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The high prevalence of polycystic ovary syndrome (PCOS) among reproductive-aged
women has attracted more and more attention. As a common disorder that is likely to
threaten women’s health physically andmentally, the detection of PCOS is a growing public
health concern worldwide. In this paper, we proposed an automated deep learning
algorithm for the auxiliary detection of PCOS, which explores the potential of scleral
changes in PCOS detection. The algorithmwas applied to the dataset that contains the full-
eye images of 721 Chinese women, among which 388 are PCOS patients. Inputs of the
proposed algorithm are scleral images segmented from full-eye images using an improved
U-Net, and then a Resnet model was applied to extract deep features from scleral images.
Finally, a multi-instance model was developed to achieve classification. Various
performance indices such as AUC, classification accuracy, precision, recall, precision,
and F1-score were adopted to assess the performance of our algorithm. Results show that
our method achieves an average AUC of 0.979 and a classification accuracy of 0.929,
which indicates the great potential of deep learning in the detection of PCOS.

Keywords: polycystic ovary syndrome, deep learning, multi-instance learning, convolutional neural
networks, sclera
INTRODUCTION

Polycystic ovary syndrome (PCOS) is known as one of the most common disorders among
reproductive-aged women, affecting 6%–20% of premenopausal women worldwide (1). The
cardinal symptoms of PCOS are ovarian dysfunction and androgen excess. Factors such as
genetics, puberty, physiological changes, mental state, and environmental influences are widely
considered to induce this syndrome. Patients with PCOS frequently demonstrate menstrual
irregularities, hirsutism, obesity, insulin resistance, and cardiovascular diseases (2). Along with
reproductive and metabolic disorders, a significant number of patients present psychological
symptoms such as depression (3). Therefore, it is essential for the diagnosis and proper
treatment of PCOS.
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The diagnosis of PCOS is one of the most critical issues in the
field of women’s healthcare. According to the clinical
characteristics, PCOS is classified into different phenotypes.
However, there is a controversy in the criterion of PCOS
diagnosis. Among the criteria offered by various groups, the
argument appears to affect the prevalence rates of PCOS. To
ensure the accuracy of the initial diagnosis of PCOS, patients are
supposed to have undergone ovarian ultrasonography. Some of
them might even need to have venous sampling for metabolic
evaluation. It is estimated that the average cost of initial diagnosis
and evaluation of PCOS is $740 (4), which is a significant
financial burden.

With the rapid development of artificial intelligence, using
machine learning and deep learning to assist with PCOS
detection has attracted much more attention. For instance, the
authors of (5) applied a machine learning algorithm to the
clinical parameters of PCOS to select the most contributed
features and predicted PCOS patients. They achieved an
accuracy of 91.01% using random forest and logistic
regression. The authors of (6) collected gene biomarker data
from PCOS patients and normal groups and then they proposed
a model based on random forest and artificial neural network to
classify PCOS samples and normal samples. They achieved an
AUC of 0.7273 in one of their datasets.

The sclera, a visible part of the ocular surface, is a dynamic
tissue that is constantly remodeled (7) and may reflect human
health. A yellowish staining of the sclera may be associated with
liver disease (8). It has been discovered that the abnormal
vasodilation of the conjunctival blood vessels leads to the
appearance of redness sclera (9). Researchers have found that
some female sex steroids have had ocular effects in recent years,
and PCOS leads to physiological changes in the eyes (10). Bonini
et al. (11) reported that of 62 young women diagnosed with
Frontiers in Endocrinology | www.frontiersin.org 2
PCOS, 94% were accompanied by ocular disease. Compared with
other women, PCOS patients had more severe conjunctival
congestion, dry eyes, and itching eyes. However, little work has
been reported in using deep learning on scleral images to assist
with the screening of PCOS groups.

In this paper, we explored a novel method for the screening of
PCOS using scleral images. The proposed method is composed
of image preprocessing, features extraction, and classification
steps based on deep learning. We used an improved U-Net
embedded with an attention module to segment the sclera from
full-eye images, a Resnet18 to extract deep features, and a multi-
instance learning model to classify PCOS and normal samples.
Results show that our non-invasive screening method achieved a
mean AUC of 98%, a mean accuracy of a dataset that contains
721 subjects.
MATERIALS AND METHODS

Data Acquisition and Dataset
Establishment
Our method was developed using data collected by a specially
developed device described in (12) (Figure 1A), which was
designed for obtaining reflection-shadows-free scleral images.
To obtain information on the sclera completely, we captured
images of the eyeball rotating in different directions: up, down,
left, and right. Eight scleral images, including the right and left
eyes, were collected for every patient (Figure 1B). This process is
fast, low-cost, and painless.

