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Rapid antibiotic susceptibility testing and
species identification for mixed samples

Vinodh Kandavalli1,2, Praneeth Karempudi1,2, Jimmy Larsson1 & Johan Elf 1

Antimicrobial resistance is an increasing problem on a global scale. Rapid
antibiotic susceptibility testing (AST) is urgently needed in the clinic to enable
personalized prescriptions in high-resistance environments and to limit the
use of broad-spectrum drugs. Current rapid phenotypic AST methods do not
include species identification (ID), leaving time-consumingplating or culturing
as the only available optionwhen ID is needed tomake the sensitivity call. Here
we describe a method to perform phenotypic AST at the single-cell level in a
microfluidic chip that allows subsequent genotyping by in situ FISH. By stra-
tifying the phenotypic AST response on the species of individual cells, it is
possible to determine the susceptibility profile for each species in a mixed
sample in 2 h. In this proof-of-principle study, we demonstrate the operation
with four antibiotics and mixed samples with combinations of seven species.

The rapid increase in antibiotic resistance is a serious threat to human
health; access to effective antibiotics is a cornerstone of modern
medicine and a prerequisite for e.g. cancer treatment and surgery.
Different investigations1,2 make different estimations of how grave the
situation is but there is a consensus view that action needs to be taken
or the costs both in terms of human suffering and global economic
impact will be staggering3. Experts also agree that the problem is at
least partly due to indiscriminate use and misuse of a wide range of
antibiotics4. To overcome this problem, personalized and rapid anti-
biotic susceptibility tests (ASTs) are needed, ideally at the point of
care5.Without these tools, physicians are left with noother option than
to prescribe broad-spectrumantibiotics inmany cases since it can take
several days to identify the pathogen(s) and the resistance profile.

The limitations of conventional phenotypic ASTs (disk diffusion
agar dilution or broth microdilution) are that they require bacterial
growth for extended periods in the presence and absence of anti-
biotics to see an effect. However, for certain types of bacterial infec-
tions, even a delay of 6 h before treatment is initiated can have severe
consequences6. One suchexample is sepsis,where the riskof death has
been estimated to increase by 7.6% for every hour that effective
treatment is not given7. Further, it is shown that in the absence of fast
AST, more than 25% of septic patients were treated by clinicians with
inappropriate antibiotics, which is strongly associated with
mortality8–10. Thus, rapid and accurate ASTs are needed to save lives.
But considering the increases in AMR, life-threatening conditions are

not the main culprit, but rather the bulk usage of antibiotics for more
benign conditions11. The exhaustion of effective antibiotics is also
driven by the strategy to change first-line antibiotics when the local
resistance prevalence has reached approximately 10–20%. If fast, reli-
able ASTs were accessible, high-resistance antibiotics could be used
for 80–90% of the infections that are still susceptible.

The obvious need and benefits of rapid AST, both for saving lives
and guiding prescriptions, have resulted in the development of several
new methods over the last decade. These methods are described in
several recent reviews, e.g.,4,12, and we will not repeat all the pros and
cons of the different methods here. Briefly, these methods can be
divided into two categories, genotypic and phenotypic. Genotypic
methods identify specific genetic markers that are associated with
antibiotic resistance. Although these methods can rapidly detect the
presence of specific resistance genes, they depend on our knowledge
of the resistance mechanisms which is far from complete13, in parti-
cular considering the rapid emergence of new resistancemechanisms.
Furthermore, the absence of resistance genes does not predict sus-
ceptibility to antibiotics14, i.e., you may learn what not to use but not
what will work. In phenotypic methods, the bacteria are exposed to an
antibiotic and their phenotypic response, e.g., lysis or growth rate
reduction, is monitored. Phenotypic methods work irrespective of the
mechanism of resistance. If the phenotypic response is there, the
bacterium is susceptible. The various rapid phenotypic ASTs that have
reached the market can deliver an answer (susceptible or resistant) in
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2–6 h for positive blood cultures that have been growing >6 h from
sampling the patient. For other samples, e.g., urine, the time-to-answer
can be reduced to 30min for gram-negative species by loading the
sample directly into a microchip and measuring the growth rate with
and without antibiotics15.

A limitation of all rapid phenotypic ASTmethods is that they only
work if the species of the bacteria are known. Detailed species ID is not
needed for infections with a narrow spectrum of pathogens16, but for
sepsis and other more complex infections, it is essential. MALDI-TOF
mass spec is currently the golden standard for species determination17.
MALDI-TOF does however still require pre-culture of single bacterial
species andmay not work well for mixed infections commonly seen in
sepsis, wounds, catheter-associated UTIs18, and community-acquired
pneumonia, among others19. The challenge remains to make rapid
phenotypic AST with species ID.

