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a b s t r a c t

Despite substantial clinical and anecdotal evidence for emotion dysregulation in individ-
uals with autism spectrum disorder (ASD), little is known about the neural substrates
underlying this phenomenon. We sought to explore neural mechanisms for cognitive
reappraisal in children and adolescents with ASD using functional magnetic resonance
imaging (fMRI). We studied 16 youth with ASD and 15 age- and IQ-matched typically
developing (TD) comparison youth. Participants were instructed in the use of cognitive
reappraisal strategies to increase and decrease their emotional responses to disgust-
ing images. Participants in both groups displayed distinct patterns of brain activity
for increasing versus decreasing their emotions. TD participants showed downregulat-
ion of bilateral insula and left amygdala on decrease trials, whereas ASD participants
showed no modulation of insula and upregulation of left amygdala. Furthermore, TD
youth exhibited increased functional connectivity between amygdala and ventrolat-
eral prefrontal cortex compared to ASD participants when downregulating disgust, as
well as decreased functional connectivity between amygdala and orbitofrontal cor-

tex. These findings have important implications for our understanding of emotion
dysregulation and its treatment in ASD. In particular, the relative lack of prefrontal-
amygdala connectivity provides a potential target for treatment-related outcome
measurements.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC
. Introduction

Autism spectrum disorder (ASD) is a neurodevelop-

ental disorder characterized by a triad of deficits:

mpairments in reciprocal social interactions, restricted
nd repetitive patterns of behavior, and delayed or absent

Abbreviations: ASD, autism spectrum disorder; TD, typically
eveloping.
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communicative skills (APA, 2000). Emotion dysregulation
is common in ASD, frequently manifesting as tantrums,
meltdowns, or social withdrawal (Laurent and Rubin,
2004). Children with ASD utilize fewer adaptive affect
regulation strategies than typically developing (TD) chil-
dren (Konstantareas and Stewart, 2006), and are more
likely to display maladaptive regulation techniques (e.g.
avoidance) and less likely to utilize constructive strategies
(e.g. cognitive reappraisal; Jahromi et al., 2012). Emotional

outbursts in children with ASD exacerbate difficulties
in social functioning and are distressing to caregivers
(Ozsivadjian et al., 2012). Thus, elucidating mecha-
nisms underlying emotion regulatory processes in ASD is
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important for furthering our understanding of the disorder
and may facilitate development of more targeted treat-
ments for emotion dysregulation (Mazefsky et al., 2012).

One emotion regulation strategy that has received
substantial attention in the extant scientific literature is
cognitive reappraisal, which occurs after production of
an emotional response, and includes reinterpretation of
an emotion-laden stimulus to modify one’s emotional
response (Gross, 1998; Gross and Munoz, 1995; Gross and
Thompson, 2007; Ochsner and Gross, 2005). Prior studies
have extensively addressed neural mechanisms of cogni-
tive reappraisal in healthy adults, suggesting a role for
prefrontal and cingulate networks in implementing reg-
ulatory processes that in turn modulate activity in limbic
regions implicated in emotional experience, including the
amygdala (Beauregard et al., 2001; Blair et al., 2007; Kanske
et al., 2011; Kim and Hamann, 2007; Levesque et al., 2003;
Mak et al., 2009; Ochsner et al., 2004, 2012; Ochsner and
Gross, 2007; Phan et al., 2005; Phillips et al., 2008; Urry
et al., 2006). In contrast to adults, there are few studies
of neural correlates of cognitive reappraisal in TD children
and adolescents (Dennis and Hajcak, 2009; Levesque et al.,
2004; McRae et al., 2012; Pitskel et al., 2011). Because
cognitive behavioral therapy is increasingly used to treat
individuals on the ASD spectrum (Danial and Wood, 2013;
Sukhodolsky et al., 2013) and cognitive reappraisal skills
are a key target of cognitive behavioral therapy approaches
(Ball et al., 2013; Goldin et al., 2013; Shurick et al., 2012)
we reasoned that a study of the neural correlates of cog-
nitive reappraisal in ASD would be valuable to the field.
To our knowledge, no neuroimaging studies to date have
employed a cognitive reappraisal paradigm in ASD.

