘Active-rank’ loss function

In the context of using statistical or machine learning methods for

novel compound drug discovery, out-of-sample performance should

not directly map onto standard goodness-of-fit measures (e.g. R2 or

mean squared error), but has a simpler decision-theoretic interpret-

ation. If these models are to be used in a real setting then a predic-

tion of high activity for a given feature vector (fingerprint) would

lead to a physical experiment confirming or refuting this prediction.

As stated above, the goal is to find molecules with an activity above

a certain threshold (this will be target specific) and therefore each

bad prediction (whereby the true activity is less than the threshold)

incurs a fixed loss (opportunity-cost and cost of experiment). In real-

ity, experimental costs will not be constant (some molecules are

more expensive to make than others); however, we simplify the situ-

ation to one where each experiment is considered to have a fixed

cost. In the out-of-sample predictions, minimizing the loss corre-

sponds to ranking the active molecules highest. When evaluating the

performance of multiple models fitted to a given dataset, if there is

one active molecule and a large number of inactive molecules, the

expected loss is insensitive to the ranking of all the inactives below

the rank of the active(s). The model’s accuracy within the region of

the inactives is of no importance. This contrasts with standard meas-

ures of predictive accuracy and loss previously used in this context,

such as R2, mean squared error or receiver operating characteristics

(AUC) (Cumming et al., 2013; Giguere et al., 2013; Sheridan, 2013;

Svetnik et al., 2003; Wallach and Heifets, 2018; Wu et al., 2018).

We define our ‘active-rank’ loss function as follows. We choose

a quantile c 2 ð0; 1Þ; c > q, corresponding to a threshold activity Yc

with respect to the empirical distribution function F̂Y . In practice, c
would be close to 1 (e.g. in the range 0.9–0.99) to simulate scenarios

where actives molecules are rare and inactives common. The subset

of molecules fxigN
i¼N�Ncþ1 are then defined as ‘actives’. We define

Nc ¼ bN � ð1� cÞc (the total number of actives), and Ntest ¼
N �Nq (the size of the test set).

For the model M̂t fit to the training data fxigNq

i¼1, the out-of-sample

loss is defined with respect to the ranks assigned to the out-of-sample

active molecules. We take as convention that the ranks assigned to the

test data go from 0 (molecule with highest predicted activity) to Ntest �
1 (molecule with least predicted activity). The loss which only depends

on the rank of the highest ranked active is defined as:

Lc
min ¼

1

Ntest �Nc
min

j¼N�Ncþ1;...;N
RankMt

ðxjÞ (1)

The minimum active rank will vary from 0 (an active molecule is

ranked top in the test data), to Ntest �Nc (all the Nc active
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molecules are ranked last). We normalize to obtain a loss function

defined over the interval [0, 1]. An alternative version of this loss,

whereby all the ranks of the active molecules are taken into

account, thus penalizing sub-optimal ranking for all active mole-

cules, is given by:

Lc
sum ¼

PN
j¼N�Ncþ1 RankMt

ðxjÞ �NcðNc � 1Þ=2
NcðNtest �Nc � 1Þ (2)

The sum of the active ranks will vary from NcðNc � 1Þ=2 (all

actives are ranked in the top Nc molecules) to Ncð2Ntest �Nc �
1Þ=2 (all actives are ranked last).

We note that when Nc ¼ 1, e.g. there is only one active molecule,

Lc
min ¼ Lc

sum.

As mentioned above, both these loss functions are non-additive

with respect to the testing data.

3.1.4 Assessing similarity of molecules

In order to characterize better how splitting by activity corresponds

to selecting molecules that are more or less ‘similar’ to each other,

we assess similarity within training and testing sets using the

Tanimoto distance (also known as the Jaccard metric). Under our

notation, this is defined as:

Dðx1; x2Þ ¼
PP

j¼1 xj
1xj

2
PP

j¼1 maxðxj
1; x

j
2Þ

(3)

This is the number of substructures shared between x1 and x2

over all the substructures present in either one of the molecules.

3.2 Statistical analysis
All statistical analyses were done in Python version 2.7. The entire

analysis is fully reproducible via a publicly available Python

Jupyter notebook found at https://github.com/owatson/Quantile

Bootstrap.

