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Direct observation of 
symmetrization of hydrogen 
bond in δ-AlOOH under mantle 
conditions using neutron diffraction
Asami Sano-Furukawa1, Takanori Hattori1, Kazuki Komatsu2, Hiroyuki Kagi2, Takaya Nagai3, 
Jamie J. Molaison   4, António M. dos Santos4 & Christopher A. Tulk4

At ambient pressure, the hydrogen bond in materials such as ice, hydrates, and hydrous minerals that 
compose the Earth and icy planets generally takes an asymmetric O-H···O configuration. Pressure 
significantly affects this configuration, and it is predicted to become symmetric, such that the hydrogen 
is centered between the two oxygen atoms at high pressure. Changes of physical properties of minerals 
relevant to this symmetrization have been found; however, the atomic configuration around this 
symmetrization has remained elusive so far. Here we observed the pressure response of the hydrogen 
bonds in the aluminous hydrous minerals δ-AlOOH and δ-AlOOD by means of a neutron diffraction 
experiment. We find that the transition from P21nm to Pnnm at 9.0 GPa, accompanied by a change in 
the axial ratios of δ-AlOOH, corresponds to the disorder of hydrogen bond between two equivalent 
sites across the center of the O···O line. Symmetrization of the hydrogen bond is observed at 18.1 GPa, 
which is considerably higher than the disorder pressure. Moreover, there is a significant isotope effect 
on hydrogen bond geometry and transition pressure. This study indicates that disorder of the hydrogen 
bond as a precursor of symmetrization may also play an important role in determining the physical 
properties of minerals such as bulk modulus and seismic wave velocities in the Earth’s mantle.

The existence of hydrogen in the Earth’s mantle is evidenced by the presence of high-pressure ice1, hydrous 
minerals2, and nominally anhydrous minerals with high water content3 as inclusions in superdeep diamonds. 
Hydrogen, which has only one electron, is anchored to minerals by a hydrogen bond (H-bond). Because of the 
distinct bond property of H-bond as compared to that of the covalent bond that forms rigid frameworks of the 
minerals, the incorporation of hydrogen significantly influences the physical properties of mineral4.

At ambient pressure, the hydrogen bond generally takes an asymmetric O-H···O configuration that comprises 
a short O-H covalent bond and a long H···O hydrogen bond. The O-H bond length is around 1.0 Å whereas 
the H···O bond length is around 1.8 Å in a moderate strength of H-bond. By calculating the proton potential 
with respect to the distance between the two oxygen atoms, Holzapfel (1972)5 indicated that the hydrogen in 
high-pressure ice will be centered along the O···O line at a point where the double-well proton potential merges 
into a single minimum under compression. This process is the so-called symmetrization of the H-bond. (In this 
paper we use the term “symmetrization” to indicate the model in which proton locates at the center position 
between the two oxygen atoms in a statistical view. The model with fully disordered hydrogen bond between 
two off-centered sites with half occupancy in each is refereed as a “disordered” phase in this paper following the 
previous studies on ice although it is crystallography symmetric as well.) Considerable effort has been expended 
to investigate the pressure-induced symmetrization of the H-bond; regardless, most of the studies that have been 
conducted so far are based on indirect methods such as spectroscopy6–9 and X-ray diffractions.

Further, the H-bond symmetrization is predicted to occur in minerals at the mantle conditions. The first the-
oretical prediction of the H-bond symmetrization in minerals was conducted on the aluminous hydrous mineral, 
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δ-AlOOH10–13 (Fig. 1), which reported that the symmetrization occurs at around 30 GPa. This hydrous mineral is 
stable over an extremely wide pressure range beyond 134 GPa and 2000 K; thus, it is considered to be one of the 
important hydrogen carriers to the Earth’s core-mantle boundary14,15. It was also indicated that the H-bond in other 
hydrous minerals, such as dense hydrous magnesium silicates phase D16, phase H17, and FeOOH18, that are stable 
in the lower mantle conditions, will undergo symmetrization. Notably, the change in bonding nature owing to sym-
metrization induces a change in the physical properties of the mineral. Theoretical studies have indicated that sym-
metrization triggers an increase in the bulk modulus and that it modifies the seismic wave velocity in δ-AlOOH10–12. 
Subsequent experimental studies observed a stiffening behavior at around approximately 10 GPa19 and an anom-
alous increase in sound velocities over an extensive pressure range of 6–15 GPa20. Furthermore, considerable D/H 
isotope effects were observed at the pressure at which the change was observed, which indicated that the H-bond 
plays an important role19. However, while these changes have been explained by symmetrization, the pressure condi-
tions do not coincide with the theoretically predicted symmetrization pressure. Although attempts have been made 
to explain the cause of these phenomena from the structural viewpoint21,22, the origin remains unclear.