We sought to explore neural mechanisms subserving
cognitive reappraisal of disgust in children and adolescents
(collectively referred to as youth) with ASD, in compari-
son to TD youth. We specifically focused on the cognitive
reappraisal of disgust for three reasons, two methodologi-
cal and the other theoretical. First, many of the studies
examining cognitive reappraisal have used a range of aver-
sive pictures drawn from the International Affective Picture
System (IAPS; Lang et al., 2008). These images can reflect
direct threats (human, animal), disgusting images, as well
as images reflecting violence and anger. We wanted a the-
matically homogeneous picture set which would be more
likely to engage similar neural circuitry across images. Sec-
ond, we questioned whether previous work, in attempting
to adapt the IAPS images to children, had employed images
that were less intense, possibly engaging approach moti-
vation in some children, particularly boys (see McManis
et al., 2001). By focusing on disgust we expected we could
employ more intense images, which were still acceptable
for a child study (i.e., injury or death (adult work) vs. road
kill (present study)). Third, disgust images are known to
engage insular activity (Chapman and Anderson, 2012) and
deficits in functional connectivity of the insula have been
specifically implicated in ASD (Ebisch et al., 2011; Uddin
and Menon, 2009). In particular, a meta-analytic examina-

tion of 24 studies on social information processing and 15
non-social studies (Di Martino et al., 2009) suggested that
a distributed system involving the ACC and the anterior
insula was hypoactive for individuals with autism. Thus we
Neuroscience 10 (2014) 117–128

focused on bilateral insula and amygdala, regions of a priori
interest because of their implicated roles in processing neg-
ative (particularly disgusting) stimuli (Calder et al., 2000;
Ibañez et al., 2010; Lane et al., 1997; Phillips et al., 1997;
Schafer et al., 2005; Wicker et al., 2003) and emotion reg-
ulation (Eippert et al., 2007; Harenski and Hamann, 2006;
Kober et al., 2010; Koenigsberg et al., 2010; McRae et al.,
2010; Ochsner et al., 2002; Ohira et al., 2006; Schaefer et al.,
2002), respectively.

Broadly speaking a large body of data examines the
role of amygdala-prefrontal cortex (PFC) function in emo-
tion regulation among typical populations (Zotev et al.,
2013). Particularly important for the present study is a
growing body of work suggesting atypical PFC-amygdala
function in ASD. For instance, some studies suggest reduced
vmPFC-amygdala connectivity in ASD (e.g. Swartz et al.,
2013). Another group demonstrated reduced resting state
functional connectivity between mPFC and both amygdala
and insula (von dem Hagen et al., 2013). Conversely, oth-
ers show greater vmPFC-amygdala functional connectivity
(Monk et al., 2010), as well as differential patterns of func-
tional connectivity of the amygdala with a range of cortical
regions including the posterior and dorsal cingulate cor-
tex, superior temporal sulcus, and inferior frontal gyrus
(Murphy et al., 2012).

We hypothesized that compared to TD youth, those
with ASD would exhibit diminished modulation of amyg-
dala and insula during cognitive reappraisal of disgust, and
reduced functional connectivity between these regions and
prefrontal cortex (PFC).

2. Materials and methods

2.1. Participants

We studied 22 youth with ASD and 24 TD controls.
Participants were recruited via local schools, Internet
advertising, flyers placed in public locations (campus build-
ings, libraries), and from the Yale Center for Translational
Developmental Neuroscience participant registry. Addi-
tionally, participants from past studies who expressed
an interest in being considered for future studies were
contacted by phone. Individuals were excluded from par-
ticipation if, by parent report, they had experienced
brain injury, brain disease, brain malformation, seizures,
epilepsy, hearing or vision loss, motor impairment, or
severe allergies. Other exclusion criteria included intellec-
tual disability or learning disability, and, for the typically
developing group, parental concern about possible signs of
autism or developmental problems, or the presence of a
sibling with autism.

Children with ASD were diagnosed via expert clini-
cal judgment supplemented with the Autism Diagnostic
Observation Schedule (ADOS; Lord et al., 2000) and the
Autism Diagnostic Interview–Revised (ADI-R; Lord et al.,
1994) (Table 1). Experienced personnel administered the
Differential Abilities Scale (DAS; Hale and Willis, 2008), a

measure of IQ, to all participants. Parents completed the
Social Responsiveness Scale (SRS; Constantino and Todd,
2003) assessing their child’s behavior. Prior to group analy-
ses, we excluded participants with excessive motion during
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Table 1
Baseline characteristics.

Measure Group

TD ASD

Mean (SEM) Range Mean (SEM) Range

IQ
n 15 15
Verbal 106.46 (3.59) 86–126 108.13 (5.89) 79–161
Nonverbal 98.33 (3.83) 76–127 102.33 (5.82) 77–166
Overall 101.87 (4.03) 78–131 102.40 (6.18) 76–165

ADI-R
n 12
Social 12.00 (1.15) 13–27
Communication and language 17.42 (0.96) 13–23
Restricted and repetitive behaviors 5.17 (0.96) 0–10

ADOS (module 3)
n 14
Social and communication* 9.43 (0.97) 3–17
Stereotyped repetitive behaviors 2.93 (0.25) 2–5