To address this issue, we use amicrofluidic chip to rapidly capture
individual bacteria from a sample and optically monitor their growth
with and without antibiotics. Next, we identify the bacterial species by
fluorescence in situ hybridization (FISH) with species-specific ssDNA
probes targeting the 16s/23s rRNA sequence. Oncewehave the species
ID and AST response for each bacterium in the microfluidic chip, we
stratify the AST response based on species, which implies that we can
have samples with mixed species. A schematic overview of the
approach is presented in Fig. 1.

In this proof of principle application, we perform the ASTs for
seven common pathogens (Escherichia coli, Klebsiella pneumonia,
Pseudomonas aeruginosa, Proteus mirabilis, and Acinetobacter bau-
mannii, as examples of gram-negative strains, and Enterococcus fae-
calis and Staphylococcus aureus as examples of gram-positives). We
test four different antibiotics fromdifferent classes: Vancomycin (Van)
[Glycopeptide], Ciprofloxacin (CIP) [Fluoroquinolones], Gentamicin
(Gen) [an aminoglycoside], and Nitrofurantoin (NIT) [other agents].
Finally, we show how single-round, multi-color labeling enables the
identification of up to ten species simultaneously.

Results
Phenotypic AST followed by Genotyping by FISH
The culture chip that we have developed for this assay is capable of
rapid capture of bacteria directly from a liquid sample and allows for
optical monitoring of bacterial growth with and without antibiotics in
real time. The same chip design has previously been used to capture
bacteria fromblood cultures despite an overwhelming excess of blood
cells20. The chip features two rows of 3000 cell traps each. Each trap
measures 1.25 × 1.25 × 50μm15 and has a constriction at the end which

prevents the bacteria from escaping the trap while still allowingmedia
and probes to flow around the cells. To simulate a mixed infection
situation, bacterial overnight cultures of several different species were
diluted in a Mueller Hinton (MH) broth, pooled, and directly loaded
into themicrofluidic chip. In a typical experiment, loading one or a few
cells in each trap takes 1min at ~105 CFU/ml.We supplied growthmedia
with antibiotics to the traps in one of the two rows and plain growth
media in the other.

The phenotypic response to the antibiotic was determined in
≈60min by capturing 100X phase-contrast images of each cell every
2min and calculating the growth rates of individual cells in 10min
sliding windows. The phenotypic response can be pushed to shorter
times depending on which antibiotics are used and at which
concentration15. To identify the species of each bacterial cell, we per-
formedfluorescence in situ hybridization (FISH) using species-specific,
fluorescent ssDNA probes. These probes (Supplementary Data 1) bind
to the abundant 16s/23s ribosomalRNA sequences andhavepreviously
been successfully used for species identification in positive blood
cultures21. The species classification method for FISH signals is
described in SI method 3.

Analysis using Deep learning models
Performing growth-rates analysis on multi-species samples requires a
general method for detecting and tracking cells that come in different
shapes and sizes. In Delta 2.022, a U-net23 was used to predict cell-vs-
background maps of phase-contrast images and showed excellent
performance for E. coli cells, both in mother-machine-like devices and
on agarose pads. More general algorithms for cell segmentation, such
as Cellpose24 and its successor Omnipose25 construct cell identities
from intermediate fields (Fig. 2a) learned by a convolutional neural
network, similar to a U-net. Omnipose was shown to perform seg-
mentation of bacterial cells independently of their morphology.
Approaches that calculate cell identities (Cellpose, Omnipose) assign
different unique labels to cells that share a boundary while cell-vs-
background approaches (U-net) can not be used to separate cells that
share aboundary. The former approaches require cell labels as training
data while the latter needs only binary masks.