In this study, we conducted neutron diffraction experiments on the hydrous mineral δ-AlOOH(D), under 
pressures of up to 18.1 GPa and observed H-bond symmetrization for the very first time. The scattering length of 
hydrogen for neutrons is significant as compared to that of X-rays; thus, its contribution to the diffraction inten-
sity is adequate to locate the hydrogen in the structure. Direct observation of the pressure response of the H-bond 
geometry in δ-AlOOH and its deuterated analogue provides the implications of the effects of symmetrization on 
the physical properties of minerals in the Earth’s mantle.

Phase transition in δ-AlOOH and proton distribution.  The neutron diffraction patterns of δ-AlOOH 
were collected upon compression to 18.1 GPa at room temperature by using a Paris–Edinburgh press. Because 
of the strong incoherent scattering of hydrogen, the background is slightly higher in δ-AlOOH compared to 
δ-AlOOD, but diffraction peaks are clearly seen even at small d-spacing below 1 Å (Supplementary Fig. S1, Fig. 2b, 
inset). All profiles can be fitted using the δ-AlOOH and the diamond that were used as anvils. In the first step, the 
atomic positions were refined using the H-ordered model with the space group of P21nm (Fig. 1a), which is stable 
at ambient pressure, for the whole pressure range. Supplementary Fig. S2 shows the difference of interatomic dis-
tances of equatorial Al-O2 and Al-O1 of AlO6 octahedron. At ambient pressure, Al atom sits at the off-centered 
position of the AlO6 octahedron reflecting the fact that O1 forms H…O1 hydrogen bond while O2 forms O2-H 
covalent bond. The difference is over 0.1 Å at ambient pressure but it becomes negligible above 9 GPa. This result 
implies that the electrostatic charge becomes comparable between the O1 and O2 site and the donor and accepter 
oxygen atoms of the hydrogen bond are indistinguishable from each other at high pressure.

In addition, we observed a slight modification of the profiles under high pressures, suggesting a phase tran-
sition. Figure 2a shows the pressure evolution of the intensity of the 021 reflection at around 1.7 Å normalized 
against the 110 reflection, which has the maximum intensity. This peak has only 2% intensity compared to the 
maximum one under ambient conditions, but importantly, its intensity decreases continuously as the pressure 
increases. The critical pressure at which the intensity becomes zero was found to be 9.0 GPa by fitting the pressure 
evolution to a quadratic function. This additional extinction condition of k + l ≠ 2n for 0kl can be attributed to 
the transition to Pnnm, which is a direct super group of P21nm, as pointed out in our previous single-crystal X-ray 
diffraction study21. The transition pressure is comparable roughly to the value in the previous study, where the 
transition occurred between 6.1 and 8.2 GPa.

Figure 1.  Structure models of δ-AlOOH (a) at ambient pressure with hydrogen-ordered model, (b) hydrogen 
disordered, and (c) centered model. AlO6 octahedra (blue) share edges and form a single chain along the c-axis. 
Each chain connects with neighbors via corners, and these chains build a distorted-rutile-type framework. 
At ambient pressure (a), hydrogen (pink spheres) is located in the tunnel between the octahedral chains at 
asymmetric positions between two oxygen atoms (red sphere)25,43. In this case, the Al atom sits at an off-center 
position in the octahedron, reflecting the different electrostatic charge between the donor and acceptor of the 
H-bond. By contrast, the Al atom sits at the center of the octahedron in the H-disordered (b) and the centered 
models (c).
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The transition to Pnnm indicates that all oxygen atoms in the structure become crystallographically equiv-
alent. By contrast, in the P21nm model, there are two distinct oxygen sites corresponding to the donor and the 
acceptor of the H-bond. However, the space group of Pnnm does not require the hydrogen position to be cen-
tered. As suggested by a previous work on ice23,24, it is likely that the hydrogen is disordered between two equiva-
lent sites across the center (Fig. 1b) before the symmetrization (Fig. 1c). In this configuration, both sites of oxygen 
atoms are in the same environment, and the structure of δ-AlOOH can be also described as Pnnm. To investigate 
the distribution of hydrogen in detail, Fourier maps were synthesized from the differences between the observed 
and the refined models without hydrogen atoms (Fig. 3). In these maps, hydrogen is recognized as a negative peak 
because it has a negative neutron scattering length.