We recruited more than 800 women of childbearing age as
subjects. Through data cleaning, the blurred and incomplete
sclera images were removed and there 721 subjects remained,
A

B

C

FIGURE 1 | The device for data acquisition and data collected for experiments. (A) The specially designed device. (B) The diagram of reflection-shadows-free scleral
images. (C) Images of the left and right eyes with eyeballs rotating in different directions: up, down, left, and right.
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including 388 PCOS patients diagnosed by medical
professionals. The data were mainly collected in Peking
University Third Hospital (Beijing, China) from 2017 to 2019
and in part collected in community checkup using the same
instrument at the same time. In order to avoid the influence of
different data collection times and different operators, we have
performed histogram equalization for all images to avoid
systematic data deviation. Subjects were required to rotate their
eyeballs up, down, left, and right, respectively (Figure 1C), and
the captured eight scleral images were considered a data bag for
the corresponding subject. Data bags were labeled as positive for
subjects with PCOS, while others were labeled as negative. The
division only counted on the presence of PCOS and did not
exclude other diseases.

To remove the potential dependency of classification
performance on dataset partition, we performed a 5-fold cross-
validation procedure to split data: 145 of the 721 data bags in the
dataset were separated for testing, while the rest were used as
training set to develop the algorithm. Namely, two subsets were
split according to subjects instead of scleral images, and images
from the same subjects can only be present either in the training
set or in the test set. Named ScleraSet, this dataset was established
for the detection of PCOS.

Moreover, we recruited a wider range of subjects, including
men and women of non-reproductive age, and collected scleral
images as the training set for the sclera segmentation network.
To reasonably evaluate the performance of the sclera
segmentation network in ScleraSet, images were randomly
selected from ScleraSet as test set. The training set contains
1,736 images, and the test set includes 340 images.

Image Preprocessing
Aimed at enhancing the performance of classification
algorithms, a standardized image-preprocessing procedure was
established. This procedure consisted of two main steps, which
were vital for developing a PCOS detection algorithm.
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Image Enhancement
Depending on the healthy state of subjects, characteristics such
as blood vessel color and macula may play an important role in
this scleral image-based classification problem. To improve the
performance of classification algorithms, it is necessary to
enhance features on scleral images and also to minimize the
influence of imaging light conditions.

Firstly, blur images with a Gaussian blur function. The
principle is to carry out the convolution operation of the
Gaussian function to the image and carry out the Gaussian
transformation to every pixel in the image. After blurring, the
high-frequency components of the image, such as vessels and
spots, remain visible in the image. Then, blend the blurred image
with the original one and give higher weights to the high-
frequency components to achieve image enhancement.

Sclera Segmentation
As shown in Figure 1C, the original images captured by the
specially developed device contained full-eye information along
with some skin around eyes. Hence, it is essential to segment the
sclera from full-eye images to avoid the interference of invalid areas.
With the rapid development of artificial intelligence, segmentation
methods based on deep learning becomes increasingly popular.
Compared with traditional segmentation algorithms, Convolutional
Neural Networks (CNNs) can achieve pixel-level segmentation by
extracting features from the input original image without manual
feature selection. For accurate sclera segmentation, we used an
improved U-Net model (13), which is an embedded attention
module contributed by Woo et al. (14). A previous study
suggested (15) that such architecture has great advantages in
sclera segmentation. To ensure the simplicity of network training
and accelerate the process, batch normalization (16) was
implemented after every convolutional layer.

The architecture of the segmentation network is shown in
Figure 2, which consists of a classic U-Net network and a
convolutional block attention module (CBAM). It is a U-
FIGURE 2 | Overview of the scleral segmentation model embedded with attention module.
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shaped structure, containing a contracting path and an expansive
path. The former is equivalent to an encoder and composed of
eight 3×3 convolutional layers and four 2 × 2 max-pooling layers
with stride 2. For each convolutional layer, one batch
normalization layer and one rectified linear unit (ReLU)
follow. As the depth of the network increases, the number of
channels in different convolutional blocks increases, while the
output size of feature maps decreases. At the bottom of the U-
shaped structure, where the contraction and expansion paths
intersect, CBAM is embedded. The attention module is divided
into a spatial attention module and a channel attention module.
The former is used to encode the importantly segmented spatial
information, while the latter is used for the category information.
At the expansion path, convolutional units consist of three up-
sampled convolutional layers and one convergence layer, where
the convergence layer connects the feature map from the
contraction path and the output from the upper convolutional
unit. In the end, the output convolutional layer carries a sigmoid
activation function that generates prediction distribution maps.

