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Decision-making often involves using sensory cues to predict possible rewarding or punish-
ing reinforcement outcomes before selecting a course of action. Recent work has revealed
complexity in how the brain learns to predict rewards and punishments. Analysis of neural
signaling during and after learning in the amygdala and orbitofrontal cortex, two brain areas
that process appetitive and aversive stimuli, reveals a dynamic relationship between appet-
itive and aversive circuits. Specifically, the relationship between signaling in appetitive and
aversive circuits in these areas shifts as a function of learning. Furthermore, although appet-
itive and aversive circuits may often drive opposite behaviors – approaching or avoiding
reinforcement depending upon its valence – these circuits can also drive similar behaviors,
such as enhanced arousal or attention; these processes also may influence choice behav-
ior. These data highlight the formidable challenges ahead in dissecting how appetitive and
aversive neural circuits interact to produce a complex and nuanced range of behaviors.
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THE IMPORTANCE OF LEARNING TO PREDICT
REINFORCEMENT FOR PUNISHMENT-BASED
DECISION-MAKING
The decision-making process – arguably one of the most impor-
tant“executive”functions of the brain – can be influenced by a vari-
ety of different types of information and motivators. Punishment-
based decisions constitute an important subcategory that is com-
mon to a wide phylogenetic range, from nematodes to rodents
to humans. Studies old and new have shown that punishment
engages brain systems specialized for processing aversive informa-
tion (Seymour et al., 2007). Historically, these systems have been
studied most frequently in rodents, and this work has revealed
many aspects of the neural mechanisms driving behavior elicited
by the threat of aversive stimuli (Davis, 1992; LeDoux, 2000).
In everyday life, however, decisions typically require integrating
information about potential punishments and rewards, as well
as myriad factors such as external environment and internal dri-
ves. This is especially true in primates, as they exhibit particularly
complex behavioral repertoires.

Rewards and punishments are reinforcers with opposite valence
(positive versus negative), and they often drive behavior in oppo-
site directions – e.g., approaching a rewarding stimulus or avoiding
a threat. Moreover, punishment-based decisions are often made
in a context in which rewards and punishments are both possi-
ble consequences of an action; therefore, brain systems processing
aversive information must interact with brain systems processing
rewards – interactions that presumably underlie how punishments
and rewards compete to drive behavior and decision-making.

Scientists have long appreciated these facts and have often posited
that appetitive and aversive systems operate in an “opponent”
manner (Konorski, 1967; Solomon and Corbit, 1974; Dickinson
and Dearing, 1979; Grossberg, 1984; Daw et al., 2002). How-
ever, appetitive and aversive stimuli also have certain common
attributes – e.g., they are both usually more salient than non-
reinforcing stimuli – and thus appetitive and aversive systems need
not always act in opposition to each other. Rather, stimuli of both
valences may mediate a number of processes, such as enhanced
arousal or enhanced attention to stimuli predictive of reinforce-
ment (Armony and Dolan, 2002; Anderson, 2005; Lang and Davis,
2006; Phelps et al., 2006; Brosch et al., 2008; Ilango et al., 2010;
Pinkham et al., 2010; Anderson et al., 2011).

Punishment-based decisions are generally choices that are
based on one or more prior experiences with an aversive out-
come. Typically, an organism learns that a sensory cue predicts
a possible negative outcome – e.g., the taste of spoiled food pre-
cedes illness – and later must decide what to do to avoid or defend
against that outcome. Thus, learning to anticipate negative out-
comes is an essential skill for subsequently being able to make
optimal decisions in the face of possible punishment. This is also
true for rewards: the adaptive response is to acquire the reward,
rather than avoid it, but anticipation is critical in both cases.

Because accurately predicting reinforcement – whether pun-
ishment or reward – plays such a vital role in decision-making,
our work has focused on understanding the neurophysiological
processes whereby the brain comes to predict reinforcement as a
result of learning. We have sought to understand where and how
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signals in the brain represent anticipated positive or negative out-
comes, and whether those signals occur at a time and in a manner
such that they could be used as input to decision-making processes.
We have often referred to these signals as value signals. Although
our published studies have not characterized these signals during
an explicit decision-making task, the tasks we employed do pro-
vide measures that appear to co-vary with the amount and type of
the reinforcement associated with a stimulus (Paton et al., 2006;
Belova et al., 2007, 2008; Salzman et al., 2007; Morrison and Salz-
man, 2009, 2011; Morrison et al., 2011). We believe that the value
of anticipated possible outcomes often drives behavior, and the
estimation of value may be computed on-line during decision-
making by taking into account expected potential reinforcement
as well as a variety of internal variables (e.g., hunger or thirst) and
external variables (e.g., how difficult a reward would be to acquire;
Padoa-Schioppa, 2011). We refer to the circuits that process and
generate appetitive and aversive reinforcement predictions as value
processing circuits, although in some cases work remains to be
done to understand how different internal and external variables
impact representations of reinforcement predictions.