3.2.1 Regression models

We evaluated the performance of four model classes:

• Support vector regression (Python module: sklearn, function

SVR)
• Random forests (Python module: sklearn, function Random

ForestRegressor)
• Linear ridge regression (Python module: sklearn, function Ridge)
• Deep neural networks (Python module: sklearn, functions

Pipline and StandardScalar, and Python module: keras, function

KerasRegressor).

For support vector regression, we used a linear kernel. For ran-

dom forests, we used the default parameter settings, growing 100

trees each with a maximum tree depth of 10 splits. For linear ridge

regression, we used a penalty term of a ¼ 0:1. For deep neural net-

works, we first standardized the data, then used two dense layers,

the first of dimension 128 (to match the input feature dimension)

and then dimension 16, both with relu activation.

These correspond to standard default choices in the literature.

These four model classes are all somewhat insensitive to tuning

parameters. In order to minimize any optimization bias, we did

not attempt to tune any of the parameters to the set of datasets

at hand.

3.2.2 Model comparison

We first compared model performances using 5-fold cross-validation

(this uses 80% of data chosen at random to predict the remaining

20%) and bootstrapping (this uses approximately two-thirds of the

data to predict the remaining third). With discontinuous loss functions,

bootstrapping smooths the out-of-sample error predictions Efron

(1983). The out-of-sample predictions we evaluated using mean

squared error, and both active-rank loss functions Lc
min and Lc

sum. For

the active-rank loss functions, we evaluated out-of-sample loss using

three separate c thresholds corresponding, respectively, to labelling

10%, 5% and 1% of the test data as active.

We then ran our activity dependent validation procedure using

progressively lower fractional thresholds for the training data:

q ¼ 0:9; 0:8; 0:6; 0:4. The same three c thresholds were used to

evaluate the out-of-sample expected losses for the active-rank loss

functions. All predictions were evaluated with mean squared error

and both active-rank loss functions.

Overall performance was evaluated by assuming independence

between the 25 datasets. The total model score assigned to each

model Mt is defined as the sum over all datasets of the probabilities

that the Mt had lowest expected loss (probability of optimality).

As the number of bootstrap iterations is much lower than the total

number of possible iterations (N
Nq
q ), we use the jackknife to calcu-

late the standard error on the mean out-of-sample prediction Efron

(1983). 400 bootstrap iterations were used for each model and set of

problem definition parameters, i.e. the pair of parameters ðq; cÞ.

3.3 Data
3.3.1 Data curation

We extracted IC50 data from ChEMBL database version 23 for 25 di-

verse protein targets and receptors. In order to assemble high-quality

datasets, we only considered IC50 values for compounds that satisfied

the following filtering criteria: (i) an activity unit equal to ‘nM’, (ii) ac-

tivity relationship equal to ‘¼’, (iii) target type equal to ‘SINGLE

PROTEIN’ and (iv) organism equal to Homo sapiens. Bioactivity val-

ues were modelled in a logarithmic scale (i.e. pIC50 ¼ � log 10IC50).

The average pIC50 value was calculated for protein-compound pairs

with multiple IC50 measurements available.

Further details about the datasets are provided in Table 1. A com-

parative analysis of these datasets was performed previously in the con-

text of iterative model fitting (Cortes-Ciriano et al., 2018). All data

used in this article (activity levels, 128-bit fingerprints and smiles) are

available at: https://github.com/owatson/QuantileBootstrap.

3.3.2 Molecular representation

The python module Standardizer was used to standardize all chem-

ical structures. Inorganic molecules were removed, and the largest

fragment was kept in order to filter out counterions.

We computed circular Morgan fingerprints 52 using RDkit (re-

lease version 2013.03.02). The radius was set to 2 and the finger-

print length to 128.

4 Results

4.1 Model performance evaluated using random data

partitioning
Random partitioning of the data, either using 5-fold cross-

validation (training set contains 80% of the data) or bootstrapping

(training set contains two-thirds of the data) resulted in random for-

ests and deep learning having the best out-of-sample performance

(e.g. Fig. 1; for full results see github Jupyter noteboook). Figure 1
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shows the bootstrap out-of-bag performance as evaluated by mean

squared error for the four models over the 25 datasets, with datasets

ordered from smallest to largest. Ridge regression, in the majority of

cases, has the largest out-of-bag error, followed by support vector

regression and then deep-learning and random forests.

