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Spontaneous separation of  
large-spin Fermi gas in the harmonic  
trap: a density functional study
Zongli Sun1,2 & Qiang Gu1

The component separation of the trapped large-spin Fermi gas is studied within density functional 
theory. The ground state and ferromagnetic transition in the gas, with and without the spin mixing 
collision, are calculated. In the absence of spin mixing, two patterns of separation are observed as 
the interaction between atoms increases, whereas only one of them corresponds to a ferromagnetic 
transition. The phase diagram suggests that the pattern which the system chooses depends on the 
interaction strength in the collision channels. With the presence of spin mixing, the distribution of phase 
region changes because of the interplay between different collision channels. Specifically, the spin 
exchange benefits the FM transition, while it suppresses the component separation of CS-II pattern.

Itinerant ferromagnetism in metals originates from the quantum correlation between de-localized electrons1. 
Stoner interpreted it as a result of the competition between the short-range repulsion and kinetic energy2. 
Theoretically, this mechanism provides satisfactory explanation for the emergence of the ferromagnetism (FM) 
transition3. However, verification of the Stoner theory in experiment is rather difficult, due not only to the com-
plexity of the interaction in metals, but to the difficulty in manipulating these interactions. Fortunately, cold 
atoms provide an ideal test-bed to perform a direct examination of the Stoner model4–11. Compared to the elec-
trons in metals, the ultra-cold Fermi atom gas provides a cleaner model system for the experimental verification 
of the Stoner model. Moreover, the interaction between atoms can be tuned flexibly12,13, owing to the success of 
the Feshbach resonance technique14,15.

Repulsive Fermi gas with spin-1
2

 represents a preferred analogue of the electron gas and is relatively convenient 
in experiment preparation16–19. By monitoring the energy and volume, the MIT group achieved some signatures 
of the FM transition in 6Li atom gas20. Although it still remains controversial whether the observation is consist-
ent with the experimental evidence for an FM transition21, the experiment has greatly stimulated research interest 
in the itinerant ferromagnetism in cold atoms. More recently, it was also found that the itinerant FM state is usu-
ally prevented by a rapid decay into bound pairs due to the three-body collisions22.

Cold atom gas is more than a test-bed for the original Stoner model. It enriches the physics regarding the 
Stoner model and the itinerant ferromagnetism. Some research has been devoted to the mass-imbalanced 
two-component Fermi gas. It is pointed out that the phase separation in such systems can be driven by a large 
mass difference, but not necessarily by the strong repulsions23. In addition, the broken SU(2) symmetry in the 
mixture can deliver unique experimental signatures for the FM phase24,25. The large-spin Fermi gas (LSFG) is 
another unique system distinct from the electron gas. It contains more components and thus more interaction 
channels between atoms26–32. The interacting strength of different collision channels could be different, which 
may break, at least partially, the symmetry of the Hamilton, and thus facilitates the formation of the FM phase. 
Note that unlike the case of the mass-imbalanced mixture, the symmetry breaking of the Hamilton takes place 
only in the interaction terms for the LSFG.

In this paper we concentrate on the FM transition in the LSFG. Recently, considerable effort has been devoted 
to the spin dynamics33–36 and Mott-insulator transformation37,38 in the LSFG. To our best knowledge, however, the 
study related to FM transition in LSFG is rare. We expect that the complex interactions could result in a variety of 
phenomena related to the FM transition. Especially, the spin mixing collision channel permits the incoming and 
outgoing spin states to be different39, which does not appear in the spin-1

2
 system. Therefore, the LSFG may  
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display novel phase behaviors or new patterns for the formation of domain and texture, which can cast new lights 
on the understanding about the FM transition in quantum gas.

