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Abstract

Single-cell measurements have revolutionized our understanding of heterogeneity in cellu-

lar response. However, there is no universally comparable way to assess single-cell mea-

surement quality. Here, we show how information theory can be used to assess and

compare single-cell measurement quality in bits, which provides a universally comparable

metric for information content. We anticipate that the experimental and theoretical

approaches we show here will generally enable comparisons of quality between any single-

cell measurement methods.

Introduction

The development of single-cell measurements has revealed that cellular sense-and-response

within a population of isogenic cells is noisy [1–3]. The interpretation of this biological noise

has directly led to improvements in our ability to understand and engineer biological systems

[4, 5]. Importantly, however, the measurement process itself includes noise. So, the results of

single-cell measurements contain biological noise as well as measurement noise. Unfortu-

nately, relatively few studies have been performed to understand and compare the quality of

single-cell measurement methods, which could inform our interpretation of biological noise

[6, 7] and selection of methods [8–10]. In general, single-cell measurement quality is not well-

defined. Various statistical metrics have previously been used to evaluate single-cell measure-

ment quality, such as signal-to-noise ratio (SNR) [4] and area under the receiver operating

characteristic curve (AUC) [10], however the validity of these performance metrics relies on

assumptions about the measured distributions. For example, SNR calculations implicitly

assume that the underlying biological distributions are approximately Gaussian. Furthermore,

these performance metrics use units which are neither intuitive nor universally comparable.

We propose that information theory can be used to understand and evaluate single-cell

measurement quality in units that are both intuitive and universally comparable: bits. Key

aspects of information theory were developed from efforts to understand signal processing

and communication in the presence of noise [11–14], and there are useful textbooks on the

foundations of information theory [15] as well as its application to biological systems [16]. A

common unit of information is a binary digit, or “bit”, which intuitively represents the ability

to distinguish between two states. Therefore, an assessment of measurement quality in bits

could provide intuition about how well different single-cell measurement methods can distin-

guish between different cell states. More specifically, if we consider the measurement process
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as communication through a noisy information channel, the mutual information between the

input and output of that channel quantifies how much information is shared, or transmitted,

through the channel. Mutual information depends on both the communication channel and

the probability distribution of possible input signals. The maximum mutual information for all

possible input distributions is the channel capacity, which is a characteristic property of com-

munication channels. Channel capacity (in bits) is the base-2 logarithm of the maximum num-

ber of distinguishable input signal levels. Intuitively, a channel capacity of one bit indicates

that a measurement can distinguish between cells grown in two different levels of environmen-

tal stimulus.

Here, we show how an information-theoretic approach can be used to assess and compare

the quality of single-cell measurement methods in bits. Using the channel capacity between an

environmental stimulus and the measured response as a metric, we interpret and compare the

quality of multiple methods for measuring RNA or protein in single cells. We find a wide

range in the amount of information that different methods can transmit about single-cell gene

expression. Furthermore, to show how an information theoretic analysis can inform our

choices for steps of the measurement process, we show how changes to specific steps can

impact measurement quality. This generalizable approach offers a way to assess and compare

the measurement quality of different single-cell methods in universally comparable units.

Results

To quantitatively assess and compare single-cell measurement quality using information the-

ory, we considered the fundamental question: How well can a measurement estimate the bio-

logical response (output) to an environmental stimulus (input)? One common approach for

studying cellular response is induction of gene expression, in which an environmental stimu-

lus, such as the concentration of an inducer molecule, causes a change in the level of gene

expression inside the cells. In this case, the question can be rephrased as: How well do single-

cell measurements of gene expression transmit information about the way cells respond to an

environmental stimulus?

It is challenging to compare the quality of different single-cell methods across different

studies, because biological variability is confounded with experimental variability. For exam-

ple, experimental variability introduced by different cell culture conditions can influence cellu-

lar function [17], therefore different single-cell methods performed under different conditions

may not provide direct insight into differences in measurement quality. So, to minimize the

influence of experimental variability on method comparison, we used a recently-reported col-

lection of data from different single-cell measurements of the same underlying biological sys-

tem: inducible gene expression in E.coli [10]. In that study, a split-sample approach was used

to measure cells harvested from the same replicate cultures using different single-cell methods.