At ambient pressure, nuclear density around the hydrogen position shows an asymmetric distribution con-
sisting of two peaks of different heights. This feature is similar to that was observed in the case of δ-AlOOD22,25, 
and it raises the possibility that the hydrogen is partially disordered even at ambient pressure. However, refine-
ment of the partially disordered model did not yield a reasonable result, probably because of the strong correla-
tions between atomic positions, occupancies, and thermal parameters of the two sites located in close proximity. 
This result is inconsistent with the NMR study that shows a single well-defined O…O distance for proton site 
in δ-AlOOH26. To further elucidate the partially disordered model, other methods − such as optical or neu-
tron spectroscopic studies are necessary. The position of the higher peak agrees well with the refined hydrogen 
position in the hydrogen-ordered model; thus, the following results are not affected by application of either the 
ordered or the partially disordered hydrogen model in the refinement.

A remarkable change was found in the proton distribution under high pressures. Under compression, the two 
peaks gradually moved toward the center between the two oxygen atoms. The difference in the heights of the two 
peaks decreased at the same time. At 8.40 GPa, which is just below the transition pressure, the two peaks almost 
merge and show a broad and asymmetric distribution (Fig. 3b). Above the transition pressure, the density peaks 
yield bimodal distribution with the same peak height (Fig. 3c), clearly indicating that the P21nm to Pnnm transi-
tion can be interpreted as complete disordering of the H-bond rather than symmetrization. Further compression 
to 18.1 GPa led to merging of the distribution into a single peak at the center of the two oxygen atoms, suggesting 
that hydrogen symmetrization takes place at least the pressure between 18.1 GPa and 16.1 GPa (Fig. 3d). These 
observations revealed that there are two transitions in δ-AlOOH, namely, disorder of hydrogen bond at 9.0 GPa 
accompanied by a change in the space group, which is probably the onset of tunneling as discussed later, and 
symmetrization at 18.1 GPa without any change in the space group.

Figure 2.  Pressure evolutions of normalized intensities of selected reflections showing rapid decrease and 
Rietveld fits of profiles obtained at high pressures. The symbols in (a) and (c) correspond to the results of 
this study (circles) and previous study22 (squares). The open and filled circles in (a) indicate the individual 
experimental run. The peak intensities in (a) and (c) are normalized by the maximum intensity in δ-AlOOH 
and δ-AlOOD, respectively. The crosses, red lines, and gray lines in (b) and (d) represent the observed, modeled, 
and difference profiles, respectively. The models used in the refinements are the centered H-bond model in 
(b) and the disordered H-bond model in (d). The vertical bars below the profiles indicate the calculated peak 
positions of the δ-AlOOH(D) (top) and diamond (bottom) that were used as anvils.
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D/H Isotope effect on phase transition.  To investigate the isotope effect on the transition, neutron dif-
fraction patterns of δ-AlOOD were measured at 17.4 GPa (Fig. 2d). Different scattering lengths of deuterium 
from hydrogen make the intensity profiles completely different; for example, the 021 reflection becomes invisible 
in the deuterated sample. We used the 120 reflection instead, which leads to zero intensity in Pnnm, as a criterion 
of the transition. The intensity becomes smaller under high pressures (Fig. 2c, Supplementary Fig. S1d), and 
the transition pressure was found to be 13.4 GPa in the case of δ-AlOOD, which is 4.4 GPa higher than that of 
δ-AlOOH. Figure 4 shows the difference Fourier maps of δ-AlOOD at selected pressures. In this case, deuterium 
appears as a positive nuclear density peak in the map because it has a positive scattering length. In accordance 
with the previous neutron diffraction study22, the density peak in the Fourier map shows asymmetric bimodal 
distribution under lower pressures. With increasing pressure, the peaks move toward the center between the 
two oxygen atoms (Fig. 4a–b). Above the transition pressure, the distribution has a symmetric bimodal shape 
(Fig. 4c), indicating that the transition is defined by the disorder of deuterium as well as that of δ-AlOOH. Under 
pressures of up to 17.4 GPa, the distribution remained bimodal and did not merge into a single peak in the case 
of δ-AlOOD (Fig. 4d).