Model and Theory
In this work, we consider a confined LSFG, which consists of atoms with hyperfine spin =f 3

2
. The spinor char-

acter implies that the Fermi gas can be treated as a four-components mixture with pseudo-spin σ = ± ±,1
2

3
2

. 
Accordingly, the Hamiltonian of the system can be given by:
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Here ω=V m rtrap
1
2

2 2 is the spin-independent external potential applied by the trap and V(2) the spin-dependent 
pair potential between atoms. Ψ σ is the atomic field annihilation operator associating the hyperfine spin state 

σ| = = 〉f m, f
3
2

. Note that in Eq. (1), the tilde is used to distinguish the qualities from their reduced forms, 
which will be defined below. The factor 1

2
 is added in the second term to avoid overcounting in the summation. In 

the low energy regime, the s-wave scattering dominates the collision processes and the interaction can be mod-
eled by the contact potential, i.e., δ= −

∼
′ ′

∼˜ ˜r r r rV U( , ) ( )ijkl ijkl
(2) . The coupling coefficient Uijkl can be obtained from 

the two-body interaction model = +ˆ ˆ ˆU g P g P0 0 2 2, with the projection operator P̂F. Moreover, = πg aF m F
4 2

 with 
aF denoting the s-wave scattering length in total F spin channel. Note that only the even values of F are relevant 
due to the symmetry of the wave functions in the s-wave channel.

In order to specify the contribution from different collision channels, it is convenient to decompose the inter-
action Hamiltonian into three parts, i.e., Hinter, Hintra and Hmix:
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with t =  inter, intra, mix and At the corresponding coupling parameters. The possible collision channels in the 
spin-3

2
 Fermi gas have been shown in Fig. 1. Specifically, Hinter and Hintra describe respectively the contribution 

from the atom collision between atoms of the symmetrical and asymmetrical spin orientation, while Hmix takes 
into account the contribution form the spin mixing collision. Projecting the two-body interaction to the total spin 
space, one obtains the coupling coefficients in terms of gF

40: = −
∼Ainter

g

4
2 , = −
∼ +
Aintra
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8
0 2 , =

∼ −
Amix

g g

4
2 0. Note 

that in this work, we choose ∼Ainter  and ∼Aintra as the independent parameters, which give the third one by 
= −

∼ ∼ ∼A A A2( )mix intra inter . Interaction between atoms of the same spin orientation is absent because of the Pauli 
exclusion.

On the theoretical side, density functional theory41 is a powerful tool which of several theoretical superiorities, 
including exact mathematical framework and inexpensive numerical cost. With the proper approximation for the 
exchange-correlation energy, good performance has been shown in its application to the spin-1

2
 Fermi gas42–44. 

Among the available treatments, local density approximation (LDA) is favored due to its relative simplicity and 
efficiency in prediction of FM transition. Especially for the two-components trapped Fermi gas, the critical scat-
tering length predicted by LDA is in good agreement with that obtained from experiments8. In fact, the ignored 
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Figure 1. (a) Sketch of the spin orientation for each spin species in the spin-3
2

 Fermi system. The dash line 
stands for a symmetry line perpendicular to the z axial. (b) Schematic of the collision channels in the spinor 
Fermi gas with =f 3

2
. The solid lines and the dash-dotted diagonal lines correspond respectively to collision 

channels with the coupling strength ∼Ainter, 
∼Aintra, while the dotted arcs to those with ∼Amix.
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surface tension term in LDA may be important, especially near the boundary of the atom cloud. However, it 
depends largely on the atom number in the cloud. For a gas with large atom number, the inclusion of surface effect 
leads to nonsignificant difference in its comparison with LDA results44. Therefore, it is believed that the applica-
tion of LDA in LSFG can also provide qualitative predictions for the FM transition, though the correlation in it 
should be even more complex.

Prior to performing calculations for the ground state, we construct firstly the density functional for the LSFG 
in the following form:
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Obviously, the kinetic contribution is given in the Thomas-Fermi form, which treats the kinetic energy only as a 
correction. Actually, the validity of this approximation is restricted by the criterion 

ξ
 1Nas , with N, as, ξ ≡ ωm

  
are respectively the number of atoms, the s-wave scattering length and the quantum mechanical length scale for 
the oscillator. Thence, the Thomas-Fermi approximation for the kinetic contribution can be effective so long as N 
is large enough. The detail for the construction of the interaction energy functional is described in the section 
Method.