Overall model performance using random data partitioning is

shown in Figure 2, corresponding to the point on the x-axis at

100%. When scored using mean squared error (Fig. 2, top left

panel), and performs on average as well as deep learning when

scored with the active-rank loss functions (Fig. 2, last three panels).

Ridge regression and support vector regression are never optimal in

this setting, irrespective of the loss function.

These out-of-sample performances closely reflect the in-sample

error. Both deep learning and random forests can almost ‘memorize’

the data with in-sample losses close to zero (see Jupyter notebook).

4.2 Quantile bootstrap
Decreasing the quantile-activity threshold for the training data from

1 (random partitioning described above) to 0.4 (only 40% of the

data ordered by activity are used in the bootstrap construction of

the training set) results in a complete reversal of optimality amongst

Table 1. Twenty-five publicly available datasets extracted from ChEMBL and analysed in this article

Target preferred name Target abbreviation Uniprot ID ChEMBL ID #Bioactive molecules

Alpha-2a adrenergic receptor A2a P08913 1867 203

Tyrosine-protein kinase ABL ABL1 P00519 1862 773

Acetylcholinesterase Acetylcholin P22303 220 3159

Androgen Receptor Androgen P10275 1871 1290

Serine/threonine-protein kinase Aurora-A Aurora-A O14965 4722 2125

Serine/threonine-protein kinase B-raf B-raf P15056 5145 1730

Cannabinoid CB1 receptor Cannabinoid P21554 218 1116

Carbonic anhydrase II Carbonic P00918 205 603

Caspase-3 Caspase P42574 2334 1606

Thrombin Coagulation P00734 204 1700

Cyclooxygenase-1 COX-1 P23219 221 1343

Cyclooxygenase-2 COX-2 P35354 230 2855

Dihydrofolate reductase Dihydrofolate P00374 202 584

Dopamine D2 receptor Dopamine P14416 217 479

Norepinephrine transporter Ephrin P23975 222 1740

Epidermal growth factor receptor erbB1 erbB1 P00533 203 4 868

Estrogen receptor alpha Estrogen P03372 206 1705

Glucocorticoid receptor Glucocorticoid P04150 2034 1447

Glycogen synthase kinase-3 beta Glycogen P49841 262 1757

HERG HERG Q12809 240 5207

Tyrosine-protein kinase JAK2 JAK2 O60674 2971 2655

Tyrosine-protein kinase LCK LCK P06239 258 1352

Monoamine oxidase A Monoamine P21397 1951 1379

Mu opioid receptor Opioid P35372 233 840

Vanilloid receptor Vanilloid Q8NER1 4794 1923

Fig. 1. Model comparison using the standard bootstrap. Expected model out-

of-sample mean squared error shown for each dataset, ordered from left to

right by increasing size of dataset. Error bars correspond to 62 standard

errors around the expected loss estimate, computed using the jackknife esti-

mator. For each dataset, the optimal model is the one with least expected

loss, with random forests scoring best for every single dataset. Datasets are

ordered from left to right by increasing size

Fig. 2. Comparison of overall model performance for the standard bootstrap

and the restricted activity bootstrap. All four panels show the overall model

score (sum of the probabilities of model optimality over the 25 datasets) as a

function of the restriction on the activity levels in the training data. About

100% corresponds to standard cross-validation (random partitioning). The

first three panels show the results for the active-rank loss functions (Lminc

shown by thick lines; Lc
sum shown by dashed lines) with values of c going

from 0.9 (top left) to 0.99 (bottom left). The bottom right panel shows the

results when models are scored using mean squared error (dot-dashed lines).

Red: deep learning; blue: support vector regression; orange: random forests;

green: ridge regression
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the four predictive models. When scoring models by out-of-sample

mean squared error, support vector regression becomes optimal for

quantiles below 0.75 (Fig. 2, bottom right panel).