Evolution of H-bond geometry under high pressures.  Based on the models determined as described 
above, the structures, including hydrogen positions under high pressures, were refined. Figure 5(b) shows the 
pressure evolutions of the O-H(D)···O geometry. The O···O distances decrease almost linearly towards the pres-
sures of the disorder transitions, but the rates of this change appear to decrease slightly above the transition pres-
sures. The decrease in the O···O distances results in strengthening of the H(D)···O H-bond and weakening of the 
O-H(D) covalent bond, as reflected by the decrease and increase in each of these distances. This result agrees with 
the result of a previous high pressure IR study, in which softening of the OH stretching bond was demonstrated27. 
The pressure evolutions of the O-H(D) and H(D)···O distances are non-linear, and the rate of change is acceler-
ated toward disorder and symmetrization. Specifically, changes in the O-H bond length are remarkable, and it was 
0.12 Å under compression of 10.2 GPa that corresponds to 11% increase. This rate is one to two orders of magni-
tude higher than that of other known materials. In general, compression of the O···O distance results in decreased 
length of the H-bond, while its effect on the length of the covalent bond is known to be small. For instance, the 
evolution of the O-D bond length is reported to be linear with small gradients of 0.0004 Å/GPa for ice VIII under 
10 GPa28 and 0.004 Å/GPa for ice VII under 5.4 GPa29. The large changes in the covalent bond length that were 
observed in this study can be considered as a characteristic feature of the pressure response of the strong H-bond.

A comparison of the H-bond geometries of δ-AlOOH and δ-AlOOD under the same pressure revealed the 
presence of a significant isotope effect. Deuteration leads to an increase in the O···O and the hydrogen bond 
lengths, and a decrease in the covalent bond length under pressures lower than 10 GPa. The difference in bond 
length observed in this study is in the range of the known geometric isotope effect30. An investigation of the 

Figure 3.  Difference Fourier maps of δ-AlOOH in section containing H-bond, showing changes in proton 
distribution under high pressure. The maps were generated from the difference between the observed pattern 
and the refined structural model without hydrogen. The hydrogen atoms in the crystal structure in (a) that 
overlap with the density map are not shown. The crosses in maps (b–d) indicate the positions of oxygen atoms. 
Bird’s eye views of the maps are also shown on the right-hand sides of (a–d). The contour interval is 0.2, and the 
zero and negative contours are shown by black dashed lines and the positive contours are shown by gray solid 
lines. The space groups of the model are P21nm in (a,b) and Pnnm in (c,d).
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H-bond geometries of various materials under ambient pressure suggests that the O···O distance increases by 
about 0.02~0.03 Å upon deuteration, where the O···O distance is around 2.5 Å. Above 10 GPa, there was an anom-
alous increase in the H(D)-bond length and shortening of the covalent bond in both δ-AlOOH and δ-AlOOD. 
At the moment, we cannot interpret this phenomenon properly, and whether this is true for H-bonds in gen-
eral or specific to δ-AlOOH needs to be clarified in future studies. Further compression results in shrinkage of 
the H-bond geometry and, eventually, symmetrization at 18.1 GPa in the case of δ-AlOOH. The O···O distances 
were determined to be 2.455(5) Å at the disorder and 2.414(6) Å at the symmetrization in δ-AlOOH. The O···O 
distance at which deuterium is disordered is 2.427(3) Å, which is slightly shorter than that for hydrogen. It has 
been shown that deuteration shifts the disorder transition, and probably the symmetrization as well, to a higher 
pressure.

The symmetrization pressure of δ-AlOOH was about 12 GPa lower than that predicted in a previous theoreti-
cal study10. Probably, the reasons for this discrepancy are quantum and temperature effects that were not included 
in the calculations, as mentioned in that study. Theoretical studies on ice have pointed out that the symmetriza-
tion pressure decreases significantly when the quantum effect is considered24. Compared to other materials such 
as ice and hydrates, the symmetrization pressure of δ-AlOOH is considerably low. The short O···O distance under 
ambient pressure and effective compression of the O···O distance between the AlO6 octahedral chains is consid-
ered to contribute to lowering of the transition pressure.