For simplicity in the further calculation, it is necessary to transform the related qualities in Eq. (3) to their 
reduced forms. Here we introduce the parameters c1 ~ c6, which satisfy: = E c E1 , = r̃r c2 , n =  c3ρ, =

∼A c Ai i4 , 
=
∼

σ σN c N5 , λ λ=σ σ
c6  with ∼σN  and λσ  are respectively the particle number and chemical potential of spin-σ 

component. These six above-defined parameters can reduce the total energy to the following form:

∫

∫

∑=






+






+






+ + +

+ + +













σ
σ

σ σ

− − − −

− − − −

( )
( )

r r

r

E n d n r n

d A n n n n n n n n

A n n n n A n n n n

[ ( )] 3
5

1
2

2 ,
(4)

inter

intra mix

5
3 2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

1
2

3
2

3
2

1
2

1
2

3
2

3
2

1
2

with = πξ

ω
c c

m
1

3

2

6
2
8

5
2 2

, = π ξc c
3

3

2

2 6
2
3

1
2

, =
π ω ξ

c
m c4

2
3

1
2

2 2 6
2
, = πξc c

5
3

2

6
2
6

5
2

, =
ω

c c

m6
2
2

2 . To ensure the conservation of the particle 
number of each spin component, the Lagrange multiplier λσ should be introduced, which relates to the chemical 
potential of the spin-σ component. Therefore, the density of each component in their ground state can be deter-
mined by the Euler equations derived from the variational principle:

δ λ
δ
− Σ

=σ σ σ

σ

E N
n

( ) 0,
(5)

with ∫=σ σr rN d n ( ) the reduced particle number of the spin σ-component.

Results and Discussion
From the energetic point of view, component separation and spin mixing are two ways for the LSFG to lower its 
total energy. As in spin-1

2
 Fermi gas, the competition between repulsive interaction and kinetic energy is respon-

sible for the FM transition. The former tends to induce polarization, while the latter prefers to equally populate 
each component in local regions. In the LSFG, more collision channels between different spin components are 
opened, which may supply new alternatives to lower the total energy. In the following, the FM transition and spin 
mixing process are studied through the calculation of the ground density profile of each component. Note that in 
this work, the particle number of each component is set as 106, which can be reduced to Nσ =  0.1 in the 
calculation.

Coupling with Ainter = Aintra and Amix = 0. For simplicity, calculations are firstly performed for the LSFG 
with regular collision channels. Specifically, in the absence of spin mixing collision, the interaction energy Eint 
can be given by:
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Note that with further simplification of Ainter =  Aintra, the energy functional in Eq. (6) shows SU(4) symmetry, 
which indicates that there should exist degenerate ground states because the total energy keeps unchanged as the 
order of the subscripts + − + −{ }, , ,1

2
1
2

3
2

3
2

 is arbitrarily exchanged.
The results in Fig. 2 suggest that the coupling strength is the critical factor for the occurrence of CS, which does 

not appear until the coupling is as strong as Ainter =  Aintra =  1.08. This is similar to the spin-1
2

 Fermi gas, whose FM 
transition occurs at the Stoner point. As expected, the CS state is enhanced as the coupling strength is increased. 
Note that the density profile shown in Fig. 2 is only one of the degenerate states of the LSFG because our further 
calculation verifies that all of the possible degenerate states have the same ground energy. Therefore, it is con-
cluded that in the case of Ainter =  Aintra, the LSFG behaves like a two-components system, because the energy con-
sumption in the FM transition is the same as that in the CS between spins with asymmetric orientation.

Coupling with Ainter ≠ Aintra and Amix = 0. To get more information about the influence of coupling 
strength on the component separation, further calculations are performed in the case of Ainter ≠  Aintra. It is also 
hoped that the results in this section can provide information which helps us to understand the effect of spin mix-
ing on the FM transition. Obviously, the hidden SU(4) symmetry has been broken due to the difference between 
Ainter and Aintra. The results in Figs 3 and 4 show respectively the influence of Aintra(Ainter) on the CS for the given 
coupling parameter Ainter(Aintra) =  1.10.

