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Abstract
The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mi-

tochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial

matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The

in vivo deregulation of mortalin expression and/or function has been correlated with age-

related diseases and certain cancers due to its interaction with the p53 protein. In spite of its

critical biological roles, structural and functional studies on mortalin are limited by its insolu-

ble recombinant production. This study provides the first report of the production of folded

and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein

1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented

a slightly elongated shape and basal ATPase activity that is higher than that of its cyto-

plasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state.

Through small angle X-ray scattering, we assessed the low-resolution structural model of

monomeric mortalin that is characterized by an elongated shape. This model adequately

accommodated high resolution structures of Hsp70 domains indicating its quality. We also

observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally in-

duced unfolding experiments indicated that mortalin is formed by at least two domains and

that the transition is sensitive to the presence of adenosine nucleotides and that this pro-

cess is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfold-

ing assays of mortalin suggested the presence of an aggregation/association event, which

was not observed for human Hsp70-1A, and this finding may explain its natural tendency

for in vivo aggregation. Our study may contribute to the structural understanding of

mortalin as well as to contribute for its recombinant production for antitumor

compound screenings.
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Introduction
Humanmortalin (also namedmtHsp70, GRP75, HspA9 and PBP74) [1–4] is a highly conserved
molecular chaperone of the Hsp70 family that is primarily found in the mitochondria. Depend-
ing on its localization and its binding partners, mortalin has been associated with several func-
tions, such as anti-apoptosis; interaction with wild-type p53 in the cytoplasm reducing its
transcriptional activity [5–7]; transportation of nucleus-encoded proteins to the mitochondrial
matrix [8–11] and to different regions of the cell [7]; cellular protection [6, 12–14]; cell protec-
tion against oxidative stress and death [13, 15–17]; and import and translocation of cytosolic
proteins by association with Hsp60 [18], among other functions [4]. Moreover, mortalin is the
import motor that drives the preprotein import process and helps the folding of these proteins
in the mitochondrial matrix [11, 19]. Due to their importance for protein homeostasis, Hsp70
proteins have been considered targets for the drug-based treatments for cancers [7, 20–22], mis-
folding diseases and protein folding disorders [23].

Mortalin presents similar structural elements as other Hsp70 proteins: an N-terminal
ATPase domain (NBD) and a C-terminal peptide-binding domain (PBD). These two domains
should be reciprocally controlled by a bidirectional heterotrophic allostery dependent on the
presence of ATP/ADP on the NBD and a client protein bound to the PBD [22, 24]. An ATP-
bound state in the NBD leads the PBD to achieve a low-affinity state with client proteins,
whereas peptide binding to PBD in to the presence of a J-protein co-chaperone stimulates
weak ATPase activity in the NBD, which leads to conformational changes in Hsp70, resulting
in an enhancement of the affinity of the PDB for client proteins. The exchange of ADP for
ATP in the NBD returns the PBD to a low-affinity state for client proteins, leading to its release
[22]. The mammalian mitochondria also presents the main Hsp70 co-chaperones: 1) J-proteins
(Hsp40), which should stimulate Hsp70 ATPase activity, and 2) two GrpE orthologous pro-
teins, which should act as nucleotide exchange factors controlling the rate cycle of Hsp70 [22].

The mammalian mtHsp70 is also called mortalin due to its activity in the senescence and cel-
lular death processes in rats, which present two mortalin isoforms, namely MOT1 andMOT2
[25, 26]. MOT2 has only two different amino acids in the PBD and is associated with cell im-
mortality. Humans have only one mortalin orthologue, which is similar to MOT2 [7, 24]. Inter-
estingly, mortalin is not exclusively a mitochondrial protein because approximately 30% is
found in other cellular compartments [7, 27, 28]. It has been shown that human mortalin is in-
volved in several cellular processes, may present important roles in Parkinson’s and Alzheimer’s
diseases [7, 21] and is overexpressed in cancer [13, 29]. Based on these observations, there is
widespread interest for the functional and structural study of mortalin and the assessment of its
regulation by co-chaperones and ligands [7] because the study of this protein has been limited
due to its self-aggregation when produced heterogeneously [11, 30–32]. Our search of the litera-
ture identified only one study on full-length recombinant human mortalin, which was produced
in inclusion bodies and obtained through chemical refolding strategies for structural/functional
characterization [33]. Nevertheless, it is well known that chemical refolding cannot be reliable
for obtaining recombinant proteins with all of their structural signatures. In the case of recombi-
nant human mortalin, the samples did not show Hsp70 signatures, and the chemical refolding
approaches led to protein aggregation/precipitation [33]. A new human mitochondrial Hsp70
co-chaperone denoted Hsp70-escort protein (hHep1) was recently reported to act by preventing
mortalin self-aggregation [32, 34–36]. Using a co-expression strategy with hHep1, Zhai et al.
(2008) obtained recombinant human mortalin in its monomeric and active form [32], suggest-
ing the reliability of this strategy.

To deepen the structure-function relationship of human mortalin, we obtained the recombi-
nant protein in its soluble and functional state and compared it to human Hsp70–1A: a
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cytoplasmic Hsp70 counterpart. The hydrodynamic characterization indicated that mortalin
was obtained in the monomeric state, noting the effectiveness of the induction and purification
protocols developed. The spectroscopy data confirmed that human mortalin was obtained with
secondary and tertiary structures characteristic of homologous Hsp70. The enzyme kinetics ex-
periments indicated that mortalin has higher ATPase activity than human Hsp70–1A. More-
over, mortalin interacted with adenosine nucleotides with a micromolar dissociation constant.
The small angle X-ray scattering data noted mortalin’s monomeric state in the testing condi-
tions and allowed the generation of an ab initiomodel, indicating its slightly elongated shape.
Interestingly, the thermal stability characterization showed that mortalin is composed of two
domains, which are sensitive to adenosine nucleotide in the presence of Mg2+ ions. These ex-
periments also indicated that mortalin undergoes aggregation/association in the first thermal-
transition that was not observed during the unfolding of human Hsp70–1A, and this finding
may help explain the natural tendency of the in vivo aggregation reported for mortalin. To the
best of our knowledge, this study is the first to shed light on the structure of a functional
human recombinant mortalin.