A ground-truth training dataset (82 images) of mixed cells grow-
ing in mother-machine devices was created with human supervision
using the LabelsToROIs tool26 and customscripts (SImethod 1).Weuse
an Omnipose model trained on this data for cell segmentation.
Training andperformanceofOmniposeandU-net are alsodescribed in
SI method 3. The run-time performance of reconstruction steps from
Omnipose network outputs was improved two-fold (SI Fig. 1b).
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Fig. 1 | Schematic representationof theASTworkflowwith timeline. aAcartoon
of the microfluidics setup with the mixed species loaded on the chip. b Time-lapse
phase-contrast images of the cells in the traps when grown inmedia with (top) and
without (bottom) antibiotics. c Fluorescence images of the bacteria with ssDNA

probes targeting the ribosomal RNA of specific bacteria for species identification.
d Analysis of time-lapse stacks and species ID using deep learning for segmenting
and tracking cells. e Detection of AST profiles for individual pathogens at a given
antibiotic concentration. Part of Fig. 1a created using www.biorender.com.
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Omnipose showed superior performance (Fig. 2b) on mixed-species
data compared to a U-net trained to predict binary masks. We showed
that the omnipose performed equally well onmixed-species data as on
data from pure E. coli cultures (SI Fig. 1b, e); the performance of U-net,
on the other hand, depended on the species. Figure 2c shows phase
contrast images, their correspondingground truths, and cells detected
using Omnipose and U-net approaches, respectively.

Previous approaches to successful E. coli tracking have con-
structed cell lineages using scoringmechanisms based on overlapping
regions27 or mother-daughter binary-mask predictions using the full
features from the images22. The former approach is very sensitive to
tuning overlap parameters while the latter is computationally expen-
sive when a lot of small cells are present in the data. Inspired by recent
developments in using Siamese networks28 and graph formulations29

for general object-tracking, we have now developed an approach that
performs cell tracking using a network that compares cell properties
between two frames and predicts the presence and type of connec-
tions, e.g., cell growth or division event (Fig. 2d). Training data for this
network was obtained using a simulator (SI method 4) that simulates
cells of various kinds and growth rates growing in mother-machine
channels. The training of the tracking network is described in the
Supplementary information (SI method 4). In Fig. 2e, we show the
confusion matrix of the model used for tracking experimental data
evaluated on 100 randomly generated time-series stacks. Before con-
structing the tracks, the links that have abrupt increases in areas were
removed as they correspond tomerge events caused by segmentation
errors (SImethod 4). Figure 2f (left) shows a single segmentedmother-

machine trap tracked through timewith growth/movement links (red)
and division links (blue). Species assignment to tracks based on the
species ID identified in the last framewas performed after cell-tracking
(SI method 5).

Species-wise AST response
With the species ID and AST response for each cell in the microfluidic
chip, the species-specific AST response could be determined in the
mixed samples. Here, we first demonstrate the capability of the
method to characterize a mixed sample of four different species,
although clinical patient samples aremore likely to contain only one or
two30–32. TheAST responses are shown in Fig. 3a–d. In each experiment,
we obtained growth-response curves for three gram-negative strains
(Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa)
and one gram-positive strain (Enterococcus faecalis). The experiments
were performed with four different antibiotics: Vancomycin (Van)
[Glycopeptide], Ciprofloxacin (CIP) [Fluoroquinolones], Gentamicin
(Gen) [an aminoglycoside], and Nitrofurantoin (NIT) [other agents].
We present the results as response plots from individual experiments
to simulate the clinical-sample situation. For comparison, we also
display the average responses that would have been the result of the
growth-rate measurements without species information. Successful
AST profiling was achieved with samples containing as few as 100
bacteria/species. We used bacteria without specific resistance genes,
but since some species have a natural resistance to specific antibiotics,
the AST response varied with the species. For example, Pseudomonas
species are naturally resistant to Ciprofloxacin (Fig. 3a) and
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the mother-machine device.

Article https://doi.org/10.1038/s41467-022-33659-1

Nature Communications |         (2022) 13:6215 3



Nitrofurantoin (Fig. 3b), and their growth remained unaffected in the
presence of 1μg/ml Ciprofloxacin or 32μg/ml Nitrofurantoin. The
growth rate of the other bacterial species dropped more than 10% in
30min in the presence of these drugs. Importantly, we see from the
average, non-species-stratified data that without access to species ID,
we would not have been able to detect the resistant Pseudomonas in
the mixed population. Similarly, as expected, all species but E. faecalis
were found to be susceptible to Gentamicin (2 μg/ml) (Fig. 3c) and
resistant to Vancomycin (4μg/ml) (Fig. 3d).