As specifically shown in Fig. 3, when Aintra is relatively small, the CS occurs between atoms with asymmetrical 
spin orientation, i.e., ± 1

2
 and ± 3

2
 species. This pattern of CS is denoted by CS-I, in which the two components 

with symmetrical spin orientation always have the same local population. Moreover, with the enhancement of 
Aintra, this type of CS is suppressed, as shown by Fig. 3(b). However, when Aintra is large enough, the separation 
occurs between atoms with symmetrical spin orientation, i.e., + 1

2
(+ 3

2
) and − 1

2
(− 3

2
), which is denoted by CS-II. 

Unlike the case of CS-I, the further increase of Aintra enhances the CS-II pattern, as compared by Fig. 3(c,d). The 
difference between these two patterns of CS can be understood from Eq. (6), which indicates that the coupling 
strength Ainter relates to the collision between spins with asymmetrical orientation, while Aintra to that between 
spins with symmetrical orientation.

Note that though two patterns of CS state have been observed during the variation of the coupling parameters, 
only the CS-II pattern corresponds to the FM state because the non-zero local spin magnetic moment is formed 
only in this case. As a comparison, the ground states for the given Aintra and different Ainter are also calculated in 
Fig. 4. The separation with patterns of CS-I and CS-II are also observed during the adjustment of Ainter.

Phase diagram of the LSFG with Amix = 0. To obtain more comprehensive understanding about the 
occurrence of CS, we have calculated the phase diagram in Fig. 5, which depicts the critical coupling strength that 

Figure 2. Density profiles of spin components in the LSFG under different conditions of strength 
parameters. From (a–d), Ainter =  Aintra =  1.05, 1.08, 1.10, 1.15, respectively.
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Figure 3. Density profiles of spin components in the LSFG under the condition of Ainter = 1.10. In (a–d), the 
coupling parameter is set as Aintra =  1.04, 1.09, 1.11, 1.16, respectively.

Figure 4. Density profiles of spin components in the LSFG under the condition of Aintra = 1.10. In (a–d), the 
coupling parameter is set as Ainter =  0.6, 1.05, 1.10, 1.13, respectively.
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induces the CS state in the LSFG. In the calculation, we choose the two dependent parameters, Ainter and Aintra, as 
the variables in the parameter space. Note that in the calculation, only the s-wave contact interaction on the repul-
sive side is taken into account, that is, both Ainter and Aintra are set to be positive. Our results suggest that there are 
three phase regions whose boundaries show nearly in linear pattern. Moreover, a triple point is found at 
Ainter =  Aintra =  1.08 in the diagram, where three phases coexist. Further, our results show that the CS-II pattern 
takes place only if Aintra is large enough, and that for larger Ainter, a larger critical value of Aintra is needed to trigger 
the FM transition. This implies that the coupling between spin ± 3

2
 and ± 1

2
 components suppresses the occurrence 

of FM phase.
The distribution of the phase regions can be easily understood according to the energetic analyze about 

Eq. (6). When the coupling strength Ainter (Aintra) is increased, its corresponding contribution to the total ground 
energy is also enhanced, which prefers to trigger the CS-I(II) pattern because their advantage in the competition 
with the kinetic energy. To clarify the separation in the phase diagram, we choose six points (A)-(F) in different 
phase regions. Density profiles correspond to these points are plotted in Fig. 6, which shows the structure evolu-
tion from one pattern to another, when one coupling parameter varies while the other keeps unchanged.

Coupling with Amix ≠ 0. Compared to the above investigation with Amix =  0, more information is expected 
when the spin mixing collision is taken into account. From the energetic point of view, the spin mixing opens 
another channel for the spin components to lower the total energy. Therefore, the effect of the spin mixing on the CS 

in the LSFG should be investigated. Before performing calculation, a quality, say δ ≡
−± ±N N

2

1
2

3
2 , is firstly defined to 

describe the amount of the atoms that change their spin quantum number from ± 3
2

 to ± 1
2

.  Accordingly, the ground 
state with spin mixing can be determined by comparing the total ground energy of the system with different values 
of δ.

