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A B S T R A C T   

We conducted a protein-protein interaction (PPI) network study searching for proteins relevant to pregnancy-associated COVID-19 in pregnancy complicated with 
severe preeclampsia (sPE) and intra-amniotic infection and/or inflammation (Triple-I). PPI networks from sPE and Triple-I were intersected with the PPI network 
from coronavirus infection. Common proteins included the SARS-CoV-2 entry receptor ACE2 and ENDOU, a placental endoribonuclease homologous to Nsp15, a 
protein produced by the virus to escape host immunity. Remarkably, placental ENDOU mRNA expression far exceeded that of ACE2. Immunohistochemistry 
confirmed ENDOU localization at the hemochorial maternal-fetal interface. Investigation of ENDOU’s relevance to vertical transmission of SARS-CoV-2 is further 
warranted.   

1. Introduction 

SARS-CoV-2 is the etiologic agent of COVID-19 which phenotypically 
manifests with fever, malaise, severe pneumonia and lethal systemic 
inflammatory syndrome. Experiences from the 1918–1919 influenza 
epidemic and most recently from the 2015 Zika virus outbreak support 
the hypothesis that pregnant women may be more vulnerable during 
viral pandemics [1–3]. 

Placenta is generally considered a barrier to vertical transmission. 
Only a few viruses are proven to cause fetal infection [4]. SARS-CoV-2 is 
an emergent viral pathogen whose ability to infect the human fetus re
mains unknown. A case report of COVID-19 associated with pre
eclampsia symptoms showed that SARS-CoV-2 is able to infect the 
placental syncytiotrophoblast [5]. COVID-19 infection carries over
lapping phenotypic features with preeclampsia as surveilled by clinical 
cohorts worldwide [6,7]. These preliminary observations led us to 
explore possible molecular intersections between coronavirus infection 
and pregnancy-specific complications such as preeclampsia and Triple-I. 
This report uses protein-protein interaction (PPI) network analysis of 
our proteomics data and published placental RNAseq datasets to gain 
new insight into proteins that may modulate vertical transmission of 
SARS-CoV-2. 

2. Methods 

Protein-protein interaction (PPI) network analysis was conducted 
using Cytoscape software (v.3.7.2) on bottom-up proteomics mass 
spectrometry data generated from 62 biological samples collected from 
pregnant women with well-defined diagnoses of pregnancy complica
tions: Triple-I (n = 25), preeclampsia (n = 4) and idiopathic preterm 
birth (iPTB, n = 33) [8–10]. The samples included maternal blood, 
urine, amniotic fluid, cord blood, placenta and fetal membrane tissue 
lysates. Serum, amniotic fluid and lysates were treated with Pierce 
Abundant Protein Depletion Spin Columns (Thermo Fisher Scientific, 
Rockford, Illinois) and normalized for protein concentration before 
tryptic digestion. Tandem MS/MS spectra were acquired using a tim
sTOF Pro mass spectrometer (Bruker, Bremen, Germany), and a Velos 
Pro mass spectrometer (Thermo) coupled to a PepMap Easy-Spray C18 
column on a 1D nano Acquity UPLC (Waters, Milford, Massachusetts), 
and matched against Uniprot database (Homo sapiens) for protein 
identification. Protein IDs from all samples of women sharing the same 
clinical diagnosis were aggregated to generate the most inclusive in silico 
proteome for each condition. These PPI networks were intersected using 
Cytoscape’s DyNet Analyzer with the PPI network of coronavirus 
infection from STRING disease database [11,12]. The placental RNAseq 
datasets were generated earlier by our group and are publically avail
able (GEO accession number GSE73714). Normalization and 
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downstream analysis were performed using the DESeq2 statistical 
package in R. Gene expression was quantitated with RT-PCR, and 
immunohistochemistry (IHC) was used for further validation of protein 
expression and immune-localization in the placenta. 