For each biological replicate, cells were divided (split) at each step of the measurement process:

once for sample preparation, again for signal detection, and finally for choice of measurand. In

this manner, multiple single-cell methods were performed while minimizing the contributions

of experimental variability. The methods included different measurands (RNA, fluorescent

protein) and signal detection with different instruments (microscopy, flow cytometry). Also,

different sample preparation methods were used for each measurand, including two different

methods for specific, fluorescent labeling of an RNA transcript: fluorescence in situ hybridiza-

tion (FISH) and hybridization chain reaction (HCR). For microscopy images of RNA, single-

molecule localization was used to estimate RNA abundance per cell. Tetramethylrhodamine

(TAMRA) was used for fluorescence labeling in the FISH and HCR methods, and yellow fluo-

rescent protein (YFP) was used as the protein measurand. The fluorescence spectra of
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TAMRA and YFP are distinct. So, after RNA labeling, both RNA and protein could be mea-

sured in the same set of cells using different channels on the flow cytometer or different filter

sets on the microscope. For each method, cellular response was measured by detecting gene

expression levels (RNA or fluorescent protein) from cells cultured over the entire range of

inducible response. Here, we use the experimental results from [10] to show how channel

capacity can be used as a metric to assess differences in single-cell measurement quality.

To realize a generalizable metric for the quality of different single-cell measurements, we

used the empirical gene expression distributions at each inducer concentration along with the

Blahut-Arimoto algorithm [18–20] to calculate the channel capacity between the environmen-

tal input and the measured gene expression output (Fig 1A). Details of the implementation of

the Blahut-Arimoto algorithm are described in the Materials and Methods. Briefly, for each

sample and each measurement, we started with the single-cell measurement results: a list of

numbers corresponding to the measurement result for each cell in a sample. We binned those

results and normalized the number of observations in each bin to give the discrete empirical

distributions of the measurement results. These empirical distributions represent the condi-
tional distributions for each fixed value of the environmental stimulus (i.e., each sample). They

Fig 1. Single-cell measurement quality in bits can estimated from the channel capacity between environmental stimulus and measurement output. (A)

An information theoretic “communication channel” transmits information from an input signal with probability distribution P(X) to an output signal P(Y) in

the presence of noise. The “channel capacity” is a characteristic of the channel representing the maximum possible quality of information transmission. (B)

Single-cell measurements of cellular response to environmental stimulus can be interpreted by considering the biological channel and measurement channel in

series. The channel capacity of the input (environmental stimulus) to measurement output (estimated levels of single-cell gene expression over the range of

response) characterizes information transmission through the biological channel and the measurement channel. Single-cell methods can vary with regards to

sample preparation, for example RNA labeling by fluorescence in situ hybridiation (FISH) or hybridization chain reaction (HCR). Single-cell methods can also

vary with regards to signal detection, for example, microscopy or flow cytometry. Calculations of channel capacity using different measurement channels for

the same biological channel enables an assessment of single-cell measurement quality in bits.

https://doi.org/10.1371/journal.pone.0269272.g001
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are used by the Blahut-Arimoto algorithm, which numerically solves for the maximum mutual

information (i.e., channel capacity) while varying the probability distribution of the input envi-

ronmental stimulus.

Notably, the channel capacity is not determined purely by the quality of the single-cell mea-

surement method; it also depends on the cellular response. So, to use channel capacity as met-

ric for measurement quality, we considered a two-channel model with a biological channel and

measurement channel connected in series (Fig 1B). In this model, the biological channel is the

cellular response that transmits information from the environmental stimulus to changes in

gene expression, and the measurement channel is the entire measurement process that trans-

mits information from the actual gene expression to the estimated gene expression, including

all steps such as sample preparation, signal detection, choice of measurand, and data analysis.

Since no measurement is perfect, the measurement channel will degrade the information

that it transmits. So, the measured channel capacity, i.e. the channel capacity between the input

and the estimated gene expression, will always be less than the biological channel capacity, i.e.,

the channel capacity between the input and the actual gene expression. Higher quality mea-

surements, however, will degrade the information less. So, we can assess relative measurement

quality by comparing the measured channel capacities for different measurement methods:

Higher quality measurements will result in a higher measured channel capacity (i.e., closer to

the true biological channel capacity). It is important to note, however, that this assessment of

measurement quality requires the assumption that the measurement methods to be compared

all share the same biological channel. With the split-sample datasets, we can justify that

assumption, but only for comparisons between different methods with the same measurand.