SRS
n 14 14
Raw total score** 27.64 (6.19) 2–85 92.43 (6.79) 59–126

Values expressed as Mean (SEM). IQ data are as measured by the Developmental Abilities Scale (DAS). Abbreviations: Autism Diagnostic Interview-Revised
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ADI-R), Autism Diagnostic Observation Schedule (ADOS), Social Responsi
as confirmed via ADI-R and expert clinical judgment. **ASD > TD, p < .00

he scan (7 TD, 6 ASD), concern for a neuropsychiatric
linical diagnosis (1 TD), and outlying data in contrasts
f interest raising serious concern that the task was per-
ormed incorrectly (1 TD; the outlier’s values fell outside
f two standard deviations of the mean in both insula
egions (right insula: mean: 0.118, SD: 0.54, outlier value:
1.388; left insula: mean: 0.102, SD: 0.54, outlier value:
1.036). Our final sample consisted of 15 TD participants

9–17 years, mean 13.03 ± 2.20, 9 male) and 16 participants
ith ASD (9–17 years, mean 13.82 ± 2.41, 12 male). Find-

ngs from the TD group have been previously presented
Pitskel et al., 2011). We obtained informed parental con-
ent and written assent from each participant according to
protocol approved by the Yale School of Medicine Human

nvestigations Committee.

.2. Experimental design

Stimuli consisted of two types of pictures, neutral and
isgusting, selected from the International Affective Pic-
ure System (Lang et al., 2008) and supplemented from
n in-house set of images depicting moldy food, people
omiting, roadkill, etc. Details of experimental design and
re-task training can be found in Supplemental Materials
nd Figure S1. Briefly, participants viewed an instruction
ndicating one of three tasks (look, increase, or decrease)
s well as a strategy prompt to aid in task execution.
articipants next viewed a disgusting or neutral image,
nd then rated their emotional response on a 5-point Lik-

rt scale, followed by a “relax” prompt. There were 4
onditions: look-neutral, look-gross, decrease-gross, and
ncrease-gross; participants completed 9 trials of each con-
ition in an event-related design. Prior to the experiment,
cale (SRS). One ASD participant score did not meet ASD cutoff; diagnosis

all participants received individual task training delivered
by trained personnel outside the scanner.

2.3. Imaging protocol

Images were collected on a Siemens 3 T Tim Trio
scanner located in the Yale University Magnetic Res-
onance Research Center. High-resolution T1-weighted
anatomical images were acquired using an MPRAGE
sequence parallel to the AC-PC line (TR = 1230 ms;
TE = 1.73 ms; flip angle = 9◦; FOV = 256 mm; image matrix
2562; 1 × 1 × 1 mm). Whole-brain functional images
were acquired using a single-shot, gradient-recalled
echo planar pulse sequence parallel to the AC-PC line
(TR = 2000 ms; TE = 25 ms; flip angle = 60◦; FOV = 220 mm;
image matrix = 642; voxel size = 3.4 × 3.4 × 4.0 mm; 34
slices) sensitive to BOLD contrast. Runs consisted of
acquisition of 407 successive brain volumes.

2.4. Data analysis

2.4.1. Behavioral data
To assess differences in emotion regulation task per-

formance between groups, we averaged behavioral ratings
grouped by experimental condition in each participant.
We then compared these average ratings via repeated-
measures ANOVA. We utilized group-wise paired-samples
t-tests to compare behavioral responses within groups.

2.4.2. Image preprocessing

Imaging data were preprocessed and analyzed using the

BrainVoyager QX 2.0.8 software package (Brain Innovation,
Maastricht, The Netherlands). Preprocessing of func-
tional data included slice time correction, 3-dimensional
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rigid-body motion correction (using trilinear-sinc interpo-
lation), spatial smoothing with a FWHM 4-mm Gaussian
kernel, linear-trend removal, and temporal high-pass fil-
tering (fast-Fourier transform based with a cutoff of 3
cycles/time course). Functional data sets were coreg-
istered to high-resolution, within-session, T1-weighted
anatomical images which were in turn normalized to
Talairach space (Talairach and Tournoux, 1988), to create
4-dimensional data sets. We used an in-house script to
identify (and exclude) participants for whom, after remov-
ing volume acquisitions where movement between two
volumes or integrated movement over 4 volumes exceeded
1 mm, more than 25% of data was removed from any exper-
imental condition (7 TD, 6 ASD).