Where in the brain does processing about reinforcement pre-
dictions occur? Early work indicated that the amygdala, a key
structure in the limbic system, plays a central role in processing one
of the primary negative emotions, the fear elicited by a stimulus
predicting aversive consequences. Seminal fear conditioning stud-
ies in rats found that both learning and memory of fearful events
required an intact, functional amygdala (Davis, 1992; LeDoux,
2000; Maren and Quirk, 2004). Since then, it has become clear
that the purview of the amygdala extends beyond fear to include
other emotions, including positive ones (Holland and Gallagher,
1999; Baxter and Murray, 2002; Everitt et al., 2003; Paton et al.,
2006; Belova et al., 2008; Morrison and Salzman, 2010; Salzman
and Fusi, 2010). These results suggest that the amygdala may carry
signals related to the computation of both positive and negative
value.

How do amygdala signals come to impact behavior? The amyg-
dala is heavily interconnected with many other areas of the brain,
providing an array of anatomical pathways by which it can par-
ticipate in learning and decision-making. It receives input from
multiple sensory modalities (McDonald, 1998; Amaral et al., 2003;
Freese and Amaral, 2005), which accords with the amygdala’s
established role in associative learning; information from predic-
tive sensory cues converges with input about reinforcing outcomes
at the single cell level (e.g., Romanski et al., 1993). Furthermore,
lesions of the amygdala impair reinforcer devaluation (Baxter and
Murray, 2002; Izquierdo and Murray, 2007), indicating that the
amygdala plays a role not only in learning reinforcement contin-
gencies, but also in adjusting these representations as the value of
associated reinforcement outcomes changes.

Although the amygdala participates in learning stimulus-
reinforcement associations that in turn may be utilized and
adjusted during decision-making, it does not act alone in
these processes. The amygdala has reciprocal connections with
orbitofrontal cortex (OFC; McDonald, 1991; Carmichael and
Price, 1995; Stefanacci and Amaral, 2000, 2002; Ghashghaei et al.,
2007), a cortical area thought to play a central role in value-
based decisions (Padoa-Schioppa and Assad, 2006; Wallis, 2007;

Padoa-Schioppa, 2011). OFC may be important for implementing
executive or cognitive control over behavior, and endowing sub-
jects with the ability to rationally analyze their options, as well as
to tune their behavior to what is socially acceptable in the face of
emotionally driven impulses (Damasio, 1994; Rolls, 1996; Bechara
et al., 2000; Berlin et al., 2005; Ochsner and Gross, 2005). Part of
this may be due to the fact that OFC seems to play a role in the
simple ability to anticipate aversive stimuli or negative outcomes,
as well as positive outcomes (Tremblay and Schultz, 2000; Roberts
et al., 2004; Young et al., 2010).

In this paper, we review our efforts to understand the roles of
the amygdala and OFC in acquiring representations of reinforce-
ment contingencies. As we reviewed above, these representations
may be critical substrates for reward-based and punishment-based
decision-making. One of the striking findings in these investiga-
tions concerns the differential dynamics of processing that takes
place in appetitive and aversive systems in amygdala and OFC.
The amygdala appears to have evolved an aversive system that
learns changes in reinforcement contingencies more rapidly than
its counterpart in OFC; but, for appetitive networks, the time
courses of learning in the two brain areas are reversed. More-
over, both single unit and local field potential (LFP) data point to
complex interactions between amygdala and OFC that change as
a function of learning. Although appetitive and aversive systems
have been posited to act in an opponent manner, this complex
pattern of interactions suggests that a more nuanced framework
may be required to understand the relative contribution of these
networks during learning and decision-making. Moreover, behav-
ioral evidence indicates that appetitive and aversive stimuli can
have a variety of effects on cognitive processes, some of which may
be induced by stimuli of either valence. Altogether, these data sug-
gest that appetitive and aversive systems may act in congruent and
opponent fashions – even at the same time – and do not merely
compete to determine the most valuable behavioral option during
decision-making.

POSITIVE AND NEGATIVE CELLS IN THE BRAIN
We have focused on trying to understand neural circuits involved
in punishment and aversive learning, and how these circuits may
differ from and interact with circuits involved in rewards and
appetitive learning. When we began our experiments several years
ago, only a few studies had examined the neurophysiology of
the amygdala in primates (Sanghera et al., 1979; Nishijo et al.,
1988, 2008; Rolls, 2000; Sugase-Miyamoto and Richmond, 2005;
Wilson and Rolls, 2005). Furthermore, no primate lab had under-
taken simultaneous recordings in amygdala and OFC to under-
stand dynamic interactions between the brain structures during
learning.

Our experimental approach strove to disambiguate neural
responses that might be related to the sensory properties of visual
conditioned stimuli (CSs) from responses related to the reinforce-
ment contingencies. To accomplish this, we used a mixed appeti-
tive/aversive reversal learning paradigm. This paradigm combined
a conditioning procedure with standard extracellular physiology
in rhesus monkeys; we measured the physiological responses of
individual neurons to CSs that signaled an impending positive or
negative US. CSs were small fractal patterns, positive outcomes
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were small aliquots of water, and negative outcomes were brief
airpuffs directed at the face (Paton et al., 2006; Belova et al., 2007,
2008; Morrison and Salzman, 2009, 2011; Morrison et al., 2011).
In these experiments, one CS was initially paired with reward
and another with an aversive stimulus (unconditioned stimuli,
USs); then, without warning, we reversed the reinforcement con-
tingences of the CSs. We recorded single neuron responses while
monkeys learned the initial CS-US associations and their reversal.
One major advantage of this approach was that reinforcements –
particularly aversive “punishments” – were unavoidable, so we
were able to unequivocally identify neural activity related to the
anticipation of appetitive and aversive reinforcement.

