
Research Article
Deep Learning-Based Privacy-Preserving Data Transmission
Scheme for Clustered IIoT Environment

Kuruva Lakshmanna ,1 R. Kavitha,2 B. T. Geetha,3 Ashok Kumar Nanda,4

Arun Radhakrishnan ,5 and Rachna Kohar6

1Department of Information Technology, Vellore Institute of Technology, Vellore, India
2Department of CSE, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai, India
3Department of ECE, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, India
4CSE Department, B. V. Raju Institute of Technology, Narsapur, Medak, Telangana, India
5Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
6School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India

Correspondence should be addressed to Arun Radhakrishnan; arun.radhakriahnan@ju.edu.et

Received 7 April 2022; Revised 9 May 2022; Accepted 21 May 2022; Published 8 June 2022

Academic Editor: Kapil Sharma

Copyright © 2022 Kuruva Lakshmanna et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

(e Industrial Internet of (ings (IIoT) has received significant attention from several leading industries like agriculture, mining,
transport, energy, and healthcare. IIoTacts as a vital part of Industry 4.0 that mainly employs machine learning (ML) to investigate
the interconnection and massive quantity of the IIoTdata. As the data are generally saved at the cloud server, security and privacy
of the collected data from numerous distributed and heterogeneous devices remain a challenging issue. (is article develops a
novel multi-agent system (MAS) with deep learning-based privacy preserving data transmission (BDL-PPDT) scheme for
clustered IIoT environment. (e goal of the BDL-PPDT technique is to accomplish secure data transmission in clustered IIoT
environment. (e BDL-PPDT technique involves a two-stage process. Initially, an enhanced moth swarm algorithm-based
clustering (EMSA-C) technique is derived to choose a proper set of clusters in the IIoT system and construct clusters. Besides,
multi-agent system is used to enable secure inter-cluster communication. Moreover, multi-head attention with bidirectional long
short-term memory (MHA-BLSTM) model is applied for intrusion detection process. Furthermore, the hyperparameter tuning
process of the MHA-BLSTM model can be carried out by the stochastic gradient descent with momentum (SGDM) model to
improve the detection rate. For examining the promising performance of the BDL-PPDT technique, an extensive comparison
study takes place and the results are assessed under varying measures. A significant amount of capital is required. It goes without
saying that one of the most obvious industrial IoT concerns is the high cost of adoption. Secure data storage and management
connectivity failures are common among IoT devices due to the massive amount of data they create. (e simulation results
demonstrate the enhanced outcomes of the BDL-PPDT technique over the recent methods. Despite the fact that the offered BDL-
PPDT technique has an accuracy of just 98.15 percent, it produces the best feasible outcome. Because of the data analysis
conducted as detailed above, it was determined that the BDL-PPDT technique outperformed the other current techniques on a
range of different criteria and was thus recommended.

1. Introduction

Industrial Internet of (ings (IIoT) employs actuators and
sensors with communication and computation capabilities
to transform the way the information is exchanged, ana-
lyzed, transformed, and collected into decisions [1]. (is

pervasive capability results in advanced Industry 4.0 (called
Industrial Internet) application for enhanced efficiency and
productivity in large industries like healthcare, energy, ag-
riculture, mining, and transportation. (e innovative In-
dustry 4.0 features, namely, ML-based quality control and
predictive maintenance and run-time reasoning, need to be
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simplified by distributed data acquisition [2]. In IIoT-based
systems like open banking and smart healthcare, ML and
data methods trained with the local boundary should be
interacted with the branches or users to make organization-
wider knowledge [3]. Often, vendors desired to limit their
internal insight on product improvements and development
with the organizational boundary for increasing business
values against their contender. Furthermore, industries like
open banking and smart healthcare are vastly convoluted
with human-specific sensitive information [4]. ML model is
trained on sensitive information that could expose confi-
dential or private data to the attackers [5]. (erefore,
trustworthiness and privacy are the key elements of ML in
IIoT system. (e Internet of (ings is one of the primary
drivers of the Industry 4.0 movement, since it enables greater
automation, data collection, and analytics, as well as
workflow and process optimization.(e intelligence enabled
by the Internet of (ings enables devices to work cooper-
atively to produce outputs on an assembly line. MAS as a
popular technique to offer trusts with distributed and
decentralized settings might be employed in lots of potential
applications, namely, supply chain management, IIoT, and
healthcare [6].(e Internet of(ings is a major driver of the
Industry 4.0 movement since it enables increased automa-
tion, data collection, and analytics, as well as workflow and
process optimization. (e Internet of (ings’ intelligence
enables devices to operate together on an assembly line to
produce outputs. A multi-agent system (MAS or “self-or-
ganized system”) is a computerized system that is built of
numerous intelligent agents that communicate with one
another. Multi-agent systems are capable of resolving
problems that a solo agent or a monolithic systemwould find
difficult or impossible to solve. Methodical, functional, or
procedural techniques, algorithmic search, or reinforcement
learning can all be considered forms of intelligence. Among
them, it is the mainstream application field, where block-
chain is regarded as enabling technology for various ap-
plications. IIoT setup is a well-developed and also
comprehensive deployment that can increase multiple
challenges involving ensuring confidentiality, improving
data accountability, availability, integrity, and availability
(CIA). Blockchain can address this requirement and acts as a
significant role by providing secure and verifiable solutions
to store and share data [7]. IIoT application has require-
ments of similar kinds to guarantee trust and data integrity
between several shareholders related to dissimilar parts of
the logistic chain (e.g., storage, acquiring raw material,
processing to customer, transportation, and industrial de-
ployment). Also, in this application, requirements such as
monitoring and maintaining history of each procedure are
vital. (e conventional security method has a number of
constraints and does not fit for intelligent grid systems; for
example, secured end-to-end encryption method could
produce higher false alarm rate and interrupt analytical
approach [8]. (ere is a considerable range of potential
smart grid risks, like passive and active attacks. Another way
of the attack is the smart grids, namely, sniffing the infor-
mation from the CPS through open source data, and in
active attack, the hackers can change the information

