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ABSTRACT

Understanding the three-dimensional (3D) architec-
ture of chromatin and its relation to gene expres-
sion and regulation is fundamental to understanding
how the genome functions. Advances in Hi-C tech-
nology now permit us to study 3D genome organiza-
tion, but we still lack an understanding of the struc-
tural dynamics of chromosomes. The dynamic cou-
plings between regions separated by large genomic
distances (>50 Mb) have yet to be characterized. We
adapted a well-established protein-modeling frame-
work, the Gaussian Network Model (GNM), to model
chromatin dynamics using Hi-C data. We show that
the GNM can identify spatial couplings at multiple
scales: it can quantify the correlated fluctuations in
the positions of gene loci, find large genomic com-
partments and smaller topologically-associating do-
mains (TADs) that undergo en bloc movements, and
identify dynamically coupled distal regions along the
chromosomes. We show that the predictions of the
GNM correlate well with genome-wide experimental
measurements. We use the GNM to identify novel
cross-correlated distal domains (CCDDs) represent-
ing pairs of regions distinguished by their long-range
dynamic coupling and show that CCDDs are associ-
ated with increased gene co-expression. Together,
these results show that GNM provides a mathemat-
ically well-founded unified framework for modeling
chromatin dynamics and assessing the structural ba-
sis of genome-wide observations.

INTRODUCTION

The spatial arrangement of chromosomes within the nu-
cleus plays a crucial role in gene regulation, cell replication

and mutations (1–5). Recent experimental methods such as
Hi-C (6) derived from chromosome conformation capture
(3C) (7) have made it possible to characterize the physical
contacts between gene loci on a genome-wide scale. These
studies revealed hierarchical levels of organization, from
large (so called ‘A’ and ‘B’) compartments corresponding
to active and inactive chromatin respectively (6), to smaller
compact regions called topologically associating domains
(TADs) (8). Hi-C-measured spatial relationships have been
related to chromosomal alterations in cancer (9) and TADs
have been pointed out to contain clusters of genes that are
co-regulated (10). Interactions between sequentially (but
not necessarily spatially) distant genes along the DNA 1-
dimensional (1D) structure, termed long-range interactions,
have been implicated in gene regulation ––for example, dis-
tal expression quantitative trait loci (eQTLs) tend to be
much closer in 3D space (11) to their target genes than ex-
pected by chance.

Several computational methods have contributed to these
and other characterizations of chromosomal architecture
(8,12–18). However, chromosome structure is dynamic and
complex, and its exact nature and influence on gene expres-
sion and regulation remain unclear. The scale, complexity,
and noise inherent in the available data make it challeng-
ing to determine exact spatial relationships and underlying
chromatin architecture, and its structure-based dynamics.
In particular, long-range spatial interactions have proven
difficult to characterize with Hi-C data, and most compu-
tational analyses attempt to identify a static chromosomal
architecture despite its known dynamic nature. There have
also been efforts to mathematically characterize the dynam-
ics of the genome separate from its structure, particularly
through describing the emergence of cell types during de-
velopment as bifurcations from a stable equilibrium (19).

Chromatin structure is often described in terms of TADs,
whose identification is a 1D problem: it involves search-
ing for sequentially contiguous groups of highly intercon-
nected loci along the diagonal of the Hi-C matrix of intra-
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chromosomal contacts. Spatial couplings between sequen-
tially distant genomic regions, on the other hand, repre-
sent a new dimension to search and the identification of
such long-range couplings is a more challenging problem.
Several methods have sought to identify long-range inter-
actions from 3C-based data (13,20–23), but the scale of
these interactions is still small compared to that of the full
chromosome. Most methods detect interactions within 1–
2 Mbp, or up to 10 Mbp (24), so extending the span of
predicted long-range couplings to the order of tens of mil-
lions of base pairs may yield further insights into regulatory
actions. Such long-range correlations may originate from
physical proximity in space, or other indirect effects similar
to those in allosteric structures. Assessment of such long-
range correlations is important for gaining a better under-
standing of the physical basis of gene expression and regu-
lation.