In both the amygdala and OFC, we observed two populations of
neurons that fired more for positive or negative outcomes, respec-
tively, which we refer to as positive and negative value-coding
cells. The response profiles for these two populations are shown
in Figures 1A–D for OFC and in Figures 1E–H for the amygdala.
Shortly after CS onset, both cell populations systematically fire dif-
ferentially for CSs paired with positive or negative reinforcement.
Reversing the reinforcement contingencies (Figures 1C,D,G,H for
positive and negative cells, respectively) demonstrates that the
differential firing is specifically related to the reinforcement con-
tingencies and not other aspects of the CS, such as specific visual
features. Note that after reversal, an image formerly associated with
a reward now leads to a punishment,and vice-versa; after only a few
trials of exposure to these new contingencies (Paton et al., 2006;
Belova et al., 2007; Morrison et al., 2011), the neural response pat-
tern shifts to reflect these changes, such that the response profiles
look quite similar before and after reversal.

The encoding of reinforcement contingencies seems to reflect
the overall motivational significance, or value, of a US associated
with a CS, and not other types of information learned during
conditioning. Several lines of evidence support this conclusion.
First, neither amygdala nor OFC neurons encode motor responses
elicited by USs on our task, indicating that neurons do not appear
to represent the relationship between a CS and the motor response
elicited by USs (Paton et al., 2006; Morrison and Salzman, 2009).
Second, both OFC and amygdala neurons generally do not simply
represent the relationship between a CS and the sensory qualities
of a preferred US. Rather, we found that OFC and amygdala neu-
rons respond in a graded manner to CSs predicting large rewards
(LRs), small rewards (SRs), and negative outcomes; this means
that a cell that prefers a CS associated with an aversive airpuff also
responds differentially to CSs associated with water rewards, and
thus encodes information about two types of outcomes. Moreover,
since the outcomes include two modalities (taste and touch), it is
unlikely that the neural response is primarily driven by a physical
quality of one type of outcome, such as the strength or duration
of the airpuff (Belova et al., 2008; Morrison and Salzman, 2009).

Third, positive and negative neurons often appear to track value
in a consistent manner across the different sensory events in a
trial – including the fixation point, CS, and US presentations –
even though those stimuli differ in sensory modality. This has led
us to suggest that amygdala and OFC neurons represent the overall
value of the animals’“state,” or situation (Belova et al., 2008; Mor-
rison and Salzman, 2009, 2011). Finally, in an additional series of
experiments that examined the representation of “relative” value

FIGURE 1 | Value-coding cells in the amygdala and OFC. The average
normalized neural activity (±SEM) as a function of time since CS onset is
shown for the population of positive value-coding cells (A,C,E,G) and
negative value-coding cells (B,D,F,H), in OFC (A–D) and the amygdala
(E–H). Responses are shown before (A,B,E,F) and after (C,D,G,H) reversal
of the outcome contingencies associated with each CS. Peristimulus time
histograms (PSTHs) were built using 10 ms non-overlapping bins, Z -scoring,
and then averaging cells together, and lastly smoothing by calculating a
10-bin moving average. Blue lines, positive CS trials; red lines, negative CS
trials. Vertical dotted line, CS onset. Adapted from Morrison et al. (2011),
Figure 3, with permission.

in different contexts, amygdala neurons changed their firing rate in
accordance with changes in the relative value of a CS, even when
the absolute value (i.e., reward size) of the associated US does
not change (Schoer et al., 2011). This phenomenon has also been
observed in the OFC (Padoa-Schioppa, 2009; Schoer et al., 2009).

In contrast to the signals just described, there are doubtless
other signals in the brain that encode the magnitude of single
stimulus dimensions – e.g., the size or taste of specific rewards.
However, these signals would not, in and of themselves, be suf-
ficient to inform choices made between outcomes that were in
different modalities.
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DYNAMICS DURING LEARNING
The neurons we describe provide a dynamic representation that
changes rapidly during learning. Overall, during reversal learning,
the change in the neural responses in both amygdala and OFC was
on a timescale similar to changes in the monkey’s behavior. Behav-
ioral metrics of the monkey’s expectation – anticipatory licking
of the water tube preceding rewards and anticipatory “blinking”
before aversive airpuffs – reversed within a few trials, indicating
that monkeys learned the new associations quite rapidly (Paton
et al., 2006; Morrison et al., 2011). Amygdala and OFC neural
activity likewise began to change their responses to CSs within a
few trials of a reversal in reinforcement contingencies (Paton et al.,
2006; Belova et al., 2007; Morrison et al., 2011). This sequence
of neural and behavioral changes indicates that the amygdala
and OFC could be involved in the monkeys’ learning of new
reinforcement contingencies.