2.4.3. Whole brain analyses
To investigate whole brain task-related activity in the

ASD group, as previously reported for the TD partici-
pants (Pitskel et al., 2011), we performed a random-effects
general linear model (GLM)-based analysis. GLM task
regressors were defined as boxcar functions with values of
“1” during each type of image presentation (look-neutral,
look-gross, decrease-gross, increase-gross; predictors of
interest) and “0” otherwise, as well as three additional box-
car functions with values of “1” during instruction, affect
rating, and “relax” periods (predictors of no interest) and
“0” otherwise. The instruction regressor encompassed both
instruction and strategy presentation. These boxcar func-
tions were convolved with a double-gamma hemodynamic
response function (HRF). To further account for motion
during each scan, functions of 3 directions and 3 transla-
tions of movement from each participant were included
in each single-participant GLM-based analysis. All whole-
brain analyses were restricted to only voxels located within
the Montreal Neurological Institute (MNI) brain normal-
ized to Talairach space. For each whole-brain analysis, we
assessed results at an uncorrected statistical threshold of
p < .05, corrected for multiple comparisons with a clus-
ter threshold calculated to correspond to ˛ < .05 via the
BrainVoyager cluster-threshold estimator plugin perform-
ing 1000 iterations of a Monte-Carlo simulation (Forman
et al., 1995; Xiong et al., 1995).

To identify brain regions differentially modulated dur-
ing the experimental paradigm as a function of group
membership, we performed three separate 2 × 2 analyses
of covariance (ANCOVAs) for each contrast of interest (Con-
dition: look-gross vs. look-neutral OR decrease-gross vs.
look-gross OR increase-gross vs. look-gross, Group: ASD vs.
TD) with age as a covariate. For each whole-brain analy-
sis, results were assessed at a statistical threshold of p < .05
with a cluster threshold corresponding to ˛ < .05 as cal-
culated via the BrainVoyager cluster-threshold estimator
plugin.

2.4.4. Region of interest analyses
We performed more specific region of interest (ROI)

analyses in bilateral insula and amygdala. We defined

structural ROIs of bilateral amygdala and insula from the
Talairach database (Lancaster et al., 1997, 2000) and com-
bined these regions into one mask. We then performed
two separate 2 × 2 ANCOVAs (Condition: decrease-gross
Neuroscience 10 (2014) 117–128

vs. look-gross OR increase-gross vs. look-gross, Group: ASD
vs. TD) with age as a covariate, restricted to voxels within
this mask at a statistical threshold of p < .05 with a clus-
ter threshold of 4 contiguous functional voxels. We used a
more liberal cluster threshold as the ROIs already limited
the number of statistical comparisons in the interaction
analyses.

2.4.5. Functional connectivity analysis
We performed psychophysiological interaction (PPI)

analyses (Friston et al., 1997) in each participant group
to assess task-related functional connectivity related to
emotion downregulation. We selected right amygdala as
the seed region because it showed significant (and largely
overlapping) activation to gross (versus neutral) pictures
independently in each participant group (p < .01). Preced-
ing connectivity analyses, the global mean was removed
from each volume to remove physiological artifacts (Fox
et al., 2005). PPI regressors for each participant were cre-
ated from the new functional data sets by multiplying
the preprocessed, normalized seed region time course
by the difference of the two task regressors (decrease-
gross > look-gross) convolved with the HRF. For each
participant, the resulting PPI function along with the region
time course and original 7 task regressors and 6 motion
parameters were included in a multi-participant random-
effects GLM-based analysis. A voxel-wise single-factor
ANCOVA was performed to compare groups on parame-
ter estimates for the PPI regressor, using age as a covariate.
We compared mean values of the PPI regressor by group
in each region to determine the directionality of the group
difference.

Given a priori hypotheses based on previous work on
emotion regulation demonstrating a relationship between
lateral PFC and amygdala activity (Blair et al., 2007;
Ochsner et al., 2002; Wager et al., 2008) analyzed voxels
were limited to lateral PFC, delineated by bilateral infe-
rior, middle and superior frontal gyri as defined by the
Talairach database (Lancaster et al., 1997, 2000). Results
were assessed at a statistical threshold of p < .05 with a
cluster threshold of 20 contiguous functional voxels, cor-
responding to ˛ < .05 as calculated by the BrainVoyager
cluster-threshold estimator plugin.

3. Results

3.1. Behavioral data

TD and ASD groups did not differ in age (t(29) = −1.0,
p = .35) or IQ (Verbal: t(28) = −.3, p = .75; Nonverbal:
t(28) = −.5, p = .63; Overall: t(28) = −.04, p = .97). As
expected, there was a mean difference in SRS scores
between groups, with ASD participants scoring signif-
icantly higher (greater social impairments) than TD
participants (t(26) = −7.1, p < .0001). For affect ratings
in response to the emotion regulation task, repeated-
measures ANOVA revealed a significant effect of condition

(F(1,29) = 135.7, p < .001) but no main effect of group
(F(1,29) = .007, p = .936) or group by condition interaction
(F(1,29) = .003, p = .960). Average disgust ratings of gross
pictures were significantly higher than disgust ratings of
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Fig. 1. Mean affect ratings as a function of group and co

eutral pictures (t(15) = 25.5, p < .001), and disgust ratings
ere significantly lower for gross pictures when partici-
ants were asked to decrease (t(15) = −6.3, p < .001), and
ignificantly higher for gross pictures when participants
ere asked to increase (t(15) = 7.2, p < .001) versus look

Fig. 1).