through data poisoning attack or inference attack [9]. In data
poisoning attacks, attackers attempt to change the standard
information.

(is article develops a novel MAS with deep learning-
based privacy-preserving data transmission (BDL-PPDT)
scheme for clustered IIoT environment. (is research
proposes a unique multi-agent system (MAS) method for
clustered IIoT environments using deep learning-based
privacy preserving data transmission (BDL-PPDT). (e
BDL-PPDT technique’s objective is to achieve secure data
transfer in a clustered IIoT environment. (e BDL-PPDT
technique involves the design of an enhanced moth swarm
algorithm-based clustering (EMSA-C) technique for cluster
head (CH) selection. In addition, blockchain technology
(BCT) is applied for accomplishing secure inter-cluster
communication. Furthermore, a new multi-head attention
with bidirectional long short-term memory (MHA-BLSTM)
model is used to find intrusions. To increase the detection
rate, the stochastic gradient descent with momentum
(SGDM) model can be used to tune the MHA-BLSTM
model’s hyperparameters. Finally, the stochastic gradient
descent with momentum (SGDM)-based hyperparameter
tuning process takes place. To inspect the significant per-
formance of the BDL-PPDT technique, a wide-ranging
comparative analysis is made and the results are inspected in
terms of different measures.

2. Related Works

Sodhro et al. [10] proposed sustainable, secure, efficient, and
reliable blockchain-driven methods. (e presented method
handles key arbitrarily by presenting the chain of blocks with
a smaller amount of cores, less power drain, computation bit,
and transmission. Next is an analytic hierarchy process
(AHP) based smart decision-making method for the
blockchaindriven that is more secured, reliable, sustainable,
interoperable, and concurrent IIoT. Rahman et al. [11]
presented a blockchain-based architecture to provision a
verifiable query and privacy-preserving facilities to end-user
in IIoT system. (e architecture employs blockchain to save
broad information as off-chain data and to save IoT in-
formation as on-chain data and provision search service to
the user by performing a query in off-chain and on-chain
data as well as generate an effective result.

Zhang et al. [12] developed a medical data privacy
protection architecture-based blockchain (MPBC). In this
method, they secure confidentiality by including different
privacy noises to federated learning. Additionally, the in-
creasing amount of healthcare data can make blockchain
storage challenges. (us, a storage mode is presented for
reducing the storage burden of blockchain. (e new in-
formation is locally stored and the hash values are estimated
by IPFS and are saved in blockchain. Deebak and Al-
Turjman [13] introduced a privacy-preserving smart con-
tract with blockchain and artificial intelligence (PPSC-
BCAI) architecture which facilitates system activities, hu-
man interaction, security risks, fraudulent claims, and ser-
vice alerts. In order to examine the data sharing and
transaction, an XGBoost is employed.
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Weng et al. [14] proposed a secure, fair, and distributed
DL architecture called DeepChain to resolve this problem.
DeepChain provides a value-driven incentive method based
on blockchain for forcing the participant to perform prop-
erly. In the meantime, DeepChain ensures data privacy for all
the participants and provides auditability for the entire
training procedure. Arachchige et al. [15] presented an ar-
chitecture called PriModChain which forces trustworthiness
and privacy on IIoT information by amalgamating federated
ML, differential privacy, smart contracts, and Ethereum
blockchain. (e possibility of PriModChain based on resil-
ience, privacy, security, reliability, and safety is estimated by
the simulation technologically advanced in Python with
socket programming on a multipurpose computer.