3. Results 

The PPI network intersection between the Triple-I proteome and 
coronavirus infection highlighted 9 shared proteins: ACTB, ALB, ANPEP, 
CRP, ENDOU, GAPDH, IL6, ITIH4 and MDL2 (Fig. 1A) while the pre
eclampsia proteome and coronavirus infection shared 10 proteins: ACE, 
ACE2, ALB, CRP, DPP4, IL4, IL6, ITIH4, ITPA and SARS2 (Fig. 1B). Of 
these, Placental Endonuclease, Poly(U) Specific (ENDOU, placental 
protein 11 or PP11), which has high homology with the coronavirus 
endoribonuclease Nsp15 [13] (Fig. 1C), and human 
Angiotensin-Converting Enzyme 2 (ACE2), the cellular entry receptor 
for SARS-CoV-2 [14,15] were specifically selected for validation by 
RT-PCR and IHC. Additionally, placental RNAseq transcript abundance 
mapped to ENDOU’s PPI network suggests putative interactions of 
ENDOU (Fig. 1D) with the mapped higher abundance transcripts 
(Fig. 1E). 

RT-PCR confirmed mRNA expression of ACE2 and ENDOU in 
placenta with a significantly higher ENDOU abundance both in iPTB and 
term placenta (Fig. 2A). ACE2 mRNA expression was downregulated in 
Triple-I and term placenta (Fig. 2B) and IHC confirmed the decrease in 

signal intensity in syncytiotrophoblast and inflammatory cells in Triple-I 
(Fig. 2 D and E). Conversely, ENDOU mRNA expression was upregulated 
in preeclampsia (Fig. 2C) and ENDOU staining was highly increased in 
syncytiotrophoblast of preeclamptic placenta (Fig. 2 F and G). 

4. Discussion 

To our knowledge, a potential involvement for ENDOU in modu
lating COVID-19 vertical transmission has not yet been proposed. Our 
results highlighting the abundant placental expression of ENDOU and its 
high homology to coronavirus Nsp15 suggest ENDOU may potentially 
play a role in vertical transmission of SARS-CoV-2. Nsp15 is a cleavage 
product of coronavirus replicase polyprotein (pp1ab) and is essential for 
effective viral replication and increased infectivity [16,17]. ENDOU, or 
PP11, is a scarcely studied protein. PP11 was first purified in the 1980s 
and thought to function as a serine protease [18]. Subsequent work 
demonstrated that ENDOU is an RNA endonuclease capable of gener
ating small RNA fragments in a Mn2+-dependent fashion [17]. Aside 
from placenta, ENDOU is expressed ectopically in several malignant 
tumors [19]. The observed increased ENDOU expression in the pre
eclamptic placentas is intriguing in the context of COVID-19 often being 
a clinical imitator of preeclampsia [20]. Furthermore, ENDOU’s 
endoribonuclease roles may be linked to cell-free RNA signatures 
released by placenta in maternal plasma [21]. As for COVID-19, it is 
important to determine if placental ENDOU cooperates in any way with 

Fig. 1. Intersection of coronavirus infection, Triple-I and preeclampsia protein-protein interaction (PPI) networks. A. The Triple-I PPI network comprised 
816 protein IDs (cyan) was intersected with coronavirus infection network (red) and common IDs are highlighted in yellow. B. Preeclampsia PPI network comprised 
207 protein IDs (cyan) intersected with coronavirus infection network (red) and common IDs are highlighted in yellow. C. Dendrogram showing the phylogenetic 
relationships among select XendoU family members. Amino acid reference sequences were downloaded from the NCBI database and subjected to multiple sequence 
alignment, followed by pairwise distance (Fitch) matrix generation (based on degree of sequence similarity) and neighbor-joining tree estimation. D. In this network, 
minimum required interaction score was set at medium confidence of 0.4, with max number of interactors for ’first shell’ and ’second shell’ setting to 22 and 0, 
respectively. The STRING network analysis for protein-protein interaction (PPI) obtained an average node degree of 2.78; average local clustering coefficient of 
0.919; and PPI enrichment p-value: 0.0487, indicating that these proteins can be at least partially associated as a group regarding their biological function. E. 
Placental RNAseq transcript abundance mapped to putative PPI of ENDOU in D. 
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coronavirus Nsp15 to enhance or diminish the effectiveness of the 
placental barrier. We observed that, in the human placenta, ENDOU is 
significantly more abundant than ACE2. This is interesting because it 
suggests that while the cellular gate receptor for SARS-CoV-2 (ACE2) is 
less represented, the endoribonuclease activity favoring viral infectivity 
is present [22]. Collectively, our data suggest a potentially active 
mechanism that may favor SARS-Cov-2 trans-placental transmission 
that may be more active in preeclampsia patients or in inducing 
preeclampsia-like symptoms in mothers with COVID-19. 
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