Scaling up FISH probing to 10 species
It is estimated that >90% of clinical sepsis samples feature a subset of
the 10most frequent bacterial pathogens33. To increase the number of
species that we can identify, we performed combinatorial FISH using a
species-specific adaptor that can bind two different fluorescent oligo
probes.With probes of four different colors, this set-up can identify up
to 10 species (Fig. 4a). We demonstrated the combinatorial FISH
approach by identifying seven species loaded in the culture chip
(Fig. 4b). Species-wise combination of signals using all the adapters
and probes are shown in SI Fig. 7. Species classification was done using
a random-forest classifier on the 4-d signal obtained from stacking
images of four fluorescence channels (SI method 6). To demonstrate
species-wise AST profiles using combinatorial FISH, we performed
experiments with combinations of two species treated with different

antibiotics (Fig. 5). For example, when Escherichia coli and Enter-
ococcus faecalis were treated with Vancomycin (4μg/ml), the two
species showed clear, distinguishable growth-rate profiles corre-
sponding to resistance and susceptibility, respectively (Fig. 5d).
Repeats for these experiments are shown in Fig. 5e–h.

Discussion
In conclusion, we have demonstrated that it is possible to make rapid
AST for mixed-species samples by performing sequential single-cell
phenotypic susceptibility testing and fluorescence in situ hybridiza-
tion in amicrofluidic chip. Importantly, ID determination is also useful
for non-mixed samples when it is essential to know which MIC break-
points to use for making the SIR (susceptible-intermediate-resistant)
call. Although species determination for non-mixed samples is possi-
ble by MALDI-TOF, it requires many more bacterial cells than direct
single-cell imaging.

Since antibiotic susceptibility breakpoints of closely related spe-
cies are often the same, it can sometimes be enough to distinguish the
bacterial family or genera. For example, an Enterobacteriales-specific
color ID-code to cover Escherichia, Klebsiella, and Salmonella, which
have very similar resistance breakpoints34. Different species-specific
probes would in this case map the same color ID code, such that the
ten codes can be used more efficiently. Similarly, we expect that it
would be possible to have a common ID code for contaminant species,
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Fig. 3 | Species stratified responses to antibiotic treatments. a–d AST profiles
with normalized growth rates for the four antibiotics used. The species stratified
responses (mean and SEM), as well as the pooled response (without species stra-
tification), are shown for each antibiotic. In all AST profile plots, S and R represent

the Susceptible and Resistance, respectively. The experiment is performed once
per antibiotic, although several non-reported experiments were performed for
calibration.
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such that they are not mistaken for pathogens. However, if more than
10 specific ID codes are required, stripping and reprobing allow an
exponential increase in how many classes can be identified35,36, but at
the expense of time.

In the current implementation, we ran the test one concentration
at a time on a high-end research microscope and post-processed the
imaging data. To make the technology useful in a clinical setting, data
should be analyzed during the experiment and the fluidic chip should
be parallelized to run multiple antibiotic concentrations simulta-
neously. Although we have not tested this type of setup in the present
study, it should allow a MIC determination to identify intermediate
isolates. A system with five different antibiotics at five different con-
centrations and a high level of automation has been developed for
uncomplicated urinary tract infections20, which shows that upscaling
to multiple testing conditions is possible. Finally, we would like to
emphasize that the present study is proof of principle of combined
phenotypic AST and species identification at the single-cell level. For

this method to be clinically relevant, it needs to be calibrated and
tested onmanymore clinical isolates aswell as on real patient samples.

Methods
Bacterial strains and antibiotics
In this study, as a gram-negative representative we used E. coli K12
MG1655 (DA4201), K. pneumoniae (ATCC 13883), A. baumanni
(DA68153), P.mirabilis (ATCC 29906) and P. aeruginosa (DA6215). As a
gram-positive representative, we used E. faecalis (ATCC 51299) and S.
aureus (ATCC 29213). We also used the fluorescently tagged P. aeru-
ginosa (PAO1-GFP) cells, a kind gift from Oana Ciofu37. Antibiotics
(Ciprofloxacin, Gentamicin, Nitrofurantoin, and Vancomycin) were
purchased from Sigma-Aldrich. Stock solutions were prepared as per
the supplier guidelines and stored at −20 °C. The solutions were
thawed to room temperature before performing the AST experiments.
We used concentrations of the antibiotics corresponding to the MIC
values for E. coli (ATCC 25922) as defined by the European Committee
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Fig. 4 | Combinatorial FISH. aOverview of the combinatorial FISH probing for the
multi species identification. A cartoon illustrating the different bacterial species
with their ribosomal RNA (left). Illustration of the specific sequences with the
multiple adapters targeting the ribosomal RNA of individual bacteria and its
hybridization to the target rRNA (middle). Detection probes with different fluor-
ophores. Hybridization of detection probes to the adapter sequences along with
unique sequences that are targeted to the species specific rRNA (Right). b Example
images (Scale bar 20 µm) of mixed species loaded in the microfluidic chip and