Kumar and Tripathi [16] designed a deep blockchain-
based trustworthy privacy-preserving secured framework
(DBTP2SF) for IIoT. (is architecture contains two-phase
privacy-preservation model, anomaly detection module, and
trust managementmodule. In the two-phase privacymodel, a
BC-enabled improved proof of work method is concurrently
employed with AE, to convert cyber physical information to a
novel form which avoids poisoning and inference attacks.

3. The Proposed Model

In this study, an effective BDL-PPDT technique has been
developed to accomplish secure data transmission in clustered
IIoTenvironment.(e BDL-PPDTtechnique has presented a
new EMSA-C technique to choose a proper set of clusters in
the IIoT system and construct clusters. Next, the MHA-
BLSTM with SGDMmodel is utilized for intrusion detection
and the hyperparameter tuning process ismade by the SGDM
model resulting in improved detection performance. Figure 1
illustrates the overall process of BDL-PPDTmanner.

3.1. Process Involved in EMSA-C Technique. (e nocturnal
behaviors of moth are the motivation for the MSA [17]. In
the model, the exploration and exploitation tradeoff con-
siders a divider of candidate solutions generating the
population:

(i) Onlooker (to exploit the optimal region discovered
by the prospector).

(ii) Pathfinder (to explore novel region of the searching
space).

(iii) Prospector (to exploit the novel regions attained by
the pathfinder).

With other meta-heuristics models, this one begins with
population initialization:

xij � r and · uj − lj􏼐 􏼑 + lj, ∀i ∈ , 2, n{ }, j ∈ , 2, d{ }, (1)

whereas u and l represent maximum and minimum bounds
of the searching space, χi denotes the candidate solution, n

indicates the population size, d signifies the dimensionality
of problems, and rand means an arbitrary number drawn
from a uniform distribution. For generating pathfinder
crossover, it is essential to estimate the variation coefficient
and dispersal degree at iteration t:
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j �
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whereas np represents the amount of pathfinders
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Figure 1: Working process of BDL-PPDT approach.
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xiij. (4)

In the MSA, the crossover point represents minimum
dispersal value, as follows:

j ∈ cp if σ
t
j ≤ μ

t
. (5)

Form this, nc ∈ cp crossover point is employed for
creating a novel sub-trial pathfinder vector
⟶vp

→
� [vp1, vp2, . . . , vpnc

] from the novel pathfinder
χp
�→

� [χp1, χp2, . . . , χpnc
]:
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∀r1 ≠ r
2 ≠ r

3 ≠ r
4 ≠ r

5 ≠p ∈ 1, 2, . . . , np􏽮 􏽯. (7)

For each of the independent variables [18], the variablesLpl
and Lp2 are calculated using the Lévy stable distribution.(ere
should only be one set of indexes r selected from the pathfinder
solution, in which Lpl and Lp2 represent independent variable
calculated from the Lévy α-stable distribution [18]. (e set of
indexes r should be only chosen from the pathfinder solution,
and position is upgraded by the mutated variable extracted
from the sub-trail vector as follows:

V
t
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v
r
pj, if j ∈ cp,

x
t
pj, if j ∉ cp.

⎧⎪⎨

⎪⎩
(8)

Lastly, MSA employs a selection approach among the
original and trial pathfinders as follows:
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(e possibility of choosing the next pathfinder is de-
termined by

pp �
fitp

􏽐
np
p�1fitp

. (10)

(at employs the luminescence intensity estimated as
follows:

fitp �

1
1 + fp

, if fp ≥ 0,

1 + fp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, otherwise.
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(11)

From the pathfinder, nf individual is chosen as pros-
pector; this value is modified dynamically as follows:

nf � round n − np􏼐 􏼑 × 1 −
t

T
􏼒 􏼓􏼒 􏼓, (12)

where T represents the maximal iteration number. (eMSA
enables the moth to move in a spiral manner over a path-
finder using equation (12):

x
t+1
i � x

t
i − x

t
p

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · e
θ

· cos2πθ + x
t
p

∀p ∈ 1, 2, . . . , np􏽮 􏽯; i ∈ np + 1, np + 2, . . . , nf􏽮 􏽯
. (13)

Let θ ∈ [r, 1] be an arbitrary value employed for giving
the spiral formation to the prospector path, while
r � − 1 − (t/T·).