For the active-rank loss functions, lowering the activity training

threshold also induces a reversal of model optimality (change-point

for q � 0:8). In the most extreme setting (q¼0.4), support vector re-

gression and ridge regression perform approximately equally well,

with total scores corresponding to optimality on half of the datasets

(shown in detail in Fig. 3). There is some heterogeneity between the

datasets for model optimality, but the overall trends are clearly in fa-

vour of both ridge regression and support vector regression.

By averaging over the 25 datasets, we can see that these trends

are robust with respective the target used as the outcome measure in

the regression models.

4.3 Comparison with similarity-based unsupervised

clustering
We explored whether unsupervised clustering could be used to

construct training and testing sets that maximize similarity within

clusters and dissimilarity across clusters. For this, we used a two-

mediods clustering algorithm (Park and Jun, 2009) with similarity

defined by the Tanimoto distance metric. For the 25 datasets pre-

sented here, unsupervised clustering did not achieve good reductions

in dissimilarity: the average pairwise distance within each cluster

was only approximately 2% lower than the global average pairwise

distance (see Supplementary Materials). In addition, when we com-

pared the results to using an activity dependent split of the data (e.g.

at the 90th quantile of activity) this achieved greater reductions in

dissimilarity within the testing set (the molecules of high activity). In

summary, this empirically shows that it is difficult to cluster molecu-

lar data based on a similarity metric. However, in many of the data-

sets analysed here, the high-activity molecules are highly similar to

one another. This is likely due to bias in the experimental work-

flows. This reinforces the use of activity splitting to assess model

extrapolation performance.

4.4 Importance of the loss function
There are clear disparities between model evaluations for the differ-

ent loss functions. Mean squared error favours random forests in the

standard setting (q¼1), and support vector regression in the

restricted activity setting (q<0.6). However, the active-rank loss

functions favour equally deep-learning and random forests in the

standard setting, and support vector regression and ridge regression

in the restricted activity setting. Moreover, the results differ between

Lc
min and Lc

sum. The out-of-sample performance of ridge regression is

consistently better when evaluated using Lc
min, and that of support

vector regression is consistently better when evaluated using Lc
sum

(Fig. 2). These results show that the evaluation of model perform-

ance is highly dependent on the loss function used. This directly

reflects how the different loss functions penalize predictive perform-

ance, with Lc
min only penalizing the rank of the first active molecule.

We note that in this setting, for the 25 datasets, the four model fami-

lies and three loss functions used here, the sample size of the training

sets does not affect the overall relative performance on the testing

sets (Supplementary Figure S2).

We also note that using mean squared error to evaluate the per-

formance of random forests unfairly penalizes the model fit. For

quantile bootstraps with q<1, random forests cannot predict activ-

ities greater than the maximum activity in the training set. Therefore

the contribution to the mean squared error from high-activity mole-

cules will all be from bias rather than variance in the prediction (pre-

dictions will be systematically lower). This is in contrast to using

rank-based loss functions which do not suffer from this bias issue.

From a subjective Bayesian perspective (Savage, 1954), the

choice of loss function reflects the decision task at hand. This should

be specified separately from the regression model. The two active-

rank loss functions are examples of possible choices of loss func-

tions. However, other, more standard choices, are also possible. For

example, the Spearman rank correlation coefficient, or the F beta

score on thresholded predictions. It is important to note that assess-

ment of models may be sensitive to the choice of loss and careful

consideration of the decision goals is needed.