probed using combinatorial FISH for species identification. After the hybridization
step, cells were imaged in different channels (PhC, Alexa 488, Cy3, Cy5, and Texas
Red). The bacterial species are marked in white (Escherichia coli), magenta (Kleb-
siella pneumoniae), cyan (Pseudomonas aeruginosa), brown (Enterococcus faecalis),
yellow (Acinetobacter baumannii), navy blue (Proteus mirabilis) and red (Staphy-
lococcus aureus). The experiment with all seven species mixed was performed a
single time. However, similar experiments with all adaptors and probes mixed are
reported in Fig. 5.
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on Antimicrobial Susceptibility Testing (EUCAST). We note that
another, higher, concentrationmaybeoptimal tomake a rapidSIR call.

Media and culture conditions
In all experiments, Mueller-Hinton (MH) medium (70192; Sigma-
Aldrich) was used as a broth. Overnight cultures (ONC) were prepared
by inoculating bacteria from glycerol stocks (−80 °C) in MH medium
and incubating at 37 °C for 14–15 hwith continuous shaking (200 rpm).
From ONC, cells were diluted 1:1000 times into fresh MH medium
supplemented with a surfactant (Pluronic F-108; 542342; Sigma-
Aldrich; 0.085% (wt/vol) final concentration). The liquid culture was
grown by shaking at 200 rpm at 37 °C for 2 h. Next, to perform AST
experiments, we mixed the different strains in equal concentrations
and loaded them on the microfluidic chip.

The microfluidic chip and setup
The chip consist of mainly two parts: a micromolded silicone elasto-
mer [Sylgard 184; polydimethylsiloxane (PDMS)] and a 1.5 glass cov-
erslip (Menzel-Gläser) which are covalently bonded together. Chip
design and preparation were previously described in15,38. These refer-
ences also describe the numbering of the ports used below. After
punching the ports on the chip, it was placed on the microscope, and
tubing (TYGON) was connected with ametal tubing connector. Briefly,
cells were loaded using port 8.0 and port 2.0 was used for the
exchange of mediumwith the probes. Ports 5.1, 5.2, and 6.0 were used
for maintenance of back-channel pressure, and ports 2.1 and 2.2 were
used for the supply ofMHmediumwith andwithout the antibiotics at a
pressure of 200 mbar. The pressure was controlled by an OB1-Mk3
regulator (Elveflow).

Microfluidic experiments
Imaging starts within five minutes after the supply of medium with
and without the antibiotics to the cells. We used a Nikon Ti2-E
inverted microscope equipped with a Plan Apo Lambda 100× oil
immersion objective (Nikon). Images were captured by the Imaging
Source (DMK38UX304) camera. For phase contrast and fluorescence
images, we used the optical setup as previously described in15,38 and
controlled by Micro-Manager39, and an in-house built plugin. We
maintained 30 °C using a temperature controllable unit and a lexan
enclosure (Oklab).

Fast phenotypic AST
The cells were loaded on the chip and exposed to growth media with
andwithout the antibiotics in two different rows. In each row, a total of
70–80 positions, each including 16–21 cell traps, were images in the
phase contrast channel (30ms exposure time) every two minutes for
an hour.

Genotyping
After phenotyping, the medium from ports 2.1 and 2.2 were depres-
surized to zero. To fix the cells, formaldehyde (4%) was added by
switching the medium and applying pressure 200 mbar from port 2.0
for 4min and subsequently washing the cells with 1 × phosphate-
buffered saline (PBS) for 3min. Cells were permeabilized by 70% EtOH
for 4min andwashed with 1 × PBS (3min). Cells were next treated with
lysozyme (2mg/ml) and lysostaphin (0.1mg/ml) for 3min and fol-
lowed by quick washing with 1 × PBS for another 3min. (Lysostaphin is
only needed for S. aureus and was not used in Fig. 3). For species
identification, we pooled all specific ssDNA probes (0.1μM) (Supple-
mentary Data 1) in a hybridization solution (30% formamide and 2 ×
SSC) and hybridized them for 30min at 30 °C. In the case of the
combinatorial method, we pooled all the detection probes (0.1μM)
(Supplementary Data 2) and species-specific adaptor sequences
(Supplementary Data 3) in a hybridization solution (30% formamide
and 2 × SSC) and hybridized them for 60min at 30 °C. Next, we cap-
tured the fluorescence images for each probe in different channels
(TYE 665, TYE 563, Texas Red, and Alexa Fluor 488) at 300ms expo-
sure times and respective phase contrast images at 30ms exposure
time. In total, it took 10–15min to image all the positions in all the
channels on the chip.