Material and Methods

Protein expression and purification
The recombinant human Hsp70–1A was expressed in the Escherichia coli BL21(DE3) strain as
previously described [37]. The recombinant human mortalin was produced as described by
Dores-Silva et al. [34] with some modifications. Summarily, to obtain human mortalin in solu-
ble form, it was co-expressed with its co-chaperone hHep1. The cells co-transformed with
pET23a::hHep1 and pET28a::Mortalin were grown at 37°C in LB medium containing 50 μg.
mL-1 ampicillin and 50 μg.mL-1 kanamycin to A600 nm of 0.7, at which point protein expression
was induced by 0.2 mmol.L-1 IPTG. After 18 h of induction at 23°C, the cells were harvested by
centrifugation for 20 min at 2,600 x g. For cell lysis, the pellet was resuspended in 50 mmol.L-1

Tris-HCl (pH 8.0) and 100 mmol.L-1 KCl (15 mL/200 mL of LB medium) and incubated with
5 U of DNAse (Promega) and 30 μg.mL-1 lysozyme (Sigma) for 60 min in ice. The pellet was
then disrupted through two sonication steps and then centrifuged at 20,000 x g and 4°C for 30
min. The supernatant was filtered, subjected to Ni2+-affinity chromatography in 20 mmol.L-1

phosphate (pH 7.5) and 100 mmol.L-1 NaCl, and eluted in the same buffer containing 500
mmol.L-1 imidazole. Immediately after the elution, the material obtained was incubated with
alkaline phosphatase (New England BioLabs) on ice for 4 h to eliminate any traces of adenosine
nucleotide [37] and subjected to size exclusion chromatography with a Superdex 200 pg col-
umn (GE Healthcare Life Sciences) in TKP buffer (25 mmol.L-1 Tris-HCl, pH 7.5, 50 mmol.L-1

NaCl, 5 mmol.L-1 sodium phosphate, 5 mmol.L-1 KCl, and 2 mmol.L-1 β-mercaptoethanol) at
a controlled temperature. The efficacy of the expression and purification processes was assessed
by SDS-PAGE. The protein concentration was determined spectrophotometrically using the
extinction coefficient calculated for mortalin under native conditions.

Spectroscopy studies
Circular dichroism measurements were performed with a J-815 spectropolarimeter (Jasco Inc.)
coupled to the Peltier system PFD 425S for temperature control. Mortalin was tested in TKP
buffer at final concentrations between 5 and 10 μmol.L-1 in a 1-nm or 0.2-mm circular path-
length cuvettes. The CD spectrum of mortalin in the presence of adenosine nucleotides
(200 μmol.L-1) and/or Mg2+ (200 μmol.L-1) were also collected. The spectra were normalized to
the mean residue ellipticity ([Y]), and the protein secondary structure content was estimated
using the CDNN Deconvolution program [38].
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Thermal-induced unfolding was performed with a scan rate of 1°C.min-1 at 222 nm using a
1-mm path-length cuvette. The Tm value was the temperature at the midpoint of the unfolding
transition and was determined by sigmoidal fitting of the unfolding transition. The effect of
adenosine nucleotides (200 μmol.L-1) and/or Mg2+ (200 μmol.L-1) on the mortalin structure
was also investigated using thermal-induced unfolding followed by CD222 nm. Both stock solu-
tions of these ligands were prepared in TKP buffer.

The intrinsic fluorescence emission measurements were performed in an F-4500 fluorescence
spectrophotometer (Hitachi) using a 10×2-mm path-length cell with mortalin (1–2 μmol.L-1) in
TKP buffer at room temperature. The excitation wavelength (λ) was set to 295 nm with a band-
pass of 4 nm, and the fluorescence emission was measured from 310 up to 420 nm with a band-
pass of 4 nm. The data were analyzed using the maximum fluorescence emission
wavelength (λmax) and spectral center of mass (<λ>), as previously described [34, 37], with a
wavelength between 320 and 380 nm. The effect of the temperature on the mortalin
structure was also followed by fluorescence emission. The excitation λ was set to 295 nm, and
the emission spectra were collected between 310 and 420 nm after 4 min of equilibration at each
temperature. The data were analyzed by the<λ>-values as a function of the temperature.

Hydrodynamic characterization
The Superdex 200 GL 10/30 column (GE Healthcare Life Sciences) equilibrated with TKP buff-
er (pH 7.5) was used to perform the aSEC experiments and to determine the mortalin Stokes
radius (Rs), as previously described [34]. The standard protein mixture was constituted by apo-
ferritin (480 kDa/Rs 67 Å), γ-globulin (160 kDa/Rs 48 Å), BSA (67 kDa/Rs 36 Å), ovalbumin
(45 kDa/Rs 29 Å), carbonic anhydrase (29 kDa/Rs 24 Å) and cytochrome C (12 kDa/Rs 14 Å)
(Sigma-Aldrich). The frictional ratio (ƒ/ƒ0) was estimated by the ratio of the experimental Rs to
the radius of a sphere of the same mass [39].

Analytical ultracentrifugation experiments were performed in a Beckman Optima XL-A an-
alytical ultracentrifuge. The sedimentation velocity experiments for mortalin were conducted
at concentrations from 300 up to 580 μg.mL-1 in TKP buffer at 7°C and 30,000 rpm (AN-60Ti
rotor), and the data acquisition was performed at 236 nm. The SedFit software (Version 12.1,
[40]) was used to fit the absorbance versus cell radius data, which yielded a continuous c(S) dis-
tribution function of the sedimentation coefficients. The frictional ratio (ƒ/ƒ0) parameter acted
as a regularization parameter. The standard sedimentation coefficients (s20,w) were identified
as the maximum of the peaks of the c(S) curves after corrections to eliminate the interferences
caused by the buffer viscosity and density and by the temperature. The SedFit software was
used to estimate the s20,w-values because the buffer viscosity (η = 1.0 × 10-2 poise), density
(ρ = 0.99823 g.mL-1) and mortalin partial-specific volume (Vbar = 0.7336 mL.g-1) were sup-
plied by the Sednterp program. Using the s20,w at each protein concentration, we calculated the
standard sedimentation coefficient at a protein concentration of 0 mg.mL-1 (s020,w), which is an
intrinsic parameter of the particle [41], through linear regression.

Isothermal titration calorimetry
The interaction of mortalin with adenosine nucleotides (ATP and ADP) was assessed by ITC
using an iTC200 microcalorimeter (GE Healthcare Life Sciences). Mortalin and adenosine
nucleotides, at the indicated concentrations, were prepared in TKP buffer containing
2 mmol.L-1 Mg2+. Twenty-five 1.5-μL aliquots of adenosine nucleotides at concentrations from
200 to 250 μmol.L-1 were injected into 203.8 μL of 10–15 μmol.L-1mortalin at 20°C. The appar-
ent enthalpy change for each injection was calculated by integrating the area under the peaks of
the recorded time course of the power change. The heat associated with the injectant dilution
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was determined from the baseline at the end of the titration and subtracted from the data. The
data were analyzed by the Microcal Origin software using the One Set of Sites curve-fitting
model to calculate the apparent binding enthalpy change (ΔHapp), binding stoichiometry (n),
and association constant (KA). The apparent Gibbs energy (ΔGapp) and apparent binding en-
tropy change (ΔSapp) were calculated using the following equation:

DGapp ¼ �RT ln KA ¼ DHapp � TDSapp ð1Þ

SAXS experiments
Small-angle X-ray scattering experiments were performed at the Brazilian Synchrotron Light
Laboratory (LNLS, Campinas-SP, Brazil) using a monochromatic X-ray beam (λ = 1.488 Å) of
the D02A-SAXS1 beamline. The sample-to-detector distance was*1000 mm, which corre-
sponds to the scattering vector range of 0.015<q<0.35 Å-1, where q is the magnitude of the
q-vector defined by q = (4π/λ)sinθ (2θ is the scattering angle). The mortalin samples were
placed in a 1-mm path-length cell formed by two mica windows, and the scattering curves
were recorded at 0.6 mg.mL-1 in TKP buffer. The samples and buffers were subjected to X-ray
frames of 100 s, and the scattering curves were corrected for the detector response and scaled
by the incident beam intensity and the sample’s attenuation. Tests with sequential frames were
employed to check for radiation damage. The corrected scattering sample was subtracted from
the scattering buffer curve. All of the intensities are in the absolute scale (cm-1), and this cali-
bration was established from the scattered intensity of ultrapure water, which depends on the
isothermal compressibility and on its electron density (I(0)water, 293K = 0.01632 cm−1) [42]. The
I(0) value is related to the protein concentration and MM and consequently with the monodis-
persity of the system.

The GNOM program was used to generate the p(r) curves using the experimental scattering
curve. Using the p(r) function, it was possible to apply the DAMMIN program [43], which
uses a simulated annealing optimization routine to search for a space-filling bead model
(dummy atom model) that generates the best fit to the experimental scattering curve to obtain
ab initiomodels for mortalin. We are aware that ab initiomodeling does not provide a unique
solution; thus, we performed the protein shape reconstruction by averaging 20 different ab ini-
tiomodels using the DAMAVER program package [44].

The final ab initiomodel constructed for mortalin from the SAXS data after its merge using
the DAMAVER package was analyzed using the HydroPro software [45] to predict the hydro-
dynamic properties. This analysis allowed the comparison of the predicted hydrodynamic prop-
erties of the ab initiomodel to the obtained experimental data. The HydroPro software was set
up with the radius of the atomic elements of 3.1 Å, with sigma factors of 8 and a minibead radius
in the range of 4 to 2.0 Å. The parameters of MM (70.695 kDa) and Vbar (0.7357 cm

3.g-1) were
estimated from the amino acid sequence of mortalin using the Sednterp software. Parameters
such as ρ and η (for standard conditions) were estimated using the Sednterp software at a tem-
perature of 20°C.

Moreover, the experimental SAXS curve of mortalin could also be represented by a sum of
two different protein conformations. In such data analysis the experimental scattering intensity
is described as the weighted sum of the E. coli DnaK crystallographic structure bound to ATP
(in the open conformation—PDB acc. n. 4B9Q [46]) and the NMR structure for E. coli DnaK
in the ADP state (in the closed conformation—PDB acc. n. 2KHO [47]) form factors. The form
factors as well as the respective weights were calculated and fitted to the experimental SAXS
curve using GENFIT software [48, 49].
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ATPase activity
The mortalin and Hsp70–1A ATPase activity measurements were performed spectrophoto-
metrically using the EnzChek Phosphate Assay kit (Invitrogen), as previously shown [50].
Summarily, the method allows the quantification of the inorganic phosphate (Pi) released from
ATP hydrolysis by the enzyme. Mortalin (2.50 μM) and Hsp70–1A (2.25 μM) were prepared
in TKP buffer (without phosphate ions and with 2 mmol.L-1 Mg2+) and incubated with ATP
(0 to 2 mmol.L-1) for 90 min at 37°C. The negative control was in the absence of the enzyme.
The samples containing the Pi hydrolyzed from ATP were incubated with 0.2 U of purine nu-
cleoside phosphorylase (PNP) and 0.2 μmol.L-1 MESG, a chromogenic substrate, for 30 min at
23°C. The absorbance was measured at 360 nm. The amount of Pi released per minute (i.e.,
V0 in μmol.L-1.min-1) was plotted against the ATP concentration (mmol.L-1), and a Michaelis-
Menten fitting was used (in the Origin software) to obtain the kinetic parameters. The kcat was
calculated by the ratio of Vmax with the protein concentration used in the experiment. The spe-
cific activity (pmol min-1.μg-1) represents the amount of Pi released per time and mass of total
protein. The stimulation effect of a client protein on the mortalin and Hsp70–1A ATPase activ-
ity was tested in the presence of the NR peptide (NRLLLTGY). It was pre-incubated with mor-
talin or Hsp70–1A in the presence of 2 mM of MgCl2 for 15 min at room temperature prior the
incubation with 1 mM ATP for 90 min at 37°C, and then the Pi released was measured
as aforementioned.

Results

Recombinant human mortalin was produced in soluble form and purified
until homogeneity
The recombinant human mortalin was produced in a soluble state through its co-expression
with hHep1, as previously shown [34]. The purification of mortalin to the monomeric state was
performed through two chromatography steps intercalated by its incubation with alkaline phos-
phatase to eliminate any traces of adenosine nucleotides [37]. Fig. 1A depicts the production and
purification steps. The obtained mortalin was more than 95% pure and a monomeric species.
For unclear reasons, the hHep1 produced by the pET23a expression vector had low yield (data
not shown) [32] and was not easily detected by SDS-PAGE (Fig. 1A). However, its effect on the
maintenance of human mortalin in the soluble fraction of the lysed cells was similar (data not
shown) to that obtained when hHep1 was expressed by the pQE2 expression vector [34].

Fig. 1B shows a typical aSEC profile, which shows that mortalin was eluted as four main spe-
cies: 1) an aggregate species eluted into the column void, 2) a possible tetrameric species, 3) a
dimeric species, and 4) the main monomeric species, which is described as the Hsp70 active
form [37, 51]. The fraction corresponding to the mortalin monomeric species was isolated and
concentrated to 0.6–1.0 mg.mL-1 (8–14 μmol.L-1) for biophysical/biochemical characterization.
When this fraction was immediately reloaded into the aSEC column, mortalin behaved as a
monodisperse monomeric species, but it self-associated or aggregated under storage conditions
(>24 h) and at high protein concentrations (> 1.0 mg.mL-1) (data not shown).

Human mortalin was obtained in a folded state
The secondary and tertiary structures of mortalin were investigated through CD and trypto-
phan fluorescence emission, respectively. Fig. 2A represents the mortalin CD spectrum cor-
rected to [Y] with two minima (at 208 and 222 nm) and a maxima (at 192 nm), which are
characteristic of proteins containing a large portion of α-helices in their secondary structure.
Using the CDNN Deconvolution program for deconvoluting the CD spectrum, we assessed the
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mortalin secondary structure content as follows: 33% of α-helices, 15% of β-sheets, 18% of
turns and 35% of coils (errors< 5%). Similar values were previously reported for human
Hsp70–1A [37] and other Hsp70 proteins [52, 53].