Deep Learning Architecture
Based on CNN, our proposed PCOS deep learning architecture is
composed of feature extraction and classification. The former
was used to extract important deep features from sclera images,
while the latter is a multi-instance learning (MIL) model. Inputs
are processed images, and outputs of the last softmax layer reveal
the prediction of PCOS. The overview of the proposed deep
learning architecture is shown in Figure 3.

Feature Extraction
Feature extraction based on deep learning can achieve relatively
great classification results by comparison with traditional
handcrafted features (17, 18). We applied Resnet to our feature
extraction network, which was proposed by He et al. in 2016 (19)
Frontiers in Endocrinology | www.frontiersin.org 4
and outperformed previous CNNs in a great number of
applications about images. The backbone of feature extraction
is the Resnet18 model.

The feature extraction network is composed of five residual
learning groups and eight residual connections, similar toResnet18,
except for the fully connected layers. There is one 7 × 7 convolution
layer in the first group, while the remaining groups contain four
convolution layers each. After each convolutional layer, ReLU is
adopted as the activation function. The input of the network is an
RGB scleral image of 512 × 512. After the average pooling layer, the
output feature size is 512.

Classification
For every subject, eight scleral images were captured to avoid any
information missing. Instead of making decisions on single
image, we considered all images of every subject, which is
more reasonable and appropriate. To address the multiple
instances issue, we used a multi-instance (MIL) model.

For each subject, all scleral images xi = fskg8k were fed into our
feature extraction network to obtain feature vectors fpkg8k. There
are two steps for the MIL model to give a prediction. The first is to
aggregate all feature vectors fpkg8k from the same subject by an
aggregation function g. Later, outputs fg(pk)g8k were fed into a
multi-layer perceptron (MLP) to obtain the bag probability.

The commonly used aggregation function is max-pooling or
average pooling, but we used an attention-based MIL pooling
proposed by Ilse et al. (20) to optimize ourmodel. ThisMILpooling is:

m = o
8

k=1

exp WT tanh (VpkT)
� �

S8
o=1 exp WT tanh (VpoT)f g pk : (1)

W and V are parameters of network.
Inputs of the MIL model are feature vectors of size 512, and

outputs are the bag label for each subject. “Positive” represents
normal samples, while “negative” represents PCOS samples.
FIGURE 3 | Overview of the framework of the diagnosis algorithm.
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RESULTS

We performed the proposed detection algorithm on ScleraSet
mentioned previously. Furthermore, to explore the feature
extraction performance and the positive effects of attention
mechanism applied in feature extraction network, we compared
the detection performance of different CNNs including Inception
V3, Vgg16, and Vgg19 as feature extraction networks.

To assess the performance of our proposed algorithm, we
utilize AUC, accuracy, precision, recall, and F1-score as the
evaluation indices. Firstly, the receiver operating characteristic
(ROC) curve was plotted to present the detection performance.
ROC curve is a graph that plots the true-positive rate and false-
negative rate. Later, calculate the area under the ROC curve
(AUC). According to the ROC curve, we searched the optimal
threshold on the basis of Youden’s J statistic. Accuracy, precision,
recall, and F1-score were all computed at the optimal threshold.
Expressions of these indices are shown as follows, where TP
denotes True Positive, TN denotes True Negative, FN denotes
False Negative, and FP denotes False Positive:

Accuracy =
TP + TN

TP + TN + FN + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 − score = 2
Precision� recall
Precision + recall

(5)

Adaptive Moment Estimation (Adam) was used as optimizer,
and the base learning rate is 0.0001. For different experiments,
the optimal learning rate was chosen for minimal errors and we
obtain results using the best learning rate. The loss function we
adopted was cross entropy; training epochs depended on the
convergence time. All experiments were conducted on PyTorch
with two Tesla V100 Graphics Processing units (GPUs).