Neuroscientists have long believed that the prefrontal cor-
tex, and OFC in particular, drives reversal learning (Iversen and
Mishkin, 1970; Thorpe et al., 1983; O’Doherty et al., 2001; Schoen-
baum et al., 2002; Chudasama and Robbins, 2003; Fellows and
Farah, 2003; Hornak et al., 2004; Izquierdo et al., 2004; Chamber-
lain et al., 2008; Hampshire et al., 2008; Ghahremani et al., 2010);
but some have recently proposed that in fact representations in
OFC may update more slowly upon reversal than those elsewhere
(Schoenbaum et al., 1998, 2003; Saddoris et al., 2005). Because
we recorded amygdala and OFC activity simultaneously, we were
able to examine the dynamics of learning in positive and nega-
tive value-coding neurons in both amygdala and OFC in order to
characterize their relative timing. We found that appetitive and
aversive networks in OFC and amygdala exhibited different learn-
ing rates, and – surprisingly – that the direction of the difference
depended on the valence preference of the cell populations in
question. For positive cells, changes in OFC neural activity after
reversal were largely complete many trials earlier than in the amyg-
dala; for negative cells, the opposite was true (Figure 2). In each
case, the faster-changing area was completing its transition around
the time of the onset of changes in behavior; meanwhile the other,
more slowly changing area did not complete the shift in firing
pattern until many trials after the behavioral responses began to
change. Thus, signals appropriate for driving behavioral learning
are present in both brain structures, with the putative aversive
system in the amygdala and appetitive system in OFC being par-
ticularly sensitive to changes in reinforcement contingencies. This
finding may reflect the preservation across evolution of an aversive
system in the amygdala that learns very quickly in order to avoid
threats to life and limb.

DURING VERSUS AFTER LEARNING
Despite the complex pattern of dynamics we observed during
learning, once the new CS-US contingencies have been established,
we found that both populations of OFC cells – positive value-
coding and negative value-coding – predict reinforcement earlier
in the trial than their counterparts in the amygdala (Figure 3).
To demonstrate this, we examined trials after learning had taken
place and determined the earliest point in the trial each area begins
to significantly differentiate between images that predict reward
and images that predict airpuff. For both positive and negative

FIGURE 2 | Comparison of the time courses of learning-related activity
in positive and negative value-coding neurons in the amygdala and
OFC. Normalized average contribution of image value to neural activity,
derived from ANOVA, plotted as a function of trial number after reversal for
positive value-coding neurons (A) and negative value-coding neurons (B).
Blue lines, OFC; green lines, amygdala; red and cyan arrowheads, mean
licking and blinking change points, respectively. Adapted from Morrison
et al. (2011), Figures 5C,D, with permission.

FIGURE 3 | Encoding of image value in OFC and the amygdala. The
contribution of image value as a function of time for positive value-coding
cells (A) and negative value-coding cells (B). Asterisks, time points at which
the average contribution of value is significant (Fisher p < 0.0001) for OFC
(blue lines) and the amygdala (green lines). Vertical dotted line, CS onset.
Adapted from Morrison et al. (2011), Figures 8E,F, with permission.

cell populations, OFC predicted reinforcement more rapidly after
image onset. Thus, it appears that the relationship between sin-
gle unit firing in the appetitive and aversive networks in the two
brain areas evolves as a function of learning, with the OFC perhaps
assuming a more primary role after learning.

We found further evidence of the evolving dynamic relation-
ship between amygdala and OFC during learning by examining
LFP data recorded during the reversal learning task. To do so,
we applied Granger causality analysis, which measures the degree
to which the past values of one neural signal predict the current
values of another (Granger, 1969; Brovelli et al., 2004), to the
simultaneously recorded LFPs in the amygdala and OFC. Remark-
ably, we found significant Granger causality in both directions
that increased upon CS onset (Wilcoxon, p < 0.01; Figure 4A).
Notably, during learning, Granger causality was stronger in the
amygdala-to-OFC direction, but after learning, Granger causality
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FIGURE 4 | Granger causality between the amygdala and OFC. (A)
Average normalized Granger causality (±SEM) for the OFC-to-amygdala
direction (blue) and the amygdala-to-OFC direction (green). For each pair of
OFC-amygdala LFP recordings, Granger causality was computed for all
trials after reversal, then averaged across pairs. Only pairs with significant
Granger causality at some point during the trial were included in the
average, which combines frequencies from 5 to 100 Hz. Asterisks, bins
with significantly different causality for the two directions (permutation
test, p < 0.05). (B,C) Granger causality changes with learning. The

difference between the mean Granger causality in the two directions
(subtracting amygdala-to-OFC from OFC-to-amygdala) was separately
calculated for early (during learning, red line) and late (post-learning, black
line) trials after reversal. This comparison is shown for all frequencies
5–100 Hz as a function of time within the trial (B) and for the CS and trace
intervals combined as a function of frequency (C). Asterisks, bins where
the difference between during-learning and post-learning values was
significant (permutation test, p < 0.05). Adapted from Morrison et al.
(2011), Figure 9, with permission.

was strongest in the OFC-to-amygdala direction (Figures 4B,C).
This result is consistent with single unit data showing that, after
reversal learning has occurred, OFC predicts reinforcement with
a shorter latency after CS onset. This positions the OFC to be able
to drive or modulate amygdala responses to value-laden CSs after
learning. (Note, however, that the amygdala continues to be able to
influence processing in OFC, just not as strongly as the reverse.).