(e onlooker is the moth with the minimum luminescent
intensity moving toward the shiniest source of light; in MSA,
the onlooker is employed for intensifying the exploitation
process. Further, the onlooker is separated into Gaussian walk
and associative learning using immediatememory. Initially, the
onlooker in the real iteration is attained as follows:

x
t+1
i � x

t
i + ε1 + ε2 ·

gt
best − ε3 · x

t
i􏽨 􏽩, ∀i ∈ , 2, . . . , no􏼈 􏼉, (14)

whereas ε2 and ε3 represent uniformly distributed random
value, bestg denotes the optimal candidate solution, no �

round(nu/2) indicates the amount of onlookers performing
a Gaussian movement, nu shows the amount of onlookers,
and ε1 means an arbitrary value estimated by

ε1 ∼ random(size(d))⊕N bestt􏼐 􏼑 x
t
i − besttg􏼐 􏼑􏼑. (15)

(e behavior of the moth considered short-term
memory and associative learning is upgraded as follows:

x
t+1
i � x

t
i + 0.001 · G + 1 −

g

G
􏼒 􏼓 · ε2 · bestp − x

t
i􏼐 􏼑

+
2g

G
􏼒 􏼓 · ε3 · besttp − x

t
i􏼐 􏼑, ∀i ∈ 1, 2, . . . , nm􏼈 􏼉

, (16)

with nm � nu − no being the amount of onlookers per-
forming short-term memory and associative learning; 1 −

(g/G) indicates a cognitive factor, 2g/ G represent a social
factor, besrp indicates the optimal light source from the
pathfinder, and G ∼ N(xt

i − χmin
i , χmax

i − χt
i).

To improve the performance of the MSA, the EMSA is
derived by the use of OBL concept. (e efficient imple-
mentation of OBL contributes approximation of the op-
posite and current populations in the same generation for
identifying optimum candidate solutions of a given
problem. Object-based learning (OBL) is a student-cen-
tered learning approach that uses objects to facilitate deep
learning. Objects may take many forms, small or large, but
the method typically involves students handling or working
at close quarters with and interrogating physical artefacts.
(e OBL models have been efficiently used in different
meta-heuristics employed for improving convergence
speed. (e models of the opposite amount should be de-
scribed in OBL.

Consider N ∈ N[x, y] to denote real numbers. (e
opposite numbers N0 are given by

N
o

� x + y − N. (17)

In d-dimension searching region, the depiction may be
extended as follows:

N
o
i � xi + yi − Ni, (18)
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whereas (N1, N2, . . . Nd) indicates d-dimension searching
region and Ni[xi, yi], i � 1, 2, . . . , d. From the OBO, the
approach of OBL is employed in this initiation procedure of
MSAmethod and for all iterations in the application of jump
rate.

Consider an IoT network of n sensor deployed arbi-
trarily. In order to be CH selective, the projected SSA ex-
ecutes squirrel population that was utilized by generating
suitable clusters and maintaining the lower power em-
ployment of systems. Consider X � (X1, X2, . . . , Xn) stands
for the population vector of IoT with n sensors, where
Xi(j) ∈ 0, 1{ }. (e CH and normal nodes were signified as
one and zero. (e fundamental population of NP solution
has inspired arbitrarily by representing 0 s as well as 1 s and
representing as follows:

Xi(j) �
1, if r and ≤popt􏼐 􏼑,

0, otherwise,

⎧⎨

⎩ (19)

where popt stands for the recommended percentage of CHs
and r and refers to uniform arbitrary values in zero and one.
An arbitrarily located sensor node has been decided as K

clusters: C1,C2, . . . ,CK. (e CH selective has responsible to
decrease the cost of FF. (erefore, FF to CH selective was
showcased as follows:

fobj− CH � 􏽘
2

i�1
wi × f, (20)

with 􏽐
2
i�1 wi � 1. (e maximum stability period is given by

decreasing the Standard Deviation (SD) of the RE of node
which is a significant issue.(erefore, SD (σRE) is applicable
to measure the control of uniformly distributed load in
sensor node and illustrated as follows:

f1 � σRE

�

��������������������

1
n

􏽘

n

j− − 1
μRE − E nodej􏼐 􏼑􏽮 􏽯

2

􏽶
􏽴

,
(21)

where μRE � (1/n) 􏽐
n
i�1 E(nodei),E(nodei) stands for the RE

of ith node, and n depicts the node count. A final objectivewas
dependent upon clustering quality in that function of cluster
isolation and cohesion has been implemented. Once the
proportionof cohesion for separatingwasminimal, afterward
optimum clustering was executed. It is accomplished by
utilizing FF ratio of overall Euclidean distance of CH to CM
and restricted Euclidean distance of 2 varying CHs.

f2 � Qc

�
􏽐

K
k�1 􏽐∀ nodej∈Ck

d nodej, CHk􏼐 􏼑

min∀Cc,Ck,Cc ≠Ck
d CHc, CHk( 􏼁􏼈 􏼉

.