Mortalin has a single tryptophan residue located in the NBD near the nucleotide-binding
pocket (data not shown). Therefore, intrinsic fluorescence experiments can provide reliable in-
formation on the burial of this residue and consequently the compactness of the tertiary struc-
ture in the surrounding region. The mortalin fluorescence emissions recorded under the native

Fig 1. Mortalin production and isolation.Recombinant humanmortalin (pET28a::mtHsp70) was co-
expressed with recombinant hHep1 (pET23a::hHep1) in E. coli BL21(DE3) cells.A) SDS-PAGE of the
produced and purified recombinant mortalin. 1) MMmarkers in kDa (left); 2) non-induced bacterial pellet; 3)
induced bacterial pellet; 4) pellet of lysed cells; 5) supernatant of lysed cells; 6) fraction obtained from Ni2+

affinity chromatography; and 7) preparative SEC fraction. The final purity of mortalin was higher than 95%.
B) aSEC profile of mortalin after Ni2+ affinity chromatography (red line), which showed that mortalin was
eluted into four fractions (see text for details). The monomeric fraction (4) was immediately reloaded into the
aSEC column and eluted as a monomer (blue line). The standard protein mixture profile is represented by the
black line, and the MM of each protein is shown. The vertical dashed line marks the monomeric mortalin
elution volume.

doi:10.1371/journal.pone.0117170.g001
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and chemically denaturated conditions are presented in Fig. 2B. Under the native conditions,
the λmax and<λ> values observed were of 337 ± 1 nm and 346.1 ± 0.2 nm, respectively. In the
presence of 8 mol.L-1 urea, mortalin appears to unfold because the findings revealed fluores-
cence suppression and a spectrum red-shift (Fig. 2B, inset) in such a way that the λmax and
<λ> values changed to 349 ± 1 nm and 351.8 ± 0.2 nm, respectively. These data suggest that
the single tryptophan present in the mortalin structure is located in an environment that is par-
tially protected from the solvent.

The effect of adenosine nucleotides (ADP or ATP) and Mg2+ ions was also investigated by
CD and fluorescence techniques. The presence of these ligands led to slight changes in the CD

Fig 2. Mortalin was produced in its folded state. A) The CD spectrum shows that mortalin was obtained with a secondary structure composed of both α-
helices and β-sheets. The secondary structure content, which was estimated by the CDNN deconvolution, is depicted into the figure (error< 5%).B) The
intrinsic fluorescence emission (excitation λ at 295 nm) spectrum of mortalin had a λmax value of 337 ± 1 nm and a<λ> value of 346.1 ± 0.2 nm, indicating
that the single Trp residue was at least partially buried. In the presence of 8 mol.L-1 urea, the spectrum was quenched and suffered a red shift (λmax of 349 ± 1
nm and<λ> of 351.8 ± 0.2 nm), suggesting unfolding. Inset: normalized spectra.C) Mortalin CD spectra in the presence of the indicated ligands.D) Intrinsic
fluorescence emission (excitation λ at 295 nm) spectra of mortalin in the presence of the indicated ligands, which led to a suppression of the fluorescence
emission intensity and to a slightly blue shift in the spectra, as shown in the normalized fluorescence spectra (inset). These results suggested that mortalin
was expressed in both its folded and functional state. Moreover, the presence of adenosine nucleotides and Mg2+ ions led to slight conformational changes in
the mortalin structure.

doi:10.1371/journal.pone.0117170.g002
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spectra (Fig. 2C) and to fluorescence emission suppression (Fig. 2D) with slight changes in the
λmax and<λ> values (Fig. 2D, inset). Altogether, these results indicate that mortalin was ob-
tained in the folded state and that the presence of adenosine nucleotides led to slight conforma-
tional changes in both the secondary and local tertiary structures, suggesting that these ligands
interacted with mortalin.

The mortalin monomer was slightly elongated
Through hydrodynamic techniques, some conformational features of the mortalin monomeric
fraction were evaluated. Using the elution volume of the mortalin depicted in Fig. 1B, it was
possible to estimate its Rs through the dependence of the Rs of standard proteins and the partial
coefficient kav (Fig. 3A). The Rs-value determined for mortalin was 35 ± 2 Å. Using a theoreti-
cal hydrodynamic radius of 27 Å, which was calculated for a non-hydrated spherical particle
with the same size as monomeric mortalin, we estimated a ƒ/ƒ0 value of approximately 1.3
(Table 1), which suggests that mortalin as a monomer possesses a slightly elongated shape.

To further investigate the hydrodynamic properties of mortalin, we performed sedimenta-
tion velocity AUC experiments. Fig. 3B presents the c(S) distribution function obtained for the
mortalin monomeric fraction. This species behaved mainly as a monomer of 76 ± 4 kDa, with
an s020,w-value of 4.8 ± 0.1 S (Fig. 3B—inset) under the tested conditions. The ƒ/ƒ0–value sup-
plied by the SedFit software was 1.36 ± 0.01 (Table 1), which is in agreement with that observed
by the Rs/R0 ratio and corroborates the slightly elongated shape of the mortalin monomeric
species. Both the ƒ/ƒ0- and s

0
20,w-values are in agreement with the values reported for human

cytosolic Hsp70–1A [51], suggesting their similar shapes. However, a shoulder was also ob-
served in the c(S) distribution function of mortalin, suggesting the presence of oligomeric spe-
cies, which may have appeared due to the long sedimentation velocity run. The hydrodynamic
data confirmed that mortalin was purified mainly in its monomeric fraction and indicated that
it has a slightly elongated shape. The complementarity of the results found with different tech-
niques is noteworthy, suggesting that artifacts are likely not present.