In the case of ice, a few different states towards the symmetrization have been proposed by theoretical cal-
culations, namely, statistically disordered ice VII; dynamically disordered ice VII, in which the proton tunnels 
through the double minimum potential well and takes bimodal distribution; and ice X in which proton is cen-
tered between two oxygen atoms. Two types of ice X are also proposed; ice X’ in which the proton takes a broad 
and unimodal distribution at the center when its lowest vibrational level overcomes the potential barrier of the 
double well, and ice X in which the proton potential finally become single minimum24. The term symmetrization 
here corresponds to the transition from dynamically disordered ice VII to ice X’ that proton is centered. The O···O 
separation in δ-AlOOH at 18.1 GPa (2.414 Å) shows good agreement with that of ice at the transition pressure 
to the ice X’ of around 60 GPa (2.4 Å)6,7. Thus, the symmetrization observed in the present study is very likely to 
correspond with that of ice X’. Likewise, the disorder transition observed at 9.0 GPa in δ-AlOOH and 13.4 GPa in 
δ-AlOOD could be interpreted as the dynamically disordered state by the proton tunneling. This is also supported 
by the observed isotope effect on the transition pressures because the mass effect is significant in the tunneling 
and zero-point vibration thus deuteration induces the shift of the transition pressures to higher. It should be 
noted that the diffraction method determines the average structure; thus, from the results of the present study, 
it is difficult to distinguish whether the hydrogen is statistically disordered or dynamically disordered. Further 
investigation, for example, neutron diffraction and spectroscopic study at low temperature where the zero-point 
vibration is dominant, will provide better understanding of the different disordered states in future.

Figure 4.  Difference Fourier maps of δ-AlOOD in section containing H-bond. Difference Fourier maps 
generated from the difference between the observed pattern and the refined structural model without 
deuterium. The contour interval is 0.2, and the zero and negative contours are denoted by black dashed lines and 
positive contours are denoted by gray solid lines. The space groups of the model are P21nm in (a,b), Pnnm in (d) 
and the comparison of the maps generated using two models are shown in (c).
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Stiffening induced by the H-bond disorder and symmetrization under mantle conditions.  Few 
hydrous minerals are stable under the Earth’s lower mantle conditions, such as phase D31, δ-AlOOH15, its iso-
morph of magnesium silicate phase H17, and FeOOH32,33. Theoretical calculations have indicated that all the 
H-bonds in these minerals become symmetric under the conditions of the lower mantle10–12,16–18. Hence, it is of 
paramount importance to consider how the symmetrization process affects the physical properties of minerals. 
The present neutron diffraction study has shown that the hydrogen is not centered but dynamically disordered 
between pressures of 9.0 GPa to at least 15.1 GPa in the case of δ-AlOOH. Above the disorder pressure, the O···O 
separation of the H-bond becomes slightly less compressible (Fig. 5b). Accordingly, variation of the rotation angle 
of the AlO6 octahedra, which is the main compression mechanism in a-b plane below the transition pressure, also 
decreases (Supplementary Fig. S4). This modification in the compression mechanism explains the change in axial 
compressibility, axial ratio (Fig. 5a), increase in bulk modulus19, and anomalous increase in sound velocities20, 
which were reported previously and had been interpreted as symmetrization of the H-bond. The present neutron 
diffraction study has pointed out the importance of the H-bond disorder as a precursor of the symmetrization in 
the physical properties of minerals under high pressures.

Finally, it is noteworthy that as the present study was conducted under ambient temperature, we should con-
sider the temperature effect when applying the results to the conditions in the Earth’s mantle. Temperature can 
affect the symmetrization in two contradictory ways: the expansion of the lattice leads to an increase in the O···O 
distance as well as an increase in thermal vibration. The first effect increases the disorder and symmetrization 
pressure, whereas the latter causes it to decrease. The transition pressures are determined by the dominant effect. 
For example, in case of phase D, the pressure at which the axial ratio changes is shifted upward by 3 GPa as the 
temperature increases to 1300 K34; thus, thermal expansion is considered dominant in this case. Assuming the 

Figure 5.  (a) Pressure evolution of axial ratio b/c and (b) H-bond geometries of δ-AlOOH (blue symbols) and 
δ-AlOOD (red symbols). The small symbols indicate the results of previous studies on δ-AlOOH(D)19,22.
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thermal expansion of δ-AlOOH is of the same order as that in phase D, the disorder, and probably, the sym-
metrization pressure would increase by several GPa under the conditions in the Earth’s mantle. Previous stud-
ies reported that δ-AlOOH can be formed by the decomposition of phase Egg (AlSiO3OH), which is possible 
water carrier in subducting sediment layers of slabs35 and is found in inclusions of diamond2, at around 22 GPa. 
Consequently, the H-bond in δ-AlOOH is considered to be symmetric in the entire stability field in the mantle 
conditions.