(22)

3.2. Secure Inter-Cluster Communication via Blockchain.
Generally, blockchain is assumed as a collection of blocks;
also, a single block comprises of hash value of the existing

block, information about the transaction (Ethereum, bit-
coin), timestamp, and previous block. Furthermore,
blockchain is determined as common and distributed digital
ledger utilized to save the transaction data under different
points. (erefore, when an attacker tries to derive infor-
mation, it is not possible as every block has cryptographic
value of the earlier block [19]. Now, each transaction is
attained under the application of cryptographic hash values,
viz. confirmed by all the miners. It consists of blocks of each
transaction and captures same value of the comprehensive
ledger. Figure 2 illustrates the framework of blockchain. (e
blockchain offers the facility to share detailed ledgers in
protective, confidential, and shared manner. Decentralized
storage is the other source in blockchain, and the massive
number of information data is linked and stored from
existing blocks to earlier blocks through smart contract code.
LitecoinDB, Swarm, SiacoinDB, MoneroDB, BigchainDB,
Interplanetary File System (IPFS), and various factors were
employed for decentralized dataset.

3.3. Intrusion Detection Process. During the intrusion de-
tection process, the MHA-BLSTM with SGDM model is
utilized. LSTM is a variant of RNN that could resolve gradient
disappearance problems by presenting memory cell state,
input gate i, output gate 0, and forget gate f. LSTM could
enhance the memory model of NN for receiving training and
inputdata that is appropriate tomodel time series data, such as
text, owing to the design characteristics. BiLSTM is an inte-
gration of backward and forward LSTM. (e greatest benefit
of the model is that the sequence context data are taken fully
into account. An LSTM unit contains controlling gate, along
with IG it, a forget gateft, outcome gate 0t, and amemory cell
state ct, that affects the unit capacity to update and store data.
(e IG outcome value lies between 0-1 according to the input
ht− 1 andwt. Once the outcome is 1, it implies that the cell state
data are retained completely, and once the outcome is 0, it is
abandoned completely. (en, the IG determines which value
needs updating, and the tanh layer creates a novel candidate
value vector 􏽥ct that is added to the cell state. Next, both are
integrated for updating the cell state ct; lastly, the outcome
layer decides the outcomevalue basedon the cell state.Among
other, Wf, Uf, bf, Wi, Ui, bj, Wc, Uc, bc, and W0, U0, b0
represent the internal training parameter in the LSTM, σ(·)

indicates sigmoid activation function, and ⊙ implies dot
multiplication.

ft � σ Wfwt + Ufht− 1 + bf􏼐 􏼑, (23)

it � σ Wiwt + Uiht− 1 + bi( 􏼁, (24)

􏽥ct � tanh Wcwc + Ucht− 1 + bc( 􏼁, (25)

ct � it ⊙ ct + ft ⊙ ct− 1, (26)

0t � σ W0wt + U0ht− 1 + b0( 􏼁, (27)

ht � ottanh ⊙ ct( 􏼁. (28)
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(e abovementioned method is the computation
method of LSTM. As previously mentioned, BiLSTM
comprises backward and forward LSTM. LSTM

������→
in BiLSTM

reads the input from w1 to en for generating ht

→
, and other

LSTM
←

reads the input from en to w1 for generating ht− 1

←
:

ht

→
� LSTM

������→
wt, ht− 1

���→
, ct− 1􏼒 􏼓, t ∈ [1, m + n], (29)

ht

←
� LSTM
←

wt, ht− 1

←
, ct− 1􏼒 􏼓, t ∈ [m + n, 1]. (30)

(e reverse and forward context representations gen-

erated using ht

→
and ht

←
are linked to the long vector,

ht � ht

→
⊕ ht

←
. (31)

Lastly, the output [h1, . . . hi, . . . hm, l1, . . . lj . . . ln] of the
entire sentence is attained, whereas hi and lj are exploited to
signify the output of emoticons and words, correspondingly.
Furthermore, set each intermediate layer in BiLSTM for
returning the comprehensive output sequence, thus en-
suring that the output of all the hidden layers retains the
longer-distance data as possible.