Mortalin has slightly higher ATPase activity than Hsp70-1A
As previously mentioned, Hsp70 presents ATPase activity mediated by NBD, which is charac-
terized by its weakness [54]. Here, we present the ATPase activity of mortalin and Hsp70–1A
in the absence of any co-chaperones. Fig. 4A depicts the ATPase activity as a function of the
ATP concentration and the Michaelis-Menten fitting for both mortalin and Hsp70–1A. We
can observe that mortalin exhibits slightly higher ATPase activity than Hsp70–1A, as indicated
by the molecular turnover numbers (kcat) of 0.151 ± 0.002 min-1 and 0.093 ± 0.002 min-1, re-
spectively (Table 2). Despite this finding, both proteins present a low rate of ATP hydrolysis.
Table 2 presents different values for the ATPase activity available in the literature for several
Hsp70s. One can observe that both mortalin and Hsp70–1A presented rates of ATP hydrolysis
that were similar to those of other Hsp70s, and this fact is absolutely relevant because they indi-
cate regulation by co-chaperones, client proteins and other ligands [22]. Specifically, the Hsp70
activity cycle is regulated by the ATP/ADP-dependent bidirectional heterotrophic allostery
present on NBD and by the client protein bound to the PBD, which controls the cycle. To test
if mortalin and Hsp70–1A were allosterically actives, we used the NR peptide as stimulation
factor. Fig. 4B depicts the relative ATPase activity observed for mortalin and Hsp70–1A at in-
creasing NR peptide concentrations. For mortalin, a maximum of 25% of stimulation was
reached at 100 μmol.L-1 NR peptide indicating a half maximal effective concentration (EC50) of
7 μmol.L-1 NR peptide. The NR peptide stimulated the Hsp70–1A ATPase activity by around
15%, which was reached at 500 μmol.L-1 NR peptide, resulting in EC50 of 170 μmol.L-1 NR
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peptide. These results indicate that both proteins were obtained allosterically actives. However,
the differences in the EC50 values and maximum stimulation indicate that mortalin and
Hsp70–1A should present slightly differences in client protein specificities. In addition, this ac-
tivity cycle can also be regulated by co-chaperones, such as J-domain proteins (or Hsp40),
which act by speeding up ATP hydrolysis, and nucleotide exchange factors (NEFs), such as
GrpE proteins [22].

Interaction studies with adenosine nucleotides by ITC
The ITC technique was used to investigate the interaction of mortalin with adenosine
nucleotides. Fig. 5A (upper panel) presents the results of a calorimetric titration with ADP
(~250 μmol.L-1), which reveal an exothermic profile. The apparent heat per mol of ADP

Fig 3. Monomeric mortalin was slightly elongated in solution. A) Estimation of the mortalin Rs based on
the aSEC data presented in Fig. 1B. The graph depicts the Rs of standard globular proteins as a function of
the partial coefficient kav, which yielded an Rs value for mortalin of 35 ± 2 Å. B) Sedimentation velocity data
resulting from the c(S) distribution of mortalin, which behaved mainly as a monomeric species of 76 ± 4 kDa
with ƒ/ƒ0 of approximately 1.36 ± 0.01 under the tested conditions (see Materials and Methods section). Inset:
Determination of the s020,w of mortalin through the dependence of s20,w on the protein concentration. Mortalin
had a s020,w value of 4.8 ± 0.1 S (Table 1).

doi:10.1371/journal.pone.0117170.g003
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injected (ΔHapp) against the molar ratio of ADP/mortalin is depicted in the lower panel of
Fig. 5A. The fitting of this curve indicated an exothermic ΔHapp of-3,500 ± 50 cal.mol-1 and a
KA value of 4.6 ± 0.2 × 105 L.mol-1, suggesting a KD of 2.2 ± 0.1 μmol.L-1. Based on the KA and
ΔHapp values and Equation 1, the ΔSapp value was calculated to be +13.9 cal.mol-1.deg-1. The in-
teraction of ATP with mortalin by ITC is depicted in Fig. 5B. Similarly, the fitting of the calori-
metric titration of ATP into mortalin solution yielded an exothermic ΔHapp of-1,500 ± 20 cal.
mol-1 and a KA value of 9.4 ± 0.4 × 105 L.mol-1, suggesting a KD of 1.1 ± 0.1 μmol.L-1. Using
these values and Equation 1, the ΔSapp value was estimated to be +22.1 cal.mol-1.deg-1. These
data suggested that both enthalpy and entropy drive the mortalin interaction with both adeno-
sine nucleotides, as was also observed for human cytosolic Hsp70–1A [37]. However, the latter
showed higher affinity for ADP than ATP under similar conditions [37], whereas mortalin ap-
pears to have higher affinity for ATP than ADP. The higher Tm1 that mortalin presented in
the presence of ATP-Mg2+ in comparison to ADP-Mg2+ (see below—Table 3) also indicated
that this protein has higher affinity for ATP than ADP. Therefore, the ITC data suggest that
mortalin interacts with both ADP and ATP with different affinities and that these
interactions induce conformational changes and result in different thermodynamic signatures
(ΔHapp and ΔSapp).

The stoichiometry of the interaction was approximately 0.8–0.9 for both ligands (Fig. 5), in-
dicating a 1:1 stoichiometry because the NBD has one adenosine nucleotide-binding site. The
value near 0.8 can be explained by a fraction of mortalin that is not responsive to binding ADP
or ATP, likely due to the self-association process. In fact, the parallel analysis of mortalin sam-
ples at the end of the ITC experiments by aSEC showed the presence of 10–20% other species
that are likely dimers (data not shown) due to the mortalin concentrations (~15 μmol.L-1) and
the temperature used (20°C). The presence of other oligomeric species in the AUC experiments
(presented here) at lower protein concentrations and experimental temperature conditions
corroborate this hypothesis. When the protein concentration was corrected to simulate the
mortalin monomeric fraction in the ITC sample (i.e., 80–90%), the stoichiometry reached al-
most 1 without causing changes in the values of the other thermodynamic parameters (data
not shown). These observations noted the difficulties associated with working with mortalin in
the concentrations and experimental conditions reported here and also suggested that the

Table 1. Summary of the hydrodynamic and structural data of mortalin.

Mortalin structural and hydrodynamic properties Predicted for a
sphere†

Experimental determination

Monomer Dimer aSEC AUC# SAXS HydroPro

MM (kDa) 70.7 141.4 75 ± 4 76 ± 4 66 ± 2 -

s020,w (S) 6.1 9.6 - 4.8 ± 0.1* - 4.9 ± 0.2

Rs (Å) 27 34 35 ± 2 - - 34 ± 3

ƒ/ƒ0 - - 1.30¥ 1.36 ± 0.01 - 1.30

Rg (Å) - - - - 36 ± 2§ 38 ± 2& 33 ± 2

Dmax (Å) - - - - 130 ± 10 116 ± 3

† Values predicted as globular monomers in water and 20°C (predicted by the Sednterp software)
# calculated from SedFit from the sedimentation velocity data;

* data extrapolated for water, 20°C and 0 mg.mL-1 of protein;
§ data from Guinier law;
& data from p(r) curve;
¥ data obtained using the Stokes equation for proteins of known Rs (predicted by Sednterp software).

doi:10.1371/journal.pone.0117170.t001
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other mortalin oligomeric species either did not interact with adenosine nucleotides or did in-
teract with a lower affinity constant.