5 Discussion

There is considerable hype around the use of artificial intelligence

and machine learning to find novel drug candidates and to optimize

early-stage drug discovery (Fleming, 2018). Deep learning via the

use of deep neural networks is a highly active research area with a

wide range of applications and proven success stories. However,

neural networks are known to be extremely ‘data-hungry’ and work

best in high signal-to-noise settings (Marcus, 2018). For regression

modelling using molecular structure-activity data, we do not believe

deep-learning models will perform well in predicting novel areas of

molecular space of high activity, contrary to recent claims

(Lenselink et al., 2017). This modelling exercise empirically shows

that partitioning on quantiles of the activity distribution, and there-

by mimicking the process of extrapolating onto previously unseen

areas of molecular space, removes the predictive advantage from the

deep-learning models. This approach can be contrasted with ‘tem-

poral splitting’ whereby datasets are partitioned by assay date, the

first section used to train the model, the second to test. Temporal

splitting is easy to understand and could be argued to mimic real-life

settings, but it does not provide any rigorous guarantees. It does not

guarantee that highly similar molecules—both in structure and activ-

ity—will not be found across both testing and training data. Time of

assay will not always correspond to time of conception and therefore

‘worse’ molecules could have been tested at later dates. Drug discov-

ery does not follow a linear process nor does it directly test the cap-

ability of a statistical or machine learning model to detect signal

predicting activity gradients, resulting in good predictions of mole-

cules with high activity. Splitting on activity quantiles deals with

these issues, and provides a simple and interpretable univariate para-

metrization of the information content used to train the model. We

Fig. 3. Model comparison using the restricted activity bootstrap with c ¼ 0:4.

Model expected out-of-sample Lc¼0:99
min loss shown for each dataset, ordered

from left to right by increasing size of dataset. Error bars correspond to 62

standard errors around the expected loss estimate, computed using the jack-

knife estimator. For each dataset, the optimal model is the one with least

expected loss. Datasets are ordered from left to right by increasing size
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note that a methodological limitation of the quantile-activity boot-

strap method is the inability for the regression algorithm to learn

about potential ‘activity cliffs’. If there was a large activity cliff, then

the low-activity molecules would be in the training data, and the

proximal high-activity molecules in the testing data. However, the

impact of the limitation is dependent on the decision task at hand. If

the overall goal is to assess the extrapolation properties of a model

then there is ‘no free lunch’: it is necessary to put aside data for test-

ing and these data cannot also be used for training.

Evaluation of the predictive performance of regression models

when applied to small-molecule structure-activity datasets necessi-

tates different approaches than in the standard bioinformatic and

high-dimensional settings. Online prediction problems (e.g. image

classification, spam filtering, recommender systems, etc.) and statis-

tical inference problems (e.g. genome-wide studies, biomarker dis-

covery, micro-array analysis) have different goals. In the drug

discovery context, we start with a small training set (N � 2P) and

attempt to extrapolate outside of these data in order to find mole-

cules which are inherently ‘different’ from those in the training data.

In the machine learning and computational statistics literature, this

is most similar to an optimization problem or gradient ascent prob-

lem. This search procedure is done in a relatively resource con-

strained setting (cost of experimentation, time cost) and therefore

model evaluation should be decision theoretic with a subjective loss

(Savage, 1954).

We expect our active-rank loss functions to differ in performance

from standard machine learning type losses (most commonly this would

be mean squared error). The active-rank loss functions Lc
min and Lc

sum

do not penalize bad predictions outside of the subspace of interest, i.e.

high-activity areas of molecular space. In addition, these loss functions

are non-additive and therefore one limitation is that they cannot be

used to penalize model fitting in the training phase. However, the use of

non-additive loss functions fits our proposed conceptual workflow for

computational drug discovery (Cortes-Ciriano et al., 2018). In the first

stage, existing software such as Firth et al. (2015) can be used to con-

struct sets of viable molecules similar to existing molecules with reason-

able potency. In the second stage, computational algorithms are then

trained to existing structure-activity datasets. Finally, fitted models are

then used to rank molecules constructed in stage 1 and the highest

ranked can then be tested in vitro. Other limitations of the work are

that we have done little to no internal model parameter tuning, except

for deep neural nets to assess structures most appropriate for these types

of data. However, we do not expect parameter tuning to considerably

change the results nor the conclusions of the study. Furthermore, all the

analyses are easily reproducible with our openly available Jupyter note-

book, thus easily extended to new computational algorithms, different

parameter settings or new datasets. Lastly, the loss functions used to

evaluate model performance on these benchmark datasets will not esti-

mate the true out-of-sample expected loss in experimental settings. In

reality, true c thresholds (percentage of feasible molecules above a cer-

tain activity level) could be multiple orders of magnitude larger than

those used in our study (e.g. the top 10�10% of the testing data).
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