Attention mechanism is used to improve the effects of
RNN-based model, and also it consists of dot-product at-
tention and additive attention [20]. (e calculation of at-
tention is separated into 3 stages. Initially, utilize F attention
function to score key and query to get si; next, utilize softmax
function to standardize the scoring results si, for obtaining
the weight ai. Lastly, estimate attention that is the weighted
average of each value and weight ai. Multi-head attention
mechanism has enhanced the classical attention method;
thus, all the heads could extract the features of key and query
in distinct subsets. More precisely, this feature comes fromQ
and K that is the projection of key and query in the sub-
spaces. Note that in the multi-head attention model, the
attention functions can be the scaled dot-product function
that is similar to the classical attention mechanism, ex-
cepting the regulating scaling factors [21–27]. In this work, h
should be debugged continuously for determining the

appropriate values. Lastly, the result, i.e., returned in every
head, is linearly converted and concatenated to attain multi-
head attention. Eventually, transmit the vector from the
preceding layer to the densely connected layer. (ey utilize
ReLU function as the activation function for completing the
nonlinear transformation. Finally, execute the softmax
function on the output of the preceding layer and attain
intrusion detection output.

For optimally adjusting the hyperparameter of theMHA-
BLSTM model, the SGDM is applied. SGDM is a first-order
momentum depending on SGD. (e 1st-order momentum
represents the exponential moving of the gradient direction
at all the moments, nearly equivalent to sum of the gradient
vector at the current Tj moment. And, the Tj is denoted by

Tj �
1

1 − βi

. (32)

In another word, the descendant direction at t time is
described using the descending direction accumulated before
as well as gradient direction of the existing point. (e em-
pirical value of β1 is 0.9, which implies the direction of decline
is particularly the before accumulated direction of decline.

4. Results and Discussion

In this section, a detailed experimental validation of the
BDL-PPDT technique takes place under varying numbers of
IoT sensor nodes and rounds. (e results are examined in
varying aspects. An extensive throughput analysis of the
BDL-PPDT technique with other methods is given in Table 1
and Figure 3. (e results reported that the BDL-PPDT
technique has demonstrated enhanced throughput under
every IoT sensor node. For instance, with 100 IoT sensor
nodes, the BDL-PPDT technique has offered improved
throughput of 99.71Mbps whereas the DEEC, PHC, HNS,
CHSES, and RDAC-BC techniques have accomplished de-
creased NSAN of 69.98Mbps, 84.17Mbps, 88.89Mbps,
88.68Mbps, and 98.16Mbps, respectively. Moreover, with
500 IoT sensor nodes, the BDL-PPDT technique has ac-
complished raised throughput of 89.72Mbps, whereas the

Block 1 Header

Hash of Previous
Block Header

Merkle Root

Block 1 Transactions

Block 2 Header

Hash of Previous
Block Header

Merkle Root

Block 2 Transactions

Block 3Header

Hash of Previous
Block Header

Merkle Root

Block 3 Transactions

Figure 2: Structure of blockchain.
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DEEC, PHC, HNS, CHSES, and RDAC-BC techniques have
led to lessening NSAN of 51.48Mbps, 55.31Mbps,
62.24Mbps, 70.42Mbps, and 85.05Mbps, respectively.

Figure 4 offers the detailed PDR analysis of the BDL-
PPDT technique under several IoT sensor nodes. From the
results, it can be observed that the BDL-PPDT technique has
reported enhanced PDR under every IoT sensor node. For
instance, with 100 IoT sensor nodes, the BDL-PPDT tech-
nique has gained an increased PDR of 99.72%, whereas the
DEEC, PHC, HNS, CHSES, and RDAC-BC techniques have
reached to decrease PDR of 94.74%, 94.57%, 96.80%, 95.48%,
and 98.11%, respectively. Besides 500 IoT sensor nodes, the
BDL-PPDT technique has exhibited a maximum PDR of
98.16%, whereas the DEEC, PHC, HNS, CHSES, and RDAC-
BC techniques have depicted minimum PDR of 91.45%,
92.76%, 94.39%, 93.53%, and 97.69%, respectively.

A brief comparative NLT analysis of the BDL-PPDT
technique is illustrated in Table 2 and Figure 5. From the
results, it is evident that the BDL-PPDT technique has
provided supreme NLT under every IoT sensor node. For
instance, with 100 IoT sensor nodes, the BDL-PPDT tech-
nique has given superior NLT of 1793 rounds, whereas the
DEEC, PHC, HNS, CHSES, and RDAC-BC techniques have

offered inferior NLT of 1386, 1492, 1529, 1588, and 1612
rounds, respectively. Eventually, with 500 IoT sensor nodes,
the BDL-PPDT technique has exhibited higher NLTof 3633
rounds, whereas the DEEC, PHC, HNS, CHSES, and RDAC-
BC techniques have attained lower NLTof 3103, 3326, 3289,
3463, and 3547 rounds, respectively.