Structural analysis of mortalin by SAXS
To obtain more information on the structure of mortalin in solution, we performed SAXS ex-
periments. It is well known that some important parameters of the proteins can be directly ob-
tained from the scattering curve, such as the radius of gyration, Rg, and MM, using the I(q!0)

Fig 4. Mortalin has higher ATPase activity than Hsp70–1A. A) Mortalin (2.50 μmol.L-1) and Hsp70–1A
(2.25 μmol.L-1) were incubated with ATP (0–2 mmol.L-1) for 90 min at 37°C, and the Pi released as a result of
ATP hydrolysis was quantified. The data were treated through Michaelis-Menten fitting for determination of
the kinetic parameters, which are presented in the Figure and Table 2. The results suggested that both
mortalin and Hsp70–1A exhibit low ATPase activity. Despite these findings, based on the kcat value, mortalin
presented higher ATPase activity than Hsp70–1A, although the KM values of both are similar. B) Relative
ATPase activity stimulation. Effect of the NR peptide titration on the basal ATPase activity of mortalin and
Hsp70–1A at 1 mmol.L-1 ATP.

doi:10.1371/journal.pone.0117170.g004
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of the scattering curve obtained from Guinier’s law (Fig. 6A—inset). Our data indicated that
the Rg and MM values calculated for mortalin were 36 ± 2 Å and 66 ± 2 kDa, respectively.
These results are in agreement with a monomeric and monodisperse mortalin (Table 1).

Fig. 6A shows the experimental scattering curve of mortalin along with the best curve ob-
tained with the GNOM software, and the respective p(r) function can be appreciated in Fig. 6B.
The p(r) curve noted that mortalin has a prolate shape with a maximum dimension (Dmax) of
130 ± 10 Å, whereas the protein Rg is 38 ± 2 Å, which is in accordance with the
Guinier analysis.

Using the p(r) function, 20 independent ab initiomodels for mortalin in solution were gen-
erated. These 20 DAMMIMmodels were merged using the DAMAVER program, resulting in
the final ab initiomodel (Fig. 7). The normalized spatial discrepancy (NSD) of the DAMMIM
models was 0.7 ± 0.1, which indicated the overall quality of the generated models [55]. One
should bear in mind, however, that this procedure is valid for monodisperse systems [56].

The final ab initiomodel was also subjected to HydroPro program analysis to estimate some
of its hydrodynamic and structural properties (Table 1), which were close to the experimental
ones. These results suggested that the proposed model based on the SAXS data analysis repre-
sents mortalin in solution. The ab initiomodel noted that mortalin has an elongated shape
(Fig. 7A). Fig. 7B is the manual adjustment of the crystallographic structures of the mortalin
NBD (PDB acc. no. 4KBO), obtained in apo-state [57], and PBD of the E. coli DnaK
(PDB acc. no. 1DKX) bound to a synthetic peptide in the peptide binding site [58], into the ab
initiomodel. This adjustment suggests that the ab initiomodel is suitable to accommodate
both NBD and PBD of Hsp70 even considering that the model was generated from SAXS curve
in apo-conditions. The full length E. coli DnaK crystallographic structure (PDB acc. n. 4B9Q),
obtained bound to ATP and with the PDB in the open conformation [46], was used for its
manual adjustment into mortalin ab initiomodel. As can be seen in Fig. 7C, in spite of the sim-
ilar dimensions, the mortalin ab initiomodel did not properly adjust some portions of the crys-
tallographic structure. This discrepancy is probably due to the protein dynamics in solution. It
is noteworthy, in the SAXS point of view, the scattering curve is a weighted average of all pro-
tein conformations present in solution [56] and the ab initiomodel is a rigid representation of
the scattering curve.

Moreover, it is not possible to neglect the possibility that mortalin solution structure can be
represented by a combination of the E. coli DnaK in which the PBD is in the open (PDB

Table 2. Kinetic constants determined for human mortalin and human Hsp70–1A compared with those of homologous Hsp70.

Protein Specific activity (pmol.min-1.μg-1) KM (μmol.L-1) kcat (min-1) Temperature (°C) Ref.

E. coli DnaK - - 0.087 ± 0.007 37 [54]

0.15 37 [65]

E. coli Hsc66 - 12.7 0.083 23 [66]

Bovine Hsc70 1.14 1.37 0.15 37 [67]

Rat Hsc70 0.12 [68]

Chlamydomonas reinhardtii Hsp70B ~ 9 118 - 30 [69]

Yeast Ssa - 0.11 ± 0.04 0.031 ± 0.004 37 [70]

Yeast Ssb - 147 ± 42 0.81 ± 0.13 37 [70]

Human Hsp70–1A 0.62 ± 0.02 270 ± 40 0.093 ± 0.002 37 [71]—This work

Human Mortalin 0.86 ± 0.02 190 ± 20 0.151 ± 0.002 37 This work

Comparing the kcat to other members of Hsp70 family we notice that the values are too close of each other, Sadis & Hightower [67] found a kcat of

0.15 min-1 for bovine brain Hsc70, while the recombinant rat Hsc70 presented 0.12 min-1 for the ATPase activity.

doi:10.1371/journal.pone.0117170.t002
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Table 3. Summary of the Tm transitions determined to mortalin by CD222 nm in the presence of
adenosine nucleotides and/or Mg2+.

Mortalin plus ligands (200 μmol.L-1) Tm1 (°C) Tm2 (°C)

ATP ADP Mg2+

- - - 40.1 ± 0.6 73.1 ± 0.9

+ - - 41.4 ± 0.8 72 ± 1

- + - 40.4 ± 0.8 71.1 ± 0.6

- - + 40.5 ± 0.7 73.9 ± 0.8

+ - + 46.4 ± 0.6 71.6 ± 0.5

- + + 43.7 ± 0.7 70 ± 1

Values obtained by averaging 4 independent preparations.

doi:10.1371/journal.pone.0117170.t003

Fig 5. Mortalin interacts with ADP and ATP in amicromolar dissociation constant range. The mortalin interaction with ADP (A) and ATP (B) in the
presence of Mg2+ was tested by ITC, suggesting KDs values of approximately 2.2 ± 0.1 μmol.L-1 and 1.1 ± 0.1 μmol.L-1, respectively. Moreover, the ITC data
suggested that the interaction was directed by both enthalpy and entropy.Upper panel: The heat released at each ADP or ATP titration is presented by the
negative peaks. The red line represents the baseline. Lower panel: The ΔHapp values were calculated by the integrated area of each ADP or ATP titration
peak of the upper panel and plotted against the ADP/mortalin molar ratio. The red line represents the fit obtained by the one-site-binding model provided by
the Origin program supplied with the ITC device in both cases. The fitting parameters are shown.

doi:10.1371/journal.pone.0117170.g005
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acc. n. 4B9Q [46]) and in the closed (PDB acc. n. 2KHO [47]) structures. In order to check for
such possibility, we used the full length DnaK structures and GENFIT software [48] to eluci-
date if the combinations of these structures are present in mortalin apo solutions. According to
our data analysis, the mortalin SAXS curve was fitted supposing such possibility (data not
shown), considering that almost 85% of the mortalin molecules were in the closed conforma-
tion, whereas 15% were in the open conformation. Therefore, in the conditions tested, mortalin
behaves as equilibrium of, at least, two conformations where the PBD conformational equilibri-
um was dislocated to the closed conformation.