CONFLICT WITHIN APPETITIVE AND AVERSIVE CIRCUITS
There is an additional level of complexity within appetitive and
aversive circuits that has not received much attention on the
physiological level, namely competition and conflict within these
circuits. Our learning data suggest that the signals carried by dif-
ferent neural circuits may be updated at different rates in different
brain areas. This suggests that these systems might at times conflict
with each other. Another possible example of competition is that
between executive areas – which allow us to evaluate potential out-
comes on a practical and rational level – and limbic areas, which are
more involved in emotional processing, and which might provide a
value signal based more heavily on immediate sensory experience
and emotion-laden associations. For example, the amygdala and
OFC themselves may at times “recommend” different responses,
the former mediating more emotionally driven responses and the
latter more executive or cognitive behaviors (De Martino et al.,
2006).

This phenomenon has been given some attention on the behav-
ioral level (McNeil et al., 1982; Damasio et al., 1994; Kahneman and
Tversky, 2000; Loewenstein et al., 2001; Greene and Haidt, 2002),
and has also been examined using fMRI in humans (McClure
et al., 2004, 2007; De Martino et al., 2006; Kable and Glimcher,
2007). However, few studies have examined appetitive and aver-
sive circuits at the level of single cells during a decision-making
task involving rewards and punishments. To best investigate the
interactions between appetitive and aversive neural circuits, such a
decision-making task should include conditions in which rewards
and aversive stimuli must be weighed against each other in order
to guide behavior. As a first step, we trained monkeys to perform

a simple two-choice task involving rewards and aversive stimuli
(described below). We discovered that, even on this simple task,
behavioral choices appear to be influenced not only by the value
of the reinforcement associated with cues, but also by the salience
of cues.

We used a two-choice task in which monkeys selected visual
targets by making a saccade to the target of their choice. Mon-
keys viewed two visual targets on each trial, each of which was a
CS associated with a particular outcome. After maintaining fix-
ation during a 900–1200 ms delay period, monkeys chose one
of the two targets by foveating it, followed by delivery of the
associated outcome (Figure 5A). There were four possible out-
comes: a LR, a SR, no reinforcement (N), or a punishment (P),
where rewards were small amounts of water and punishments
were brief airpuffs directed at the face. The four CSs (one for
each outcome; Figure 5B) were offered in all possible combina-
tions, with the exception of two of the same kind. Trial conditions
were pseudo-randomly interleaved, and counter-balanced for spa-
tial configuration. The list of trial types is shown in Figure 5C.
New sets of CSs were used in each session. Two independent stim-
ulus sets were used, and trials drawing from the two sets were
interleaved in pseudo-random order. In each session, a pair of
locations on the monitor was chosen and used for the duration of
the session. The locations varied, but each pair always straddled
the fixation point. While monkeys were free to choose either target,
they had to make a choice: incomplete trials were repeated until
one or the other target was chosen.

If monkeys always chose the higher-value target, then plotting
the percent of trials on which a CS was chosen, out of all trials on
which that CS was offered, yields a straight line, since LR is always
the higher-value target when presented, SR on 2/3 of trials when
presented, N on 1/3 of trials, and P on no trials, as can be seen in
the list of trial conditions (see Figure 5C). We will refer to this as
“optimal” behavior. In Figure 6, two example sessions are shown.
The first is a session in which a monkey chose the higher-value tar-
get most of the time, such that the plot of the number of times each
target was chosen follows the optimal behavior line quite closely
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FIGURE 5 | Schematic illustration of the design of the two-choice task.
(A) Sequence of events in each trial. The monkey begins each trial by
foveating a central fixation point (FP, black square), then two visual targets
appear, straddling the FP, a delay ensues, the FP goes out, and the monkey
makes an eye movement (black dashed line) to one of the two targets to
select it. Targets are extinguished, and, after another short delay, the

associated outcome (US) is delivered. (B) Visual targets (CSs) and associated
outcomes (USs). Four targets are used as CSs, each one associated with one
of the four possible USs. CSs are random grayscale stick figures (not shown);
USs: LR, large reward; SR, small reward; N, neutral; P, punishment. (C) Trial
types, determined by the outcome of the two CSs offered. CSs were
counter-balanced for location.

FIGURE 6 | Choice behavior in the two-choice task. The percent of trials
that a CS was chosen when it was offered is shown for each CS. Blue line,
monkey’s choices; dashed black line, optimal behavior. Choice behavior is

shown for two sessions, one where the monkey rarely chose the P target (A),
and one where he chose it frequently (B). The two stimulus sets have been
combined in this figure.

(Figure 6A). In the second example, however, the same monkey
chose the punished target many times, and about as often as he
chose the neutral (non-reinforced) target (Figure 6B).