Note that in the calculation, two schemes have been employed to obtain the ground state densities. One is to 
assume that the separation of the CS-I pattern, while the other assume it of the CS-II pattern. The ground state 
is determined by comparing the total energy of the two patterns. Following this routine, the calculation is per-
formed for the phase diagram, which shows clearly the effect of spin mixing collision on the phase separation. The 
phase diagram for Amix ≠  0 is presented in Fig. 7. Comparing with the results for the case of Amix =  0 in Fig. 5, it is 
obvious that the boundary lines of the phase region have been rotated around the triple-point S(1.08, 1.08), which 
is stationary due to the relationship between Amix and the other two coupling parameters: Amix =  2(Aintra −  Ainter).

The hidden physics in the diagram can be understood as follow. Firstly, the CS-II pattern separation occurs 
only in the region above the diagonal dash line, which is in accordance with the case of Amix =  0 shown in Fig. 5. 
This is because in this region, the energy contribution from intra-component collision dominates over that from 
inter-component collision. Secondly, for a given Ainter <  1.08, the critical value of Aintra has been declined because 
of the introduction the spin mixing collision, which helps the intra-component repulsion in its competition with 
the kinetic energy. This effect is even more significant especially for a smaller value of Ainter, because it leads to 
a larger Amix. Therefore, the spin mixing collision is benefit to the occurrence of FM transition. Thirdly, for the 
given Ainter >  1.08, the spin mixing collision leads also to significant effect on the critical value of Aintra that triggers 
the CS-I pattern separation. That is, the CS-I pattern separation does not take place for all values of Ainter <  1.08. 
Moreover, with the increase of Ainter, a smaller value of Aintra is required to triggers the CS-I pattern separation. 
This is because in the lower-right region of the parameter space, the fact Ainter >  Aintra indicates that Amix should be 

Figure 5. Phase diagram the LSFG without spin mixing. The star represents the triple point where different 
phases join. The diagonal dash line is the dividing line corresponding to Ainter =  Aintra, while the vertical dash line 
passes through the triple-point.
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negative, which results in the decrease of the total energy. From this point of view, the spin mixing collision tends 
to suppress the CS-I pattern separation.

Summary. In this work, the component separation in trapped LSFG is studied within the framework of density  
functional theory. The ground state density profile of each spin component is calculated. Our calculation suggests 
that when the spin mixing collision is absent, two patterns of CS take place, among which only the pattern-II sep-
aration corresponds to the itinerant FM state because of the formation of the local polarization in this case. Phase 
diagram shows that the coupling parameters Ainter and Aintra relate respectively to CS of pattern-I and pattern-II. 
On the other hand, when the spin mixing is taken into account, the phase distribution in the parameter space 
changes due to the newly opened collision channel. The phase diagram shows the interplay between the CS 
and spin exchange. That is, the spin exchange benefits the occurrence of the CS-II pattern separation, while it 
suppresses the CS-II pattern separation. Therefore, the spin mixing collision in LSFG plays a positive role in 
the detection of FM phase. It is hoped that our results can provide useful insight for the investigation of the FM 
transition in LSFG.

As an end for this section, we comment on the experimental feasibility of the observation of the CS in LSFG. 
Actually, the experimental setup for spin dynamics in LSFG33–36 can be shared to examine the results in this work. 
The system can be initially prepared with a balanced spin mixture with σ = ± 1

2
, which is confined in a harmonic 

Figure 6. Density profiles of spin components in the LSFG under different conditions of Ainter and Aintra, 
which corresponds to the points (A–F) marked in the phase diagram. Specifically, Points (A–C) correspond 
respectively to (Ainter, Aintra) =  (0.3, 1.0), (0.6, 1.0), (1.05, 1.0), while points (D–F) correspond respectively to 
(Ainter, Aintra) =  (0.9, 0.7), (0.9, 0.9), (0.9, 1.1).
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trap, and evaporated to a temperature ∼ . T nK0 15 25F . To access the off-diagonal element of the density matrix, 
short radio-frequency pulses should be applied, which rotates the spin with ϑ in spin space, and then results in a 
coupling of all possible spin components, whose magnetic quantum numbers ranges from m =  − F, ···, F. Finally, 
the Stern-Gerlach method can be used to determine the diagonal element45, which contains information of the 
off-diagonal element because they relate with each other through the rotation matrix.