Fig 6. Mortalin has an elongated shape in solution. A) Experimental mortalin SAXS curve (open circles)
suggesting that it behaved as a monodisperse system, as was confirmed by the evaluation of the Guinier
region of the curve (inset). The GNOM fit is represented by a black line. Based on Guinier’ law (red line—
inset), mortalin had a Rg value of 36 ± 2 Å (see text for details).B) The SAXS data were used to generate the
p(r) distribution curve, which indicated that mortalin has a prolate shape and a Dmax value of 130 ± 10 Å.

doi:10.1371/journal.pone.0117170.g006
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Fig 7. Mortalin ab initiomodels. The mortalin SAXS curve was used by calculating 20 low-resolution ab
initiomodels using the DAMMIN software, and these were merged using the DAMAVER package. The result
is the final ab initiomodel presented in several orientations (A). Manual superposition of the crystallographic
structures of the mortalin NBD (PDB acc. no. 4KBO—magenta) and PBD of the E. coli DnaK (PDB acc. no.
1DKX—blue) into the ab initiomodel (B). Manual superposition of the crystallographic structure of the full
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Mortalin is formed by domains with different stabilities
Through a similarity alignment to other Hsp70s, the mortalin primary structure points to two
conserved domains [22]. To study the mortalin domain organization and stability, we made use
of thermal-induced unfolding strategies. We followed both the secondary and tertiary structures
of mortalin by CD and intrinsic fluorescence emission, respectively. Fig. 8A shows the data for
mortalin thermal-induced unfolding followed by CD222 nm, which show at least two well-
defined transitions. The first transition, which was represented by the loss of 20% of the
CD222 nm signal, had a Tm1 centered at 40°C. This value was 5–6°C less than that reported for
the Tm1 of human cytosolic Hsp70–1A, which has three thermal transitions [37]. The second
transition represented a forfeiture of approximately 30% and presented a Tm2 of approximately
73°C. Interestingly, the CD signal was maintained at approximately-5.000 deg.cm2.dmol-1 at
90°C, suggesting that mortalin could retain part of its secondary structure, even at high tempera-
tures. Human cytosolic Hsp70–1A also has a discrete thermal transition centered at 68°C and a
third transition at temperatures higher than 80°C [37]. Mortalin likely presents similar thermal
induced unfolding in a number of events, but we did not observe the third transition by
CD222 nm. Interestingly, E. coliDnaK thermal induced unfolding followed by CD222nm also un-
folding through two transitions with similar Tms to those observed for mortalin [59–61].

We also followed the thermal-induced unfolding of mortalin by fluorescence emission
using the<λ>-signal as a probe (Fig. 8B). As expected, the temperature increment led to mor-
talin fluorescence emission quenching due to the water effects (Fig. 8B—inset). However, the
mortalin<λ>-signal showed a blue-shift transition followed by a red-shift as a function of the
temperature, whereas the<λ>-signal of the N-acetyl-tryptophanamide showed no change as a
function of the temperature.

The thermal transitions observed for mortalin by fluorescence emission were centered at 43
and 77°C, respectively. Despite the Tms being slightly higher than those observed by CD222nm,
the Tms were inside the experimental error, in agreement with the values observed by
CD222nm, suggesting the correlation of these events in both the secondary and tertiary struc-
tures of mortalin. However, the Trp is located in just one of the domains (NBD), but it was ap-
parently affected by the thermal unfolding of both domains or the unfolding of NBD in two
transitions. We also performed the same experiment with Hsp70–1A and observed two red-
shift transitions (Fig. 8B) with Tms that were similar to those reported for the thermal-induced
experiments followed by CD222 nm [37].

The blue-shift transition observed for mortalin promptly suggests that thermal-induced un-
folding led to mortalin NBD packing and/or association/aggregation. This event may be medi-
ated by the NBD because the single mortalin Trp is located in this domain. Therefore, the apo
NBD of mortalin, under the conditions tested here, appears to be prone to aggregate at temper-
atures close to the physiological temperatures or in fever states. Interestingly, it has been re-
ported that Hsp70 aggregates when it is thermally unfolded [52]. Specifically, it has been
shown that mortalin has an aggregation tendency that is dependent on its NBD [32]. Taken al-
together, these results indicate that mortalin has different domain stabilities and could unfold
by a slightly different mechanism in comparison to Hsp70–1A.

The effect of adenosine nucleotides (200 μmol.L-1) and/or Mg2+ (200 μmol.L-1) on mortalin
stability was investigated using thermal-induced unfolding followed by CD222 nm. The thermal-
unfolding profiles in the presence of these ligands were similar (data not shown) to those

length E. coli DnaK (PDB acc. n. 4B9Q—blue) into the mortalin ab initiomodel (C). Figures generated by the
UCSF Chimera software (version 1.9).

doi:10.1371/journal.pone.0117170.g007
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found in the absence of these ligands (Fig. 8A), and Table 3 summarizes the Tms estimated in
the absence and presence of different combinations of ligands. Surprisingly, the presence of
Mg2+, ADP or ATP alone did not induce significant changes in either Tm1 or Tm2 (Table 3).
These results contrast those observed for human cytosolic Hsp70–1A [37], where the adeno-
sine nucleotides alone increased the first thermal-induced transition by approximately 4°C fol-
lowed by CD222 nm under similar conditions. Nonetheless, the combination of ATP-Mg2+ or
ADP-Mg2+ increased the Tm1 of mortalin to 46°C and 44°C, respectively, resulting in an

Fig 8. Mortalin is composed of at least two domains with different stabilities. A) The thermal-induced
unfolding of mortalin followed by CD222 nm presented two well-defined transitions with Tm values centered at
40 and 73°C; however, mortalin did not unfold completely (see text for details).B) Thermal-induced unfolding
of mortalin followed by intrinsic fluorescence emission and represented as the<λ>-signal showing that
mortalin suffered two blue-shift transitions with Tm values of approximately 43 and 77°C. Hsp70–1A presented
two red-shift transitions with Tm values at 50.5 and 70.8°C. N-acetyl tryptophanamide at the same buffer
conditions was used, as a control, and no transitions were observed at the<λ>-signal (351.5 ± 0.2 nm). The
blue-shift transition suggested that mortalin associated or aggregated in the thermal-induced unfolding
experiments (see text for details).

doi:10.1371/journal.pone.0117170.g008
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increment of 4–6°C in the Tm1 (Table 3). For human Hsp70–1A, the combination of adenosine
nucleotides and Mg2+ ions also led to an additional increment in the first Tm of 7–9°C [37], in-
dicating the importance of the Mg2+ ions for adenosine nucleotide binding. These results sug-
gested that adenosine nucleotides bind to mortalin and stabilize the NBD structure.