Cell segmentation and channel detection
Phase-Contrast images of the cells growing in channels were seg-
mented for both cells and channels using a deep learning model with
Omniposemethod. The cell-segmentationmodelwas trainedwithdata
obtained frommanually-labeled images ofmixed species data anddata
obtained from E. coli (K12 MG1655 intC::P70-venusFast) that con-
stitutively expresses mVenus. The training procedure was enhanced
with data augmentations to force learning outputs of Omnipose net-
work in different orientations and scales. The model training and
performance compared to U-net is described in SI method 1. The
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Fig. 5 | Species-wise AST profiles for experiments with 2 species using the
combinatorial FISH method. a P. aeruginosa and A. baumannii were treated
with Gentamicin, b K. pneumoniae, and S. aureus treated with Ciprofloxacin,
c E. coli, and P. mirabilis treated with Nitrofurantoin, d E. coli and E. faecalis treated

with Vancomycin. e–h Biological repeats of 5a-5d, respectively. In all AST profile
plots, S and R represent Susceptible and Resistance, respectively. Normalized
growth rates ± SEMas a function of time are shown for each species detected in the
experiments.
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segmentation network performance on different species is also shown
in SImethod 1. The channel segmentationmodel was trainedwith data
that was refined based on histogram profiles, also described in SI
method 2. After obtaining channel locations, time-series stacks of
segmented cells and corresponding fluorescent channel images were
bundled for tracking, species assignment, and growth rate
calculations.

Cell tracking
Cells were tracked through time using a neural network that scores
links between cells fromone frame to the next and predicts the type of
link between them. Training data for cell tracking was obtained by
simulating the growth of cells in mother-machine channels and is
described in SI method 4. Cells of different shapes, sizes, and growth
rates were used to generate ground truths for the tracking network.
Tracker network training and its performance are described in SI
method 4. The predictions of the network are cleaned for error using
IoU (Intersection-over-Union) metric to remove spurious predictions.
At test time, cells between frameswere linked based on the probability
scores, and tracks were generated by chaining a series of links. Cell
tracks were corrected for errors (SI method 4).

Species assignment and growth curve splitting
For experiments where a single probe binds to a single species,
fluorescent images for each mother machine channel were corrected
for background, and continuous regions of signal above thresholds
were mapped to species labels (SI method 3). Experiments with mul-
tiple fluorescent probes for a single species were classified using a
Random-Forest classifier, described in SI method 6. Continuous
regions corresponding to one species (>90 pixels) were identified and
bounding boxesweredrawnaround these regions. Cell tracks falling in
these regions in the last frame before fixing cells were labeled with the
corresponding species and all the species labels were rolled back to
time point 0. Growth rates were calculated by fitting exponential
curves on the areas of cells in a moving 5 timepoint window (SI
method 7).

Oligos and probes design
FISH probe sequences for the individual target rRNA were
obtained from the probeBase21,40,41 and purchased from Integrated
DNA Technologies (www.idt.com), see Supplementary data 1. For
the combinatorial FISH probing, we used barcode sequence and
detection probes, which are listed in Supplementary Data 2–4,
purchased from IDT.

Statistics and reproducibility
All experiments were conducted using the same set-up. Both treated
and reference cells used the same segmentation and tracking models.
The experiments were not randomized. For growth rate measure-
ments, each species’ growth ratewas calculated using at least 100 cells.
Cells with segmentation errors were not included in the growth-rate
calculations. All AST profiles show normalized growth rates ± SEM.
Detailed information on experimental repeats can be found in the
individual figure legend.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw microscopy data for all experiments shown in the paper are
available at https://doi.org/10.17044/scilifelab.20969161. All analysis
objects and code are also available at https://doi.org/10.17044/
scilifelab.20969161. All strains will be provided upon request to
J.E. Source data are provided with this paper.

Code availability
The code used for analysis and reproducing all the figures is available
at https://github.com/karempudi/ASTFISH.git. Weights of trained
neural networks for cell segmentation and tracking are available at
https://doi.org/10.17044/scilifelab.20969161.
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