(e ECM analysis of the BDL-PPDT technique with
other methods under distinct IoT sensor nodes is repre-
sented in Figure 6. (e results inferred that the BDL-PPDT
technique has managed to offer minimal ECM under all IoT
sensor nodes. For instance, with 100 IoT sensor nodes, the
BDL-PPDT technique has achieved minimal ECM of
0.0470mJ, whereas the DEEC, PHC, HNS, CHSES, and
RDAC-BC techniques have obtained maximum ECM of
0.2058mJ, 0.1690mJ, 0.1425mJ, 0.1165mJ, and 0.0756mJ,
respectively. Furthermore, with 500 IoT sensor nodes, the
BDL-PPDT technique has offered a least ECM of 0.3654mJ,
whereas the DEEC, PHC, HNS, CHSES, and RDAC-BC
techniques have reached to an increased ECM of 0.8872mJ,
0.8277mJ, 0.7007mJ, 0.7351mJ, and 0.4084mJ, respectively.

A brief comparative number of alive sensor node
(NASN) analysis of the BDL-PPDT technique takes place in
Table 3 and Figure 7. From the results, it can be noticed that

Table 1: Result analysis of BDL-PPDT technique with existing approaches.

Packet delivery ratio (%)
IoT sensor nodes DEEC PHC HNS CHSES RDAC-BC BDL-PPDT
100 94.74 94.57 96.80 95.48 98.11 99.72
200 91.93 94.61 96.26 96.44 98.87 99.23
300 92.21 94.32 95.84 96.22 97.10 98.97
400 91.86 91.89 92.53 95.88 96.50 98.84
500 91.45 92.76 94.39 93.53 97.69 98.16

(roughput (Mbps)
IoT sensor nodes DEEC PHC HNS CHSES RDAC-BC BDL-PPDT
100 69.98 84.17 88.89 88.68 98.16 99.71
200 63.40 76.46 83.26 84.32 94.27 98.42
300 61.05 68.33 75.50 76.67 92.03 93.80
400 54.68 60.53 68.89 71.76 88.97 91.57
500 51.48 55.31 62.24 70.42 85.05 89.72
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Figure 3: (roughput analysis of BDL-PPDT technique with
existing approaches.

DEEC
PHC
HNS

CHSES
RDAC-BC
BDL-PPDT

Pa
ck

et
 D

eli
ve

ry
 R

at
io

 (%
) 100

98

96

94

92

100 200 300
IoT Sensor Nodes

400 500

Figure 4: PDR analysis of BDL-PPDT technique with existing
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the BDL-PPDT technique has accomplished maximum
NASN under every round. For instance, with 800 rounds, the
BDL-PPDT technique has provided higher NASN of 499,
whereas the DEEC, PHC, HNS, CHSES, and RDAC-BC
techniques have gained lower NSAN of 384, 394, 436, 458,
and 495 nodes, respectively. Besides, with 3500 rounds, the
BDL-PPDT technique has resulted in improved NASN of
210, whereas the DEEC, PHC, HNS, CHSES, and RDAC-BC
techniques have led to reduced NSAN of 12, 19, 28, 30, and
138 nodes, respectively.

(e number of dead sensor node (NDSN) analysis of the
BDL-PPDT technique with other methods under distinct
rounds is given in Table 4 and Figure 8. (e results implied
that the BDL-PPDT technique has attained effective out-
comes with the lower NDSN under all rounds. For instance,
with 800 rounds, the BDL-PPDT technique has achieved
minimal NDSN of 1, whereas the DEEC, PHC, HNS,
CHSES, and RDAC-BC techniques have obtained maximum
NDSN of 116, 106, 64, 42, and 5 nodes, respectively [28–31].
At the same time, with 3500 rounds, the BDL-PPDT tech-
nique has offered a least NDSN of 290, whereas the DEEC,
PHC, HNS, CHSES, and RDAC-BC techniques have reached
to an increased NDSN of 488, 481, 472, 470, and 362 nodes,
respectively.

Here, the intrusion detection performance analysis of the
BDL-PPDT technique is provided in Table 5 and Figure 9
[21, 22]. (e results are tested using the KDDCup99 dataset

Table 2: Comparative analysis of BDL-PPDT technique with varying IoT sensor nodes.