.2. Imaging data

.2.1. Whole brain analyses
Whole-brain contrasts of interest in the ASD group

evealed an extensive network of brain regions acti-
ated during emotion processing and regulation (Fig. 2,
able S1). Across both groups, whole-brain ANCOVAs
evealed a number of regions demonstrating significant
roup × Condition interactions in the three contrasts of

nterest (look-neutral vs. look-gross, decrease-gross vs.
ook-gross, and increase-gross vs. look-gross; Table S2).

.2.2. Region of interest analyses
Two Group × Condition ANCOVAs (Condition: decrease-

ross vs. look-gross OR increase-gross vs. look-gross,
roup: ASD vs. TD) performed across participant groups
ithin structurally defined ROIs in bilateral insula and

mygdala revealed subregions of bilateral insula and amyg-
ala showing a significant group by condition interaction
o decrease-gross versus look-gross trials. In addition,
ubregions of bilateral insula showed a significant group
y condition interaction to increase-gross versus look-
ross trials (Table 2, Fig. 3). Post-hoc one-sample t-tests
f average difference beta values are presented in Table
3, separately for the decrease-gross vs. look-gross com-
arisons and increase-gross vs. look-gross comparisons.
or the decrease-gross vs. look-gross comparisons, these
nalyses revealed that TD participants decreased activ-
ty in left amygdala and all but one insula region (right
orsal posterior insula), while ASD participants exhib-
ted no modulation in insula regions and an increase in
ctivity in left amygdala during decrease trials. Post-hoc
ne-sample t-tests for increase-gross vs. look-gross (Table
3) indicated that TD participants exhibited a significant
Error bars represent standard error of the mean (SEM).

decrease in bilateral insula activation, whereas ASD par-
ticipants showed no modulation of these regions. One
potential factor contributing to differences in the decrease-
gross/increase-gross versus look gross conditions for the
ROIs identified in Fig. 3 was the initial reactivity during the
look gross condition. This issue was addressed directly with
a post-hoc analysis comparing beta difference values across
ASD and TD participants for the contrast look-negative
versus look-neutral for each ROI (Table S4). Of the 11
sub-regions of insula and amygdala examined, four indi-
cated significantly greater reactivity for the TD group (right
ventral insula, left anterior insula, and bilateral amygdala,
uncorrected tests). Thus some of the group differences we
observed for the regulation condition may reflect effects of
initial reactivity.

3.2.3. Functional connectivity analysis
Our PPI analysis assessed task-related connectivity to

right amygdala during decrease-gross vs. look-gross tri-
als (Table 3, Fig. 4). Within lateral PFC, two regions of
right ventrolateral PFC (vlPFC) showed greater functional
connectivity to right amygdala during decrease-gross
(compared to look-gross) trials in TD > ASD participants,
while bilateral orbitofrontal cortex (OFC) and a region of
left superior frontal gyrus (SFG) showed greater functional
connectivity to right amygdala during decrease-gross
(versus look-gross) trials in ASD > TD participants. Post-
hoc analyses elucidating the direction of PPI differences
demonstrated that group differences in all regions were
driven by a main effect of PPI strength in TD participants
only (Table S5).

4. Discussion

4.1. Behavioral effects of cognitive reappraisal

Comparison of affect ratings suggests that children and

adolescents with and without ASD experienced greater
levels of disgust in response to disgusting versus neutral
images. Additionally, they reported lower or higher levels
of disgust when attempting to decrease or increase their
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Fig. 2. ASD brain activation in each of the three contrasts look-gross > look-neutral, decrease-gross > look-gross, increase-gross > look-gross, as well as the
conjunction of the two regulation contrasts. Orange indicates positive-going activation; blue negative-going activation. All activations are at a threshold of

tes disp
es to co
p < .05. Images are displayed in radiologic convention. Talairach coordina
right apply to the right-most column. (For interpretation of the referenc
article.)

emotional response, respectively. Moreover, groups did not
differ on self-report ratings, indicating that youth with ASD
reported being equally successful as their TD peers in regu-
lating their emotions. As we provided task-specific training
and coached participants on specific emotion regulation

strategies, the lack of behavioral deficits in the ASD group is
not at odds with reports of emotion dysregulation in more
ecologically valid situations, but suggests that youth with
ASD are capable of learning and performing an emotion

Table 2
Brain regions within bilateral insula and amygdala exhibiting a significant gro
look-gross trials, covarying for age.