The deviation from optimal behavior seen in Figure 6B is not
due to an overall drop in performance, but to a change in behav-
ior on a single trial type: the N-P stimulus pair. In Figure 7, a
running local average of the proportion of trials on which the
monkey chose the higher-value target is shown, broken down
by trial type, for the same two sessions shown in Figure 6.
When offered a choice between a reward and a punishment, the
monkey reliably chose the reward (LR-P and SR-P trial types
in Figures 7A,B). However, when offered a choice between no
reinforcement and a punishment, in some sessions, the monkey
chose punishment quite often (N-P trial type in Figure 7B). These
two sessions are representative of the type of choice behavior we
observed.

This choice pattern was perplexing to us at first. We noticed
that sometimes monkeys avoided the punished target in a session,
while other times he chose it over the neutral target a substan-
tial fraction of the time. We checked and manipulated a number
of parameters: did monkeys find the punishment aversive? Was
it aversive enough? Did monkeys understand the CS-US contin-
gencies? What we found, in two monkeys, was an abundance of
evidence that subjects did understand the task contingencies, did
find the airpuff aversive, and yet chose the punished target despite
the aversive outcome they knew would follow. Evidence in sup-
port of the idea that the airpuff was indeed aversive included:
visible frustration and displeasure upon airpuff delivery, defensive
blinking behavior in anticipation of airpuff, statistically significant
greater likelihood of breaking fixation on N-P trials, and willing-
ness to work being clearly dependent on the strength or frequency
of airpuff delivery, with increases in any of these variables quickly
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FIGURE 7 | Choice behavior as a function of trial number. (A,B) A running
average is calculated (6-trial boxcar) for each trial type (the two stimulus sets
are again folded together), as a function of trial number within the session, for
the same sessions shown in Figure 6. Choice behavior on each trial is
calculated as the proportion of higher-value targets chosen, and on each trial
is either 1 (higher-value target was chosen) or 0 (lower-value target was

chosen). Individual black dots show when one outcome or the other was
chosen on a per-trial basis. Thus, dots along the bottom of the figure indicate a
lower-value choices. Dots are offset from 0 to 1 for clarity. Running average
lines start at different trial numbers because they start on the nth trial for that
trial type, where n is the width of the running average, but are plotted against
actual trial number in the session.

leading to the monkey’s refusing to work for the rest of the day.
None of these were observed in relation to rewarding outcomes.

Over a period of training lasting several months, these patterns
persisted. Figure 8 shows the performance across a series of ses-
sions over a period of a few weeks in one monkey. The two example
sessions shown in the previous figures are marked with asterisks.
In Figure 8A, the percent of trials completed for N-P versus other
trial types is displayed. On average, the monkey broke fixation
before completing the trial more often on N-P trials than on other
trial types – resulting in a lower percent of trials completed –
which is indicative of that trial type being aversive, difficult, or
both. (Note that the two sessions shown in Figures 6 and 7 are
not representative of this overall pattern, having lower than aver-
age percent break-fixation trials). Figure 8B shows the percent of
trials on which the monkey chose the N-target on N-P trials (dark
gray bars, %N of NP) as compared to choosing the P target (light
gray bars). What is apparent is that %N of NP varied day to day,
and did not appear to plateau at a stable level, nor was there a trend
in either direction as training progressed. Note that the selection
of the punished target on N-P trials occurred during blocks in
which, on all other interleaved trial types, the monkey chose the
higher-value target nearly all of the time (Figure 8C). This same
pattern was seen in other training periods for this monkey, as well
as across all training periods in the second monkey.

On average, one monkey chose neutral CSs over punished CSs
only slightly more than half the time. Figure 9A shows the dis-
tribution of %N of NP across all training sessions, including the

subset shown in Figure 8. The mean was 62.2%, and was sig-
nificantly greater than 50% (t -test, p < 0.0001). This was over a
training period of 5 months, and after trying a host of manip-
ulations to ensure that the monkey understood the task and the
CS-US contingencies involved. Also, note that on interleaved trials,
the monkey was choosing the higher-value target virtually all the
time (Figure 9B). In the second monkey, the average %N of NP
was very close to 50%, and was not statistically significant (mean,
50.4%, mean > 50%, t -test, p= 0.4409), even though that monkey
was also trained extensively and exposed to the same set of task
manipulations as the first monkey. However, his performance on
other trial types was similarly very high (mean, 89.1% higher-value
target chosen, mean > 50%, t -test, p < 0.0001).

While there are several possible explanations of this counter-
intuitive behavior, we favor one explanation that fits with some
of the other examples of neural systems in competition. In par-
ticular, we believe that on the N-P trial type, the salience and
value of cues were in conflict, and this conflict pushed monkeys
toward different choices. This was not true on any of the other
trial types, in which the most salient CS on the screen was also
the most valuable (whatever the highest level of reward was). On
N-P trials, however, the N-target is more valuable than the P tar-
get (presumed zero value versus negative value), but the P target,
by virtue of its association with an aversive airpuff, is very likely
to be more salient. Thus the P target is chosen some of the time,
even though it is not necessarily what monkeys prefer, due to a
strong impulse to foveate – i.e., look at or orient toward – this
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FIGURE 8 | Choice behavior in the two-choice task over time.
Performance over a training period of weeks for one monkey. (A) The
percent of trials completed is shown, for each session, for N-P trials
and all other trials separately (dark and light gray bars, respectively). (B)
The percent of N-P trials, for each session, on which the monkey chose