The datasets include measurements of two different measurands, RNA and fluorescent pro-

tein, that correspond to two different biological channels. So, in the assessment of measure-

ment quality, we only compare channel capacity between measurements of the same

measurand (i.e., we compared RNA methods only to other RNA methods, and protein meth-

ods only to other protein methods).

As a final consideration, it is important to note that the channel capacity can also depend

on the choice of values used for the input stimuli. If the channel capacity is the logarithm of

the number of distinguishable input levels, then it clearly cannot be greater than the logarithm

of the number input levels measured. For example, if an experiment only uses two input levels

(e.g., test and control, or high and low), then the channel capacity determined by our approach

will always be less than or equal to one (log2(2) = 1). Furthermore, to obtain the best estimates

of the biological channel capacity and the best comparison of different methods, the input lev-

els should be chosen to span the full range of biological response. For example, the datasets

used here include IPTG concentrations across the full induction curve, with input levels that

result in low biological output (i.e., gene expression), high biological output, and intermediate

biological output. In general, a different choice of input levels measured in an experiment

could lead to different estimates of the channel capacity with our approach. So, for assessment

of measurement quality, we recommend comparing only methods implemented with the same

set of input levels (as with the split-sample dataset used here).

To evaluate single-cell RNA measurement quality in bits, we compared the channel capaci-

ties for different methods of measuring the same RNA expression system. For different single-

cell RNA measurement methods, we observed a wide range of channel capacities (0.09 bits to

1.06 bits; Tables 1 and 2), which we attribute to differences in the quality of the measurement

methods (Fig 2A). Flow cytometry detection of HCR-labeled RNA had the lowest channel

capacity (� 0.09 bits). Microscopy detection of FISH-labeled RNA had the highest channel

capacity (� 1.06 bits).
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The quality of an RNA measurement method is the result of a combined effect from multi-

ple measurement steps. So, to assess how differences in single-cell RNA measurement quality

might be related to specific steps of the measurement method, we compared the channel

capacities of single-cell methods that differed only by one step in the measurement process

(sample preparation or signal detection). First, the measurement quality is generally higher for

RNA measurements that used microscopy for signal detection versus those that used flow

cytometry. For example, microscopy measurements had a higher channel capacity than flow

cytometry measurements for both FISH (� 1.06 bits vs.� 0.23 bits; Tables 1 and 2) and HCR

(� 0.88 bits vs.� 0.09 bits). This is not surprising because microscopy allows for visual confir-

mation of cell-specific signal, and optimization of signal integration during image collection.

Second, with both signal detection methods, we found that the measurement quality was better

for FISH labeling versus HCR labeling. For example, FISH had a higher channel capacity than

HCR, for both microscopy (� 1.06 bits vs.� 0.88 bits) and flow cytometry (� 0.23 bits vs.�

0.09 bits). This difference between RNA labeling methods could be attributed to the efficiency

of probe hybridization to the target RNA, which was estimated to be higher for FISH than

HCR in the experimental study [10].

To evaluate the quality of single-cell fluorescent protein measurements in bits, we com-

pared the channel capacities of different methods of measuring the same fluorescent protein

expression system. The different measurement methods included two commonly used antibi-

otic treatments to halt fluorescent protein translation prior to flow cytometry (kanamycin,

chloramphenicol), as well as measurements of fluorescent protein in cells that had been labeled

Table 1. Channel capacities of single-cell RNA measurements.

Sample Preparation Signal Detection Channel capacity from environmental input to measurement output�

RNA labeling (FISH) Microscopy 1.06 ± 0.08 bits

RNA labeling (HCR) Microscopy 0.88 ± 0.22 bits

RNA labeling (FISH) Flow cytometry 0.23 ± 0.03 bits

RNA labeling (HCR) Flow cytometry 0.09 ± 0.03 bits

� mean ± sample standard deviation of three replicates

https://doi.org/10.1371/journal.pone.0269272.t001

Table 2. Detailed information for analysis and results from each method and replicate.