Brain Region X Y

Decrease versus look
Right ventral insula 38 −11
Right dorsal anterior insula 38 7
Right anterior insula 32 16
Right dorsal posterior insula 28 −11
Right amygdala 23 −5
Left amygdala −32 −5
Left posterior insula −34 −23
Left anterior insula −37 4

Increase versus look
Right posterior insula 32 −20
Left dorsal posterior insula −34 −23
Left ventral posterior insula −43 −14

Results were obtained at a statistical threshold of p < .05 with a cluster threshold
are reported in Talairach space. Cluster size is reported in structural voxels.
layed to the left apply to the first three columns; those displayed on the
lor in this figure legend, the reader is referred to the web version of the

regulation strategy in a controlled setting. The use of CBT
with ASD patients is consonant with this idea (Danial and
Wood, 2013; Sukhodolsky et al., 2013).

4.2. Brain mechanisms for cognitive reappraisal of

disgust

Children and adolescents with ASD activated a broad
network of regions when viewing disgusting relative to

up by condition interaction to decrease-gross or increase-gross versus

Z Size F(1,28) p

−6 679 14.82 0.000628
3 161 8.35 0.007373
0 131 9.00 0.00562

12 251 9.79 0.004074
−18 166 9.38 0.004817
−18 200 12.46 0.001458

9 356 9.04 0.005518
6 598 12.61 0.001379

8 149 7.00 0.013219
15 282 7.32 0.011483

3 699 14.26 0.000764

of 4 contiguous functional voxels. Coordinates represent peak voxel and
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Fig. 3. Top left: Regions of bilateral insula and amygdala exhibiting a significant group by condition interaction when covarying for age, for decrease-gross
vs. look-gross (orange) and increase-gross vs. look-gross (yellow). Images are displayed in radiologic convention. Bar graphs: Mean beta values plotted
by group alongside mean difference beta values for each region depicted above, for decrease-gross vs. look-gross (bottom, orange) and increase-gross vs.
look-gross (top right, yellow). Error bars represent standard error of the mean (SEM). Asterisks denote mean difference beta values significantly different
f es to co
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rom zero (*p < .05, **p < .01, ***p < .001). (For interpretation of the referenc
rticle.)

eutral images, including insula, amygdala, and thalamus,
onsistent with disgust-specific activation in overlapping
egions in TD participants (Pitskel et al., 2011). That both
articipant groups activated regions implicated in disgust
rocessing (Calder et al., 2000; Ibañez et al., 2010; Lane
t al., 1997; Phillips et al., 1997; Schafer et al., 2005; Wicker

t al., 2003) serves as an important manipulation check req-
isite to interpretation of results pertaining to regulation
f disgust. Coupled with distinct patterns of neural modu-
ation during upregulation and downregulation of disgust

able 3
rain regions showing greater functional connectivity to right amygdala during d
TD versus ASD), covarying for age.

Brain Region X Y Z

TD > ASD
Right posterior vlPFC 44 16 8
Right anterior vlPFC 29 40 18

ASD > TD
Right posterior OFC 22 28 −12
Right anterior OFC 20 64 9
Left anterior OFC −40 52 0
Left posterior OFC −28 28 −16
Left premotor cortex −31 −8 60

esults obtained by PPI analyses assessed at a statistical threshold of p < .05 wit
eported in structural voxels. Abbreviations: orbitofrontal cortex (OFC); ventrolat
lor in this figure legend, the reader is referred to the web version of the

(Fig. 2), these results suggest that ASD participants effec-
tively engaged in the task.

4.3. Modulation of insula and amygdala

ROI analyses revealed decreased activity in several areas

of bilateral insula and amygdala during decrease trials
in TD participants, consistent with prior studies demon-
strating reduced activation of insula (Goldin et al., 2008;
Harenski and Hamann, 2006) and amygdala (for review,

ecrease-gross compared to look-gross trials (PPI) that differed by group

Size F(1,28) p

540 15.51 0.000495
1008 11.53 0.002066

635 10.18 0.003489
1053 15.76 0.000456
1949 16.63 0.000341
1111 13.54 0.000985

553 12.62 0.001374

h a cluster threshold of 20 contiguous functional voxels. Cluster size is
eral prefrontal cortex (vlPFC).
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Fig. 4. Regions showing greater functional connectivity to right amygdala during decrease-gross > look-gross trials (PPI) that differed by group (TD versus
ASD). Amygdala seed regions for each group are displayed in yellow (TD) and green (ASD). Regions depicted in orange showed greater PPI strength in
TD compared to ASD children; regions depicted in blue showed greater PPI strength in ASD compared to TD children. Analyses were limited to lateral