Discussion
In this manuscript, we report the production and purification of recombinant human mortalin
in its monomeric and functional form without the use of unfolding/refolding strategies. Re-
combinant mortalin production was reached by its co-expression with the hHep1 co-chaper-
one, which maintains mortalin in the supernatant of the lysed E. coli cells [34]. For purification
purposes, the mortalin was cloned into a pET28a expression vector, and hHep1 was cloned
into a pET23a expression vector, which produces hHep1 in undetectable amounts (data not
shown), as was reported by a previous study [32]. This allowed the production of mortalin
samples with substoichiometric and/or undetectable amounts of hHep1, as attested by the
SDS-PAGE figures and the MM determinations by aSEC, AUC and SAXS techniques.

To attest that mortalin was produced and purified in its functional state, enzyme kinetics ex-
periments were performed to evaluate the basal ATPase activity of mortalin compared with
that of Hsp70–1A. We observed that mortalin had a slightly higher ATPase activity than
Hsp70–1A, but both proteins presented them in the same order of magnitude than other
Hsp70s. We also observed that both proteins had KM values in the higher μmol.L-1 range. We
also tested if the ATPase activity of mortalin and Hsp70–1A was stimulated by the NR peptide.
The results pointed out that mortalin and Hsp70–1A presented, at NR peptide saturation, in-
crements of 25% and 15% on their basal ATPase activity, respectively, indicating that both re-
combinant proteins were produced in their allosterically forms. Nevertheless, they have
showed some differences in client protein specificities since the EC50 registered for mortalin
was approximately 25 times lower than for Hsp70–1A. The NR peptide has been used as client
protein model for E. coliDnaK [58] and similar ATPase stimulation was also reached for this
protein at 100 μmol.L-1 NR peptide [62]. These results also indicate that human recombinant
mortalin is functionally similar to E. coli DnaK (see below).

ITC experiments were performed to test the interaction of mortalin with adenosine nucleo-
tides. Because mortalin has weak ATPase activity, we used ATP in these experiments instead of
a non-hydrolysable ATP analogue. The results indicated that mortalin interacts with ATP and
ADP at a low micromolar KD range and that the interaction is driven by enthalpy and entropy,
as was also observed for human cytosolic Hsp70–1A [37]. In contrast to the latter, the interac-
tion of mortalin with adenosine nucleotides was dependent on the presence of Mg2+ ions, as in-
dicated by the thermal-induced unfolding experiments and the Tms (Table 3). Moreover, only
two well-defined thermal transitions were observed for mortalin, whereas three transitions
were reported for Hsp70–1A [37]. Therefore, these two proteins present different stabilities.

We characterized the recombinant mortalin by several biophysical tools and observed proper-
ties that are similar to those reported for other Hsp70 proteins [37]. It is constituted by α-helix
and β-sheet secondary structures, as estimated by circular dichroism experiments. The single Trp
residue located in the NBD is at least partially protected from the solvent, suggesting that this res-
idue is buried in the protein hydrophobic interior. Our production strategy also allowed us to ob-
tain mortalin in its monomeric form at least 24 h after purification by preparative SEC and at
low protein concentrations. We observed that both storage at 4°C and high concentration in-
duced mortalin to undergo self-association and/or aggregation processes (data not shown),
which limits its study. Furthermore, the mortalin monomeric form has a slightly elongated
shape, as attested by the aSEC, AUC and SAXS results. Human cytosolic Hsp70–1A was also
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studied by AUC and had a s020,w of approximately 4.4 S in the nucleotide-free state [51]. This
value was slightly lower than the value observed for mortalin despite the similar MM and experi-
mental conditions, which indicated that mortalin is slightly more globular than Hsp70–1A.

We also obtained SAXS data for mortalin in the monomeric state, which allowed the gener-
ation of a low-resolution model. The structural and hydrodynamic properties of this model
were in accordance with the hydrodynamic and structural properties determined experimen-
tally, indicating that the low-resolution model for mortalin was reliable. It is worth noting that
the ab initiomodel suggests that the mortalin domains should be coupled to each other even in
the absence of nucleotides because the central part of the model is enlarged in relation to the
ends. Besides, the low resolution model obtained for mortalin from SAXS curve in apo condi-
tions adequately accommodated the crystallographic structures of mortalin NBD and E. coli
PBD, which resembles the ADP bound state (Fig. 7B). However, the mortalin ab initiomodel
did not properly adjust the X-ray structure of E. coli DnaK bound to ATP, in which the PBD is
in the open conformation. Actually, the mortalin SAXS curve was fitted regarding that it repre-
sents a conformational equilibrium between, at least two conformations, in which the PBD is
in the open and closed conformations.

We employed unfolding strategies to monitor the domain organization of mortalin. Ther-
mal-induced unfolding followed by CD222 nm indicated that mortalin is composed of at least
two domains because two well-determined transitions were observed. Interestingly, the first
transition started at 35°C and had a Tm1 centered at 40°C in the nucleotide-free state. Ther-
mal-induced unfolding followed by fluorescence noted a blue-shift transition at approximately
the same temperature observed for CD222 nm. Altogether, these results suggested that mortalin
can associate during its thermal-induced unfolding. Because the NBD is related to this ther-
mal-induced unfolding transition, its participation in mortalin self-aggregation can be hypoth-
esized. Previous studies indicated that the first transition of Hsp70 thermal-induced unfolding
involves the partial unfolding of the NBD because the presence of adenosine nucleotides in-
creased the first Tm [37, 52, 53], as attested in this study for mortalin. Zhai et al. [32] also re-
ported that mortalin self-aggregation depends on the NBD. Interestingly, E. coli DnaK also
shows two transitions in the thermal-induced unfolding experiments [59–61] with comparable
Tms to those observed for mortalin, indicating that both proteins have domains with similar
thermal stabilities. Actually, mortalin shares more identity with E. coliDnaK (59%) than with
Hsp70–1A (48%), which can explain their similarities in thermal stabilities as well as the
ATPase activity stimulation observed upon NR peptide titration.

Altogether, despite the challenges associated with the production of mortalin in its mono-
meric form and functional state, this work shed light on the mortalin structure and dynamics
and indicates a strategy for the production of functional mortalin in sufficient amounts to per-
form additional functional studies. An allosteric pocket of Hsp70 proteins was recently identi-
fied as a promising site for structure-based drug design [63], and our study may help one to
identify whether this binding site is also present in human mortalin and to test the interaction
of mortalin with its specific inhibitor [29, 64]. Interaction studies of mortalin with inhibitor
compounds and certain of its mitochondrial co-chaperones are underway.
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