Sample Preparation Measurand Signal

Detection

NB Channel capacity,

Replicate 1

Channel capacity,

Replicate 2

Channel capacity,

Replicate 3

Antibiotic treatment (Chloramphenicol,

Cm)

Protein Flow cytometry 80 1.58 1.63 1.61

RNA labeling (FISH) Protein Flow cytometry 20 0.14 0.21 0.21

RNA labeling (FISH) RNA Flow cytometry 20 0.24 0.19 0.25

RNA labeling (HCR) Protein Flow cytometry 80 0.95 0.96 1.04

RNA labeling (HCR) RNA Flow cytometry 80 0.08 0.06 0.12

Antibiotic treatment (Kanamycin, Kn) Protein Flow cytometry 160 1.61 1.6 1.55

RNA labeling (FISH) Protein Microscopy 40 0.19 0.47 0.5

RNA labeling (FISH) RNA Microscopy 80 1.00 1.02 1.15

RNA labeling (HCR) Protein Microscopy 40 1.26 1.29 1.31

RNA labeling (HCR) RNA Microscopy 80 0.93 1.08 0.64

NB is the number of bins used to construct the empirical RNA or protein expression distributions (i.e., the probability transition matrix) for each measurement method.

The resulting channel capacity results are also given for each biological replicate.

https://doi.org/10.1371/journal.pone.0269272.t002
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for RNA detection using FISH or HCR. For different fluorescent protein measurement meth-

ods, we observed a wide range of channel capacities (Fig 3, Tables 2 and 3). Flow cytometry

detection of fluorescent protein following FISH labeling had the lowest channel capacity (�

0.19 bits), while flow cytometry detection after antibiotic treatment had the highest channel

capacity (� 1.6 bits).

Fig 2. Single-cell measurement quality of RNA expression, in bits. (A) Different single-cell methods of measuring RNA use different steps for sample preparation and

signal detection. Examples of sample preparation include RNA-labeling methods such as fluorescence in situ hybridization (FISH) or hybridization chain reaction (HCR)

(inset). Examples of signal detection include microscopy and flow cytometry. When different single-cell methods are used to analyze the same biological output, the

channel capacity between input and different measurement outputs can be used to compare single-cell measurement quality of RNA, in bits. (B) Channel capacities of

different single-cell methods of estimating RNA from the same biological channel (mean +/- standard deviation of three biological replicates).

https://doi.org/10.1371/journal.pone.0269272.g002
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Fig 3. Single-cell measurement quality of fluorescent protein expression, in bits. (A) Different single-cell methods of measuring fluorescent protein use different steps

for sample preparation and signal detection. Different antibiotic treatments (kanamycin, Kn; chloramphenicol, Cm) can be used to halt translation prior to fluorescent

protein measurement by flow cytometry. Fluorescent protein can also be detected in cells following RNA-labeling methods such as fluorescence in situ hybridization

(FISH) or hybridization chain reaction (HCR) (inset). Examples of signal detection include microscopy and flow cytometry. When different single-cell methods are used

to analyze the same biological output, the channel capacity between input and different measurement outputs can be used to compare single-cell measurement quality of

fluorescent protein expression, in bits. (B) Channel capacities of different single-cell methods of estimating fluorescent protein expression from the same biological

channel (mean ± standard deviation of three biological replicates).

https://doi.org/10.1371/journal.pone.0269272.g003
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Differences in measurement quality for different fluorescent protein methods result from

specific steps within the measurement process. So, to assess how measurement quality might

be related to specific steps of the measurement method, we compared the channel capacities of

single-cell methods that differed by only one step in the measurement process (sample prepa-

ration or signal detection). First, as with RNA measurements, protein measurement quality

was generally higher for microscopy than flow cytometry measurements. This held true for

both FISH and HCR (Tables 2 and 3). Second, protein measurement quality decreased when

cells were labeled for RNA detection. This can be seen by comparing the flow cytometry results

for fluorescent protein measurements after the two antibiotic treatments (channel capacity�

1.6 bits) to those made after FISH or HCR labeling (� 1.0 bits). Finally, unlike RNA measure-

ments, protein measurement quality was generally higher after HCR labeling than after FISH

labeling, regardless of the signal detection method. This could be due to different effects that

the RNA-labeling buffers have on fluorescent protein signal within the cell.

Discussion

Previous studies have estimated information transmission between an environmental stimulus

and single-cell measurements of gene expression [20–22]. However, the role of single-cell mea-

surement quality is largely ignored in evaluation of these biological processes, and information

loss through the measurement process is not directly estimated. We have shown how to assess

and compare the measurement quality of different single-cell methods using the channel

capacity between an environmental stimulus and the measured response. This provides a prac-

tical and intuitive way to compare information loss due to different single-cell measurement

methods. The approach described here is generalizable to assess and compare the measure-

ment quality of other single-cell methods, including different data analysis methods. For more

complex, multi-variate single-cell measurements (e.g., multi-transcript RNA-seq, time-series