Methods
The samples of δ-AlOOH and δ-AlOOD were synthesized at 18 GPa and 900 °C by using a Kawai-type multi-anvil 
press. The samples used herein were identical to those used in previous studies, and details of the synthesis are 
presented elsewhere21,22,25. The samples were sealed into TiZr encapsulating gaskets36 with deuterated 4:1 meth-
anol–ethanol pressure-transmitting medium and loaded into a Paris–Edinburgh cell37. Time-of-flight neutron 
powder diffraction experiments were conducted at the SNAP diffractometer in the SNS at Oak Ridge National 
Laboratory and at the PLANET diffractometer38 in the Material and Life Science Facility at J-PARC. In the exper-
iment at SNAP, cubic boron nitride anvils were used. The cell was placed such that the compression axis was 
perpendicular to the beam. The incident beam was introduced into the cell through the gasket, and the scattered 
neutrons were detected through the gasket by means of a detector fixed at 2θ = 89.5°. The accelerator power of the 
SNS was 1 MW. In the experiment at PLANET, sintered diamond anvils were used. The cell was placed such that 
the compression axis was aligned coaxially with the beam, and the incident beam was introduced to the sample 
through the anvil. The scattered neutrons were detected through the gasket with 90° detector banks. The acceler-
ator power of the J-PARC was 300 kW. Radial collimators with gauge volumes of 3 mm and 1.5 mm were used in 
the experiments on δ-AlOOD and δ-AlOOH, respectively, to reduce background.

Diffraction patterns were collected for 4–7.5 h at several oil pressures upon compression. Pressures were cal-
culated using the unit-cell volume of δ-AlOOH and δ-AlOOD based on third-order Birch–Murnaghan equation 
of states19. Slight broadening of the peaks was observed under high pressure, but it was not significant in the 
refinement; for example, the peak widths under ambient pressure and 18.1 GPa were 0.77% and 0.91% in Δd/d, 
respectively, for the data of δ-AlOOD obtained at the PLANET. The axial ratio of b/c of the present study is well 
consistent with that of the previous study conducted under quasi-hydrostatic condition using He and Ne as a 
pressure medium (Fig. 5b), suggesting that the effect of deviatoric stress is small. Test refinement of δ-AlOOH 
using deuterium and hydrogen at the hydrogen site resulted in no occupation of deuterium, showing that D-H 
isotope exchange did not occur between the sample and the deuterated pressure medium during the experiment.

Profiles of vanadium in the high-pressure cell were also collected at the same load with the sample measure-
ment. The empty cell profile was subtracted from both the sample and the vanadium data then the intensity of 
the sample profile was normalized with that of vanadium to correct the energy profile of the incident neutron 
beam, the attenuation of the cell and the radial collimators, and the detector efficiency. The structure was refined 
by means of Rietveld method39 using GSAS40 and EXPGUI software41. The peak profile parameters were first 
refined using the Lebail method and then fixed during subsequent Rietveld refinement cycles. The scale factor, 
background functions, lattice parameters, atomic positions, and isotopic displacement parameters were refined. 
The isotopic displacement parameters of the two oxygen atoms in the P21nm model were constrained to have the 
same value. In the experiments using sintered diamond anvils, the diffraction peaks of diamond were observed; 
thus, the lattice parameter of diamond was also refined. In the refinement of δ-AlOOD, the occupancy of deu-
terium and hydrogen were fixed to 0.744 and 0.266, as determined previously under ambient conditions25. The 
data obtained at SNAP, in which the d-spacing ranges from 0.46 Å to 2.31 Å with constant binning of 30 μs, and 
that obtained at PLANET, in which the d-spacing ranges from 0.32 Å to 3.70 Å with constant binning of 10 μs, 
were used in the Rietveld refinement. The difference Fourier maps in Fig. 3 and 4 were drawn using VESTA42. For 
the synthesis of the difference Fourier maps, the data obtained at PLANET was used which could access to larger 
qmax to get good resolution. The comparison of the resolution of Fourier map using different qmax is shown in the 
Supplementary Fig. S5.
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