Energy consumption (mJ)
IoT sensor nodes DEEC PHC HNS CHSES RDAC-BC BDL-PPDT
100 0.2058 0.1690 0.1425 0.1165 0.0756 0.0470
200 0.4164 0.3315 0.2576 0.2761 0.1496 0.1176
300 0.5478 0.5684 0.4784 0.4635 0.2343 0.2017
400 0.7226 0.6687 0.6027 0.6048 0.3570 0.2872
500 0.8872 0.8277 0.7007 0.7351 0.4084 0.3654

Network lifetime (rounds)
IoT sensor nodes DEEC PHC HNS CHSES RDAC-BC BDL-PPDT
100 1386 1492 1529 1588 1612 1793
200 1725 1807 1864 1918 2077 2218
300 2305 2271 2389 2405 2613 2756
400 2718 2789 2853 2885 3191 3362
500 3103 3326 3289 3463 3547 3633
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Figure 5: NLT analysis of BDL-PPDT technique with existing
approaches.
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Table 3: NASN analysis of the BDL-PPDT technique with different
rounds.

No. of alive sensor nodes
No. of
rounds DEEC PHC HNS CHSES RDAC-

BC BDL-PPDT

400 404 406 451 476 500 500
800 384 394 436 458 495 499
1200 361 357 418 427 492 497
1600 322 359 390 412 486 492
2000 304 338 395 403 479 489
2400 205 227 288 259 451 470
2800 62 151 190 184 386 387
3200 20 32 37 50 309 320
3500 12 19 28 30 138 210

8 Computational Intelligence and Neuroscience



[23] comprising different classes and 41 features. (e results
show that the DNN model has gained lower outcomes with
the accuy of 91.64%, whereas the LSTM-RNN and GRU-
RNN techniques have resulted in moderately reasonable
accuy of 93.39% and 92.63%, respectively [35–38]. More-
over, the DBN and CNID models have accomplished
considerable accuy values of 95.22% and 98.54%, respec-
tively. However, the presented BDL-PPDT technique has
reached tomaximum outcome with the accuy of 98.15%.(e
abovementioned result analysis implied that the BDL-PPDT
technique has outperformed the other existing techniques in
terms of different measures.

5. Conclusion

In this study, an effective BDL-PPDT technique has been
developed to accomplish secure data transmission in clus-
tered IIoT environment. (e BDL-PPDT technique has
presented a new EMSA-C technique to choose a proper set
of clusters in the IIoT system and construct clusters. Next,
the MHA-BLSTM with SGDM model is utilized for intru-
sion detection and the hyperparameter tuning process is
made by the SGDM model resulting in improved detection
performance. To inspect the significant performance of the
BDL-PPDT technique, a wide-ranging comparative analysis
is made and the results are inspected in terms of different
measures. (e experimental outcome pointed out the im-
proved performance of the BDL-PPDT technique over the
recent methods in terms of different measures. In the future,

Table 4: NDSN analysis of the BDL-PPDT technique with different
rounds.

No. of dead sensor nodes
No. of
rounds DEEC PHC HNS CHSES RDAC-

BC BDL-PPDT

400 96 94 49 24 0 0
800 116 106 64 42 5 1
1200 139 143 82 73 8 3
1600 178 141 110 88 14 8
2000 196 162 105 97 21 11
2400 295 273 212 241 49 30
2800 438 349 310 316 114 113
3200 480 468 463 450 191 180
3500 488 481 472 470 362 290
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Figure 8: NDSN analysis of BDL-PPDT technique with varying
rounds.

Table 5: Comparative analysis of BDL-PPDT technique with
different measures.

Methods Accuracy Precision Recall F1-score Far
DNN model 91.64 97.85 91.99 94.67 8.56
LSTM-RNN 93.39 98.11 94.41 96.12 6.81
GRU-RNN 92.63 97.52 93.45 95.34 7.57
DBN model 95.22 97.55 96.50 97.11 3.98
CNID 98.54 99.98 97.56 98.49 0.02
BDL-PPDT 98.15 99.99 98.64 98.96 0.01
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Figure 9: Accuracy analysis of BDL-PPDT technique with existing
approaches.
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hyperparameter tuning process of the MHA-BLSTM model
can be done by the meta-heuristic algorithms to improve the
overall performance. Even though the BDL-PPDT method
has an accuracy rate of just 98.15 percent, it still gives the best
possible result. Because of the data analysis above, it was
found that the BDL-PPDT technique outperformed the
other current techniques on a wide range of different factors,
and so it was recommended that people use it. Meta-heu-
ristic methods will be utilized in the future to modify the
hyperparameters of theMHA-BLSTMmodel, resulting in an
overall improvement in overall performance.
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