N (higher-value CS, dark gray bars) or P (lower-value CS, light gray bars).
(C) The percent of other trial types, for each session, on which the
monkey chose the higher-value target (dark gray bars) or the
lower-value target (light gray bars). Asterisks mark the two sessions
shown in Figures 6 and 7.

highly salient, behaviorally relevant stimulus. Further evidence to
support this idea is that monkeys were much more indecisive on
N-P trials than on other trials: this was apparent in the percentage

of break-fixation trials (Figure 8A), and in the observation that
monkeys often looked quickly back and forth between targets,
even though this behavior led to a greater number of incomplete
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FIGURE 9 | Distribution of higher-value target choices in two versions of
the two-choice task. Performance of one monkey in the original two-choice
task (A,B) and the modified two-choice task (C,D). (A) Distribution of the
percent of N-target choices on N-P trials across all sessions in a 5 month
training period. Mean, 62.2% (mean > 50%, t -test, p < 0.0001). (B)
Distribution of the percent higher-value choices on non-N-P trial types across

the same set of sessions as in (A). Mean, 97.1% (mean > 50%, t -test,
p < 0.0001). (C) Distribution of the percent of SR-target choices on
SR−[P+SR] trials across 32 sessions. Mean, 84.9%, (mean > 50%, t -test,
p < 0.0001). (D) Distribution of the percent higher-value choices on
non-SR−[P+SR] trial types across the same set of sessions as in (C). Mean,
98.7%, (mean > 50%, t -test, p < 0.0001).

trials. The monkeys did not do this on other trial types. As might
be expected for trial types that are more difficult or less certain,
monkeys exhibited greater spatial bias on N-P trials than on other
trial types. The differences were modest: first monkey, 10.0% ver-
sus 1.6% bias, and second monkey, 8.3% versus 2.4% bias, for N-P
and other trials, respectively, when measured across all sessions.
(Bias is the percentage over 50% that a preferred spatial location
is chosen; a 10% bias is equivalent to a location being chosen 60%
of the time). While both differences were statistically significant
(t -test, p < 0.0001 in both cases), the small magnitude indicates
that other factors had a strong impact on the monkeys’ choices.

We suspected that the absence of a possible reward on N-P trials
was having a major impact on the choice behavior of our monkeys.
Therefore, we redesigned the task for the first monkey so that all
outcomes included some level of reward, using as our set of possi-
ble outcomes: LR, SR, and a compound outcome of airpuff and SR
(P+ SR). For the compound outcome, the punishment was deliv-
ered first, followed by a short delay and then the SR. This change

resulted in a substantial shift in the monkey’s behavior. Within a
few training sessions, the monkey learned the new task and began
consistently choosing the higher-value target most of the time on
all trial types. At the beginning of each session, new CSs were intro-
duced, and the monkey learned them within a small number of
repetitions, and then chose the higher-value target virtually all of
the time for the rest of the session. The monkey performed at this
level consistently day after day: the average choice %SR on the trial
type SR−[P+ SR] was 84.9% (Figure 9C), which was significantly
greater than 50% (t -test, p < 0.0001), and variations around this
mean were much smaller than they had been in the first version of
the task. As before, on all other trial types, which were interleaved,
the monkey chose the higher-value target virtually all of the time
(Figure 9D).

We have here, then, an example of counter-intuitive choice
behavior that is robust and occurs when no reward is possible.
As we mention above, we suspect that this is due to competi-
tion between the neural circuits processing value and salience;
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we would also speculate that the salience of negative outcomes
only grows large enough to compete with value signals driving
behavior when the value of the alternative outcome is small
or zero (e.g., when a cue predicts no reinforcement). Clearly,
this results in sub-optimal choice behavior. This is consistent
with other studies that have noted sub-optimal performance in
tasks where monkeys are forced to make a choice between out-
comes and the greatest possible reward is very small or zero.
For example, Peck et al. (2009) observed more incorrect choices
on “neutral” as opposed to rewarded trials, and Amemori and
Graybiel (2012) observed longer reaction times and more omis-
sion errors on a “reward–reward” control task when reward size
was very low. Moreover, Amemori and Graybiel (2012) designed
their main experimental task to include a SR for any choice
because they found it necessary to “maintain motivation to per-
form the task.” The paradigm employed by Amemori and Graybiel
differed from ours in a number of ways, including the use of
a joystick movement operant response, limiting our ability to
make a direct comparison of the behavior observed in the two
tasks. On the other hand, our use of an eye movement operant
response may have increased the efficacy by which representations
of salience modulated behavior. There is good reason to believe
that salience has privileged access to the oculomotor system (Bis-
ley et al., 2004; Hasegawa et al., 2004), especially in the highly
visually oriented primate, to promote rapid foveation of salient
stimuli.