microscopy), application of our approach to compare different measurement protocols and/or

data analysis methods would probably require an alternative to the Blahut-Arimoto algorithm

for estimating the channel capacity [23]. Our general approach should still be valid for those

types of data, however: the highest quality method will be the one that results in the highest

channel capacity. Hence, we anticipate that this approach will increase the adoption of infor-

mation theory as a practical and universal way to assess the quality of single-cell measure-

ments. Finally, we note that any channel capacity estimate using finite data represents a lower

bound on information transmission [22]. So, by estimating channel capacity from environ-

mental input through single-cell measurements, we provide a lower bound on the channel

capacity for both the biological system and the measurement system. The approach we demon-

strate here shows how the analysis of information transmission through measurement

Table 3. Channel capacities of single-cell fluorescent protein measurements.

Sample Preparation Signal Detection Channel capacity from environmental input to measurement output�

Antibiotic treatment (Chloramphenicol, Cm) Flow cytometry 1.61 ± 0.03 bits

Antibiotic treatment (Kanamycin, Kn) Flow cytometry 1.59 ± 0.03 bits

RNA labeling (HCR) Microscopy 1.29 ± 0.03 bits

RNA labeling (HCR) Flow cytometry 0.98 ± 0.05 bits

RNA labeling (FISH) Microscopy 0.39 ± 0.17 bits

RNA labeling (FISH) Flow cytometry 0.19 ± 0.04 bits

� mean ± sample standard deviation of three replicates

https://doi.org/10.1371/journal.pone.0269272.t003
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processes enables universal comparability not only between different measurements of biol-

ogy, but also between measurements and biology itself.

Materials and methods

Source of experimental data

Single-cell measurement data was analyzed from a recently-reported study [10]. Briefly, exper-

imental measurements were performed as follows: E. coli cells were grown in cultures contain-

ing different concentrations of IPTG, which served as an environmental stimulus that induced

expression of eyfp RNA and eYFP protein. Each culture was divided (split) for different sample

preparations, including different antibiotic treatments (kanamycin or chloramphenicol), or

different RNA labeling strategies (FISH [2, 24–29] or HCR [30]). Following sample prepara-

tion, RNA and fluorescent protein expression were measured using two different signal detec-

tion methods: microscopy and flow cytometry. With FISH and HCR microscopy, single-

molecule localization was used to estimate the distribution of the eyfp RNA copy number per

cell using well-established techniques [24, 31]. With flow cytometry, the distribution of the

fluorescence signal per cell was determined using an automated gating algorithm [32]. In this

manner, multiple single-cell measurement methods were performed in parallel with minimal

and well-defined experimental variability. The results of all single-cell measurements are pub-

licly-available through the NIST Data Portal (https://doi.org/10.18434/mds2-2300).

Computation of channel capacity

The channel capacity for each measurement method was computed numerically using the Bla-

hut-Arimoto algorithm (Fig 4) [18, 19].

Binning and discretization of single-cell measurements. The Blahut-Arimoto algorithm

requires discrete distributions at each input signal level. To apply the algorithm to single-cell

data, continuous measurement results (e.g. a list of real numbers) were discretized by binning

the data with equal-width bins spanning the range of measurement results. The resulting dis-

crete probability distributions were used directly as the discrete transition probability matrices

as detailed below.

As described in previous publications, the choice of bin size can affect the calculated chan-

nel capacity, and the process of choosing the optimal number of bins is heuristic [33, 34]. If the

number of bins is too low, the mutual information and channel capacity are underestimated.

But, if the number of bins is too high, the mutual information and channel capacity are overes-

timated. Typically, a range of bin numbers can be found over which the channel capacity does

not depend sensitively on the number of bins used. So, in this work, the number of histogram

bins was chosen based on comparisons of channel capacity values obtained for different num-

bers of bins, according to the following procedure:

Equal-width histogram bins were used, with the minimum and maximum bins set to span

the full range of the observations for each dataset. For each transcript or protein expression

dataset, the Freedman-Diaconis’ rule was used to calculate a recommended bin width. Then,

for each measurement method, an initial bin width was chosen as approximately ten times the

mean recommended bin width over the three replicates of the method. The channel capacity

was computed using the resulting transition probability matrix. Then, the bin width was

decreased by a factor of 2 (i.e., number of bins increased 2-fold), and the channel capacity was

computed again. For each measurement method, if the mean channel capacity increased by

more than 0.1 bits, the bin with was decreased again by a factor of 2 and the channel capacity

re-calculated. When the resulting change in the mean channel capacity was less than 0.1 bits,

the channel capacity values from the previous bin width were used. Fig 5 shows the results for
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the channel capacity calculated using different numbers of bins, and Table 3 lists the number

of bins used for each measurement method.