ith a cl
this figu
prefrontal cortex, and activations were assessed at a threshold of p < .05 w
in radiologic convention. (For interpretation of the references to color in

see Ochsner et al., 2012) during effortful downregulat-
ion of emotion in TD adults. Given these regions’ role in
affective processing, their modulation may reflect down-
regulation in emotional experience in line with diminished
disgust ratings. As expected, ASD participants displayed
no modulation of insula regions despite equivalent behav-
ioral performance. Surprisingly, ASD participants exhibited
upregulation of left amygdala activity during decrease
trials. Prior studies have shown enhanced amygdala acti-
vation during affective rating of aversive images compared
to simple recognition (Liberzon et al., 2000). Our findings
could theoretically reflect increases in arousal related to
task demand. This conjecture is intriguing but cannot be
sufficiently addressed by the present study.

Regions of bilateral posterior insula exhibited a group
by condition interaction for increase trials, with decreased
activity during increase trials in TD participants. These
regions overlap with bilateral posterior insula/superior
temporal gyrus regions that we reported previously as
showing decreased activation during regulation in TD
youth, irrespective of direction of regulation (Pitskel et al.,
2011). Therefore, we suspect that decreased activation in
this region may play a role in the process of emotion regu-
lation more generally.

4.4. Functional connectivity with right amygdala

Our PPI analyses revealed increased functional con-
nectivity between right amygdala and right vlPFC in TD
relative to ASD youth during downregulation of disgust.
This finding is consistent with prior studies demonstrat-
ing decreased amygdala-PFC functional connectivity in ASD
(Swartz et al., 2013; van dem Hagen et al., 2013). vlPFC has
been consistently implicated in cognitive control of neg-
ative emotions in adults (Ochsner et al., 2012), and right

vlPFC activity correlates with degree of reappraisal success,
as mediated by the amygdala (Wager et al., 2008). Given
our functional connectivity findings, coupled with evidence
of successful downregulation of amygdala during decrease
uster threshold of 20 contiguous functional voxels. Images are displayed
re legend, the reader is referred to the web version of the article.)

trials, we hypothesize that prefrontal-amygdala connectiv-
ity may be an index of top-down cognitive regulation of
negative affect in TD children and adolescents.

Importantly, we observed a positive PPI association
between vlPFC and amygdala in our TD group whereas
other studies report a negative PPI association (Guyer et al.,
2008; Townsend et al., 2013; Winecoff et al., 2011). One
explanation for the positive association we observed is
that there may be a developmental shift in prefrontal-
amygdala function that accounts for differential patterns of
connectivity. Recently, Gee et al. (2013) reported positive
amygdala-medial prefrontal connectivity for participants
younger than 10 years with the opposite pattern of connec-
tivity (negative) present among adolescent and young adult
participants. Admittedly, our sample was not as young
as Gee et al. and spanned mid-adolescent participants as
well. Moreover, few studies to date examine the regulation
of disgust. It may be that the positive PPI association we
observed is specific to disgust.

The brevity of our functional runs was designed to
accommodate a pediatric sample and particularly ASD
participants. Ideally, directionality of association in a PPI
analysis can be assessed from a single subject analysis
where numbers of trials permit examination of patterns of
association in single subjects (for an example, see Berkman
et al., 2009, Fig. 4). What we can say from our data is
that emotion regulation modulates connectivity between
amygdala and vlPFC differently in ASD and TD participants,
and our data are best viewed from the perspective of a
group level analysis. That ASD participants exhibited less
vlPFC-amygdala connectivity than their TD peers is one
potential explanation for diminished modulation of amyg-
dala activity in ASD.

In contrast, we observed increased functional con-
nectivity between bilateral OFC and left posterior SFG

and amygdala during decrease trials in participants with
ASD compared to TD participants. Post-hoc analyses
revealed that these findings were driven by decreased func-
tional connectivity in TD participants, with no task-based
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onnectivity modulation in ASD participants. As we had no
ypotheses regarding negative PPI results, more directed

nvestigation is necessary to confirm and explain this find-
ng.