We suggest that our behavioral results may be an example
of a competition between limbic and cortical circuits dedicated
to emotional versus cognitive processing, respectively. This par-
adigm, in the macaque, may test the limits of the amount of
cognitive control monkeys are able to exert over reflexive behav-
iors. While the monkey does succeed in overriding the impulse to
look at the punished target some of the time, he does not do so
all of the time. Humans, with their greater level of cognitive pro-
cessing and control, would presumably have much less difficulty
avoiding the punished target.

SUMMARY AND CHALLENGES
To make a decision, we often must predict how particular stimuli
or courses of action lead to rewards or punishments. The ability to
make these predictions relies on our ability to learn through expe-
rience the relationship between stimuli and actions and positive
and negative reinforcement. It is therefore important to under-
stand the representation of aversive and appetitive outcomes in
the brain, both during and after learning, in order to understand
how these signals generate behavior. However, at the same time,
it’s important to recognize that the impact of appetitive and aver-
sive circuits is not limited to behavior that is specific to the valence
of the looming reinforcement. Activation of appetitive and aver-
sive circuits can also elicit valence non-specific responses, such as
enhanced arousal or attention.

A number of the studies in our lab have been directed at try-
ing to understand the nature of appetitive and aversive circuits
in the brain. Although there hadn’t been a great deal of work
examining aversive processing at the physiological level in non-
human primates in the past, some older studies suggested that our
approach would be fruitful (e.g. Nishijo et al., 1988; Mirenowicz

and Schultz, 1996; Rolls, 2000; Yamada et al., 2004). Our neuro-
physiological studies have expanded on these initial findings to
create a more detailed picture of appetitive and aversive circuits.
Both the amygdala and OFC contain neurons that belong to each
network: positive and negative value-coding neurons are present
in both areas, and appear to encode the value of cues that sig-
nal imminent appetitive and aversive reinforcers, responding in a
graded fashion to the value of CSs as well as USs. The dynamics of
learning exhibited by appetitive and aversive networks in amygdala
and OFC are surprisingly complex, with aversive systems updating
faster during reversal learning in the amygdala than OFC, but vice-
versa for appetitive networks (Morrison et al., 2011). This suggests
that reversal learning is not merely driven by one brain area or the
other. The complexity of the dynamics is also illustrated by the fact
that the degree to which each area may influence the other is not
fixed and instead evolves during the learning process (Morrison
et al., 2011) and perhaps in other circumstances as well.

In addition to our neurophysiological findings, behavioral data
indicates that the interactions between appetitive and aversive sys-
tems are complicated. In a paradigm that required monkeys to
make decisions based on the value of stimuli, behavior was sub-
optimal when monkeys had to choose between a cue associated
with nothing and a cue associated with an airpuff. These results
indicate that eye movement choice behavior may be influenced not
just by the value of stimuli but also by their salience. It demon-
strates that competition between appetitive and aversive networks
may occur not only between the values encoded by the two sys-
tems but also by the extent to which the systems influence brain
structures representing salience, and thereby perhaps generating
enhanced attention and eye movements to salient targets.

The complexity of interactions between appetitive and aversive
circuits is likely to remain an enduring problem for neuroscien-
tists, but headway is being made. Notably, in our studies of the
amygdala and OFC, we have failed to find evidence of anatom-
ical segregation of appetitive and aversive networks (Morrison
et al., 2011). Rather, appetitive and aversive networks appear to be
anatomically intermingled. Anatomical segregation of these sys-
tems would make it easier to develop experimental approaches
that can target manipulations of one system or the other to test
their causal role in behavior. Fortunately, some recent studies have
begun to identify areas where anatomical segregation exists. Two
examples of segregation in aversive systems may be found in the
work of Hikosaka and colleagues on the habenula (Matsumoto
and Hikosaka, 2007, 2008, 2009), and Graybiel’s team in the ACC
(Amemori and Graybiel, 2012). The habenula appears to encode
negatively valenced stimuli in relation to expectation. The ACC
contains networks belonging to appetitive and aversive networks,
though there appears to be some anatomical segregation of the
aversive network. Both areas are likely to be involved in value-
driven decision-making and/or learning. In addition, in contrast
to our findings in the monkey, anatomical segregation of appetitive
and aversive processing has been observed in the OFC in human
fMRI studies (Kim et al., 2006). Our recordings focused only on
a restricted part of OFC, largely area 13, and it remains possi-
ble that recordings from a more extensive part of the OFC will
reveal anatomical segregation of appetitive and aversive systems
in the macaque. In general, anatomical segregations may provide
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more experimentally tractable opportunities for future studies to
elucidate details concerning how each network operates.

Despite the anatomical segregation of some aspects of these
networks, the challenges ahead are formidable. The amygdala and
OFC are two structures intimately related to emotional processing,
and these structures, among others, likely mediate the executive
control of emotion. Moreover, the amygdala, through its exten-
sive connections to sensory cortex, to the basal forebrain and
to the prefrontal cortex is poised to influence cognitive process-
ing. The neurophysiological data we have presented illustrates the
complexity of interactions between appetitive and aversive net-
works. Further, the behavioral data presented suggests that conflict
between appetitive and aversive networks extends beyond conflicts
about value to conflicts between value and salience. Future studies
must clarify how these conflicts are resolved in the brain.
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