Results of the test sets in 5-fold cross-validation experiments
are shown in Table 1 and Figure 4. As shown in Table 1, our
proposed deep learning architecture achieved a mean AUC of
0.979, a mean accuracy of 0.929. In contrast, when VGG16,
Vgg19 (21), and inceptionV3 (22) were chosen as the feature
extraction network, the mean AUC was 0.942, 0.940, and 0.967,
respectively. Figure 4 shows the ROC curve of all experiments.
Frontiers in Endocrinology | www.frontiersin.org 5
The closer the ROC curve gets to the top left corner of the ROC
box, the better the performance the model achieves. Compared
with other curves, the curve of the model with Resnet is closer to
the top-left point, which suggests that the performance of the
model with Resnet has excellent sensitivity and specificity.
DISCUSSION

Scleral images are usually used in the field of biometric
recognition (23–25). However, there are rare studies about the
disease detection potential of sclera images. In this manuscript,
we proposed a novel algorithm to help with the detection of
PCOS. To the best of our knowledge, this is the first attempt to
explore the relationship between scleral images and PCOS
utilizing deep learning.

This manuscript proposes a non-invasive method for the
automatic detection of polycystic ovary syndrome based on
scleral images. The method consisted of image processing and
deep learning techniques to classify scleral images of general
subjects and PCOS patients. After simple image preprocessing,
we used an improved U-Net model for the rapid sclera
segmentation. This model achieved an intersection over union
(IoU) of 0.853, which was revealed to be adequate for this project.
As for PCOS detection, a feature extraction network was used for
obtaining important deep features in the sclera, and later a MIL
model was applied to the final classification. The PCOS detection
algorithm proposed in this paper achieved good AUC, accuracy,
and other indicators. According to the experiment results, Resnet18
obtains a top performance in the comparisons of VGG16, VGG19,
and inception V3. There is an apparent enhanced performance
using Resnet as the feature extraction network.

Furthermore, this manuscript focuses more on algorithmic
research than pathology. To visualize what our model has
learned, we used Grad-CAM (26), a popular CNN explanation
tool to highlight the features that is important for PCOS
detection. Grad-CAM utilizes the last convolutional layers and
marks the decisive features by a heatmap. Some positive samples
with Grad-CAM visualization are shown in Figure 5. We found
that our model focused on thick blood vessels, foggy blood
vessels distributed over a large area, and some kinds of spots
(the second column in Figure 5), which seems to verify the
findings of other studies (10, 11) that PCOS probably causes the
changes of blood vessels in the sclera because of sex steroids
disorder. However, some highlighted regions can be confusing
(the fourth column in Figure 5), since our work is exploratory
and more physiological study is needed.
TABLE 1 | Results of comparison between different feature extraction networks in 5-fold cross-validation experiments.

Task AUC Accuracy Precision Recall F1-score

VGG16 0.942 ± 0.007 0.871 ± 0.005 0.885 ± 0.005 0.874 ± 0.005 0.879 ± 0.005
VGG19 0.940 ± 0.019 0.877 ± 0.031 0.892 ± 0.027 0.876 ± 0.031 0.884 ± 0.029
Inception 0.967 ± 0.012 0.913 ± 0.014 0.924 ± 0.013 0.912 ± 0.013 0.918 ± 0.013
Resnet 0.979 ± 0.003 0.929 ± 0.007 0.940 ± 0.006 0.928 ± 0.006 0.934 ± 0.006
January 2022 | Volume 12 |
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Although the deep learning algorithm performed well on the
dataset we collected, there are limitations in our work and
problems to be solved in the future. Firstly, our dataset is not
large enough and lacks other data for evaluating the network’s
generalization ability. Heterogeneity is one of the critical features
of PCOS; hence, a larger dataset is supposed to be collected from
a wider range of groups. What is more, on account of data
masking, all the information we obtained is whether subjects
were PCOS patients. Therefore, our experiments did not take
into account the effects of factors such as specific medical
condition, race, and geography. Besides, some visualization
results seem difficult to explain. Future work can establish
pathological models and consider studying the intrinsic
connections between changes in the sclera and the
Frontiers in Endocrinology | www.frontiersin.org 6
physiological changes triggered by PCOS. Then, combine these
connections with the algorithm to enhance the interpretability of
the algorithm and give doctors more explicit information to
assist in detection.
CONCLUSION

The screening of PCOS has received considerable critical attention.
For this issue, the present study was designed to explore a non-
invasivemethod tohelpwith PCOSdetection.Ourwork shows that
the proposed algorithm obtains a significant classification
performance (mean AUC of 0.978), which indicates that deep
learning might be a powerful tool for PCOS detection. Besides,
January 2022 | Volume 12 | Article 7898
FIGURE 4 | ROC curves of classification results using different feature extraction networks.
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experiment resultsmay imply the outstanding potential of applying
scleral images to disease detection. The combination of artificial
intelligence and features extracted from scleral imagesmay become
a valuable research field.
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