In sum, participants with ASD reported successful reg-
lation of their emotions, but did not demonstrate typical
atterns of neural modulation, suggesting that TD and ASD
outh may recruit distinct brain regions to accomplish the
ame task. Whole-brain analyses (Table S2) revealed that
o prefrontal cortical regions demonstrated group × condi-
ion interactions for the emotion regulation contrasts (i.e.
ecrease-gross vs. look-gross and increase-gross vs. look-
ross, respectively). Taken together with our PPI findings,
t is possible that in the present task, ASD youth recruit
refrontal cortex for top-down processing similarly to TD
outh, and group differences in PFC-limbic circuitry are
eflected in diminished downstream modulation of limbic
egions in ASD. This hypothesis is speculative, and would
e a worthy area of further study. Ultimately, underly-

ng group differences in baseline neural reactivity may
onfer vulnerability to dysregulation in more demand-
ng situations, consistent with clinical reports of emotion
ysregulation in ASD (Konstantareas and Stewart, 2006;
aurent and Rubin, 2004; Jahromi et al., 2012; Ozsivadjian
t al., 2012; Samson et al., 2012). Our exploratory analysis of
nitial reactivity (look-gross versus look-neutral) suggested
hat the ASD group was less reactive initially in some insu-
ar and amygdalar regions. Although emotion detection has
een a target of clinical treatment in conjunction with CBT
or some time, the way in which this is done may need to
e uniquely addressed in ASD, with the issue of initial reac-
ivity in mind. For instance, among the clinically anxious,
ome emphasis is placed on the meaning of arousal as a cue
o cope and reappraise rather than a cue to escape. Among
ndividuals with ASD, perhaps an earlier stage needs atten-
ion at the level of increasing interoceptive awareness that
nitiates, or serves a cue to deploy cognitive reappraisal
trategies.

.5. Limitations and future directions

We observed clear modulation of the amygdala and
nsula for reappraisal of disgust among TD participants,

hile both the ASD and TD groups provided compara-
le self-reports of emotion regulation success for disgust.
dmittedly, as with all questionnaire data, demand char-
cteristics could have influenced responding. The lack of
eural modulation of key emotion circuitry in ASD begs the
uestion of whether or not other factors account for our
ifferential effects. First, we did not directly assess read-

ng ability as a control variable, but rather relied on verbal
nstructions and a practice phase to ensure that all sub-
ects understood the task. Though TD controls and ASD
ubjects were comparable on verbal IQ, it remains possible
hat potential differences in reading ability that were not
irectly measured could theoretically contribute to group
ifferences in task-related brain activation. Future studies

ould assess reading achievement to account for this factor.
econd, we cannot exclude the possibility that duration of
ooking or where subjects looked accounted for differences
cross TD and ASD participants. We are now including eye
Neuroscience 10 (2014) 117–128 125

tracking to examine possible effects of looking time and
gaze patterns on emotion regulation effects. Finally, the
present study was limited by relatively small sample sizes,
and warrants replication with larger samples in the future.

Our investigation focused on regulation of disgust. It
is interesting to note that the experience of disgust has
been linked to anxiety disorders (Davey et al., 2006;
Olatunji et al., 2011; Olatunji and Sawchuk, 2005), includ-
ing obsessive–compulsive disorder (Berle and Phillips,
2006; Schienle et al., 2005), specific phobias (Davey, 1994;
Mulkens et al., 1996; Tolin et al., 1997; Woody and
Teachman, 2000), and health anxiety (Davey and Bond,
2005). Furthermore, comorbid anxiety disorders are par-
ticularly prevalent in individuals with ASD (Bellini, 2004,
2006; Kim et al., 2000; Kuusikko et al., 2008; Tantam, 2000;
White et al., 2009). Cognitive reappraisal forms a core com-
ponent of cognitive-based psychotherapies (Campbell-Sills
and Barlow, 2007; Linehan et al., 2007; Taylor and Liberzon,
2007), which are often used to target anxiety disorders and
more recently for treatment of anxiety in ASD (Lang et al.,
2010; Moree and Davis, 2010; Ooi et al., 2008; Scarpa and
Reyes, 2011; White et al., 2010; Wood et al., 2009). There-
fore, expanding upon our present findings may further our
understanding of deficits in emotion regulation as they
pertain to anxiety, with important clinical implications for
psychotherapeutic approaches to anxiety in ASD.

4.6. Conclusions

This is the first functional neuroimaging study of cog-
nitive reappraisal in ASD. In this preliminary study we
have demonstrated that children and adolescents with
ASD are capable of learning and engaging in a cogni-
tive reappraisal task in a controlled setting. In contrast
to their TD peers, those with ASD display abnormal pat-
terns of modulation of insula and amygdala, as well as
decreased functional connectivity between amygdala and
vlPFC during downregulation of disgust. These findings
have important implications for our understanding of emo-
tion dysregulation and its treatment in ASD. We have
identified potential indices of emotion regulation deficits
in ASD, and highlighted activity in brain regions which may
be critical to successful emotion regulation in TD youth but
which are abnormal in ASD. Future studies could target the
regulation of other emotional states that may be problem-
atic for those with ASD, including anxiety and irritability.
Studies combining functional neuroimaging with thera-
peutic interventions could clarify the extent to which the
neural mechanisms of emotion regulation predict and/or
correlate with clinical outcomes.
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