Methods
In this section, we give some details about the construction of the energy functional. As shown in Eq. (2), the 
interaction Hamiltonian has been decomposed into three parts, i.e., Hinter, Hintra and Hmix. Firstly, we calculate the 
expectation of Hinter:
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The product of the four field operators for the interacting Fermi atoms can be treated based on the Wick’s 
theorem:
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where 〈 ···〉  represents calculation of the expectation value of the inner. Further calculation the expectation of 
Ψ Ψ Ψ Ψ+ + + +

† †
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Figure 7. Phase diagram the LSFG with Amix ≠ 0. The star point S represents the stationary triple-point which 
locates at (1.08, 1.08) in the diagram. The diagonal dash line is the dividing line corresponding to Ainter =  Aintra, 
while the vertical dash line passes through the triple-point S.
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where the second term on the right-hand side describes the correlation between atoms belong to different spin 
components. In fact, in most of the studies on the two-components Fermi gas, the second term in Eq. (10) is 
usually ignored, and the qualitatively correct result can be achieved in prediction for FM transition6,23,44. 
Therefore, it is hoped that the extension of such a treatment to the study of LSFG can also give qualitative results, 
though the total energy has been overestimated by doing this. Introducing the local density operator 
ρ = Ψ Ψσ σ σ˜ ˜ ˜ˆ †r r r( ) ( ) ( ), and assuming each spin component is highly occupied, the expectation of Hinter is obtained 
as:

∫ ∑ ρ ρ=
σ σ σ

σ σ
≠ ′≠

′
 ˜ ˜ ˜r r rE d A ( ) ( ),

(11)inter inter

where the density operator has been replaced by the real density function. This result is in accordance with that 
from the first order perturbative approximation. Following a similar procedure, the expectation of Hintra can also 
be obtained as:

∫ ∑ρ ρ= .
σ
σ σ

 ˜ ˜ ˜r r rE d A1
2

( ) ( )
(12)intra intra

Further, we turn to the contribution from the spin mixing collision. Under the constraint of the conservation 
of the total angle momentum, spin mixing collision in LSFG permits different inert states in the incoming and 
outgoing channels. Assuming that only the s-wave (l =  0) scattering takes place, this part of contribution, Hmix, 
can be rewritten as:

∫=





Ψ Ψ Ψ Ψ + . .






.

∼
− −˜ ˜ ˜ ˜ ˜† †r r r r rH A d h c( ) ( ) ( ) ( )

(13)
mix mix 1

2
1
2

3
2

3
2

The spin mixing channel is unique to high spin fermions, which does not appear in the spin-1
2

 system. So it is 
expected that this term may cause nontrivial effect to itinerant ferromagnetism of the high spin fermions. 
However, this term can not be treated directly within the conventional density functional theory. We need adopt 
some approximation. In this work, in order to introduce the spin mixing contribution to the energy functional, 
we replace the field operators, as an attempt, with the square root of the density operators, i.e., ρΨ = Ψ =σ σ σˆ

† . 
Further, replacing the density operators with the corresponding real density functions, the energy contribution 
with respect to Hmix can be respectively given as:

∫ ρ ρ ρ ρ=











.

∼
− −

 ˜ ˜ ˜ ˜ ˜r r r r rE d A2 ( ) ( ) ( ) ( )
(14)mix mix 1

2
1
2

3
2

3
2

1
2

Combining the Eqs (11), (12), (14), we arrive at the total energy functional given in Eq. (3).
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