Implementation of the Blahut-Arimoto algorithm

Here, we briefly describe the Blahut-Arimoto algorithm using the same notation as used in

Blahut’s 1972 paper [18]. Mutual information through an information channel is

I p;Qð Þ ¼
X

j

X

k

pjQkjj log2

Qkjj
P

jpjQkjj
ð1Þ

where Q is the probability transition matrix, constructed in our case from the discretized

Fig 4. Flowchart of the Blahut-Arimoto algorithm to compute channel capacity (adapted from Blahut, 1972 [18]).

https://doi.org/10.1371/journal.pone.0269272.g004
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empirical RNA or protein distributions, and p is the discrete input probability distribution.

The channel capacity is the maximum mutual information over all possible input distributions

C ¼ max
p

Iðp;QÞ ð2Þ

The Blahut-Arimoto algorithm solves the maximization problem, Eq (2), using an addi-

tional property of the mutual information function,

I p;Qð Þ ¼ max
P

Jðp;Q; PÞ ¼ max
P

X

j

X

k

pjQkjj log2

Pjjk

pj
ð3Þ

where P is a variable transition matrix from the output variable to the input variable. Combin-

ing Eqs (2) and (3) we obtain

C ¼ max
p

max
P

Jðp;Q;PÞ: ð4Þ

The Blahut-Arimoto algorithm is based on the idea that for a fixed input distribution p the

transition matrix P that maximizes J(p, Q, P) is

P�jjk ¼
pjQkjj
P

jpjQkjj
ð5Þ

and for a fixed output-to-input transition matrix, P, the input distribution that maximizes J(p,

Q, P) is

pj ¼
expð

P
kQkjj log2

PjjkÞ
P

jexpð
P

kQkjj log2
PjjkÞ

ð6Þ

The Blahut-Arimoto algorithm is an iterative method to estimate the channel capacity and

the optimal input distribution (i.e., the distribution, pj, that maximizes the mutual information

to give the channel capacity). The algorithm is initialized with a starting guess for the input

Fig 5. Dependence of channel capacity on the number of bins used to construct the empirical RNA or protein

distributions for each of the methods. The vertical gray line shows the number of bins used to compute the channel

capacity reported in the manuscript.

https://doi.org/10.1371/journal.pone.0269272.g005
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distribution, p0
j . As shown in the original papers by Blahut and Arimoto [18, 19], the algorithm

is guaranteed to monotonically approach the exact result for the channel capacity. So, if

enough iterations are run, the resulting channel capacity estimates will not depend sensitively

on the starting guess, p0
j . For simplicity, we used a uniform discrete distribution, i.e., p0

j ¼

1=Ninput for each j, where Ninput is the number of input levels measured (Ninput = 8 in the cur-

rent work, so p0
j ¼ 0:125). At each iteration of the algorithm, Eqs (5) and (6) are used to get an

updated estimate for the optimal input distribution and the channel capacity. The algorithm is

stopped when the change between iterations is smaller than a predefined value, ε, which, for

this work was set to 10−4. Since this value is much smaller than the typical uncertainty (see

Tables 1–3), the results won’t depend sensitively on either the starting guess, p0
j , or the value of

the stopping criterion, ε.

The flowchart for the final algorithm is shown in Fig 4, where the key variables are defined

as follows:

Qk|j—Probability transition matrix from the input to the output, which numerically defines

the information channel. This matrix is the main input to the Blahut-Arimoto algorithm. It is

the set of conditional distributions of the output for each fixed values of the input. The empiri-

cal distribution of RNA or protein expression for each input level (IPTG concentration) is the

jth column of Qkjj : Qkjj ¼
nkjj
Nj

, where nk|j is the number of cells from the jth sample with a tran-

script or protein measurement falling in the kth discretization bin, and Nj is the total number

of cells from the jth sample. The procedure for choosing the number of histogram bins is

described above.

p0
j —Initial guess for the optimal input distribution that achieves channel capacity. This vec-

tor has the same dimension as the number of input concentrations.

ε—Numerical threshold value for the stopping condition of the iterative algorithm.
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