We adopt here the Gaussian Network Model (GNM), a
highly robust and widely tested framework developed for
modeling the intrinsic dynamics of biomolecular systems
(25–27), and we adapt it to the topology-based modeling
of chromosomal dynamics. Chromosomal dynamics refers
to the coupled spatial movements of loci under equilibrium
conditions, as uniquely defined by the topology of an elas-
tic network representative of the chromosome architecture.
The only input GNM requires is a map of 3D contacts.
Here, this information is provided by Hi-C data, which gives
contact frequencies between genomic loci. The Hi-C matrix
is used for constructing the Kirchhoff (or Laplacian) matrix
� which uniquely defines the equilibrium dynamics of the
network nodes (genomic loci) as well as their spatial cross-
correlations. Notably, the use of Laplacian-based graph seg-
mentation has been recently shown to help identify topo-
logical domains from Hi-C data (28,29). Our approach dif-
fers in the method of construction of the network topology
embodied in �, the inclusion of the complete spectrum of
motions, and the application to a broad range of observ-
ables. We show, and verify upon comparison with an array
of experimental data and genome-wide statistical analyses,
that the GNM provides a robust description of accessibility
to the nuclear environment as well as co-expression patterns
between gene-loci pairs separated by tens of megabases. The
analysis is mathematically rigorous, efficient, and extensi-
ble, and may serve as an excellent framework for drawing in-
ferences from Hi-C and other advanced genome-wide stud-
ies toward establishing the structural and dynamic bases of
regulation.

MATERIALS AND METHODS

Extension of the Gaussian network model to modeling chro-
matin dynamics

The GNM has proven to be a powerful tool for efficiently
predicting the equilibrium dynamics of almost all proteins
and their complexes/assemblies which can be accessed in
the Protein Data Bank (PDB) (30), and has been incor-
porated into widely used molecular simulation tools such
as CHARMM (31). It is particularly adept at predicting
topology-dependent dynamics and identifying long-range
correlations––the type of modeling that has been a chal-
lenge in chromatin 3D modeling studies. Hi-C matrices, in

which each entry represents the frequency of contacts be-
tween pairs of genomic loci, can be interpreted as chro-
mosomal contact maps similar to those between residues
adopted in the GNM representation of proteins.

There are several differences between the Hi-C and GNM
� matrices. The first is the size: human chromosomes range
from ∼50 to 250 million base pairs. When binned at 5 kb
resolution, this leads to 10 000–50 000 bins per chromo-
some. GNM provides a scalable framework, where the col-
lective dynamics of supramolecular systems represented by
104–105 nodes (such as the ribosome or viruses) can be effi-
ciently characterized. GNM may therefore be readily used
for analyzing intrachromosomal contact maps at high reso-
lution. The second is the precision of the data. Experimen-
tal methods for resolving biomolecular structures such as
X-ray crystallography, NMR, and even cryo-electron mi-
croscopy yield structural data at a much higher resolu-
tion than current genome-wide studies. The Hi-C method
is population-based (derived from hundreds of thousands
to millions of cells) and noisy. Hi-C matrices furthermore
contain unmapped regions (see Supplementary Data). How-
ever, the GNM results are usually robust to variations in the
precision/resolution of the data on a local scale, and require
information on only the overall contact topology rather
than detailed spatial coordinates, which supports the util-
ity of Hi-C data and applicability of the GNM. Third, the
chromatin is likely to be less ‘structured’ than the structures
at the molecular level, and it is likely to sample an ensemble
of conformations that may be cell- or context-dependent.
Single-cell Hi-C experiments have indicated cell–cell vari-
ability in chromosome structure on a global scale, though
the domain organization at the megabase scale is largely
conserved (32). Therefore, structure-based dynamic fea-
tures may be assessed at best at a probabilistic level. With
these approximations in mind, we now proceed to the exten-
sion of GNM to characterize chromosomal dynamics (see
Figure 1).

The GNM describes the structure as a network of
beads/nodes connected by elastic springs. The network
topology is defined by the Kirchhoff matrix �, whose ele-
ments are

�i j =
{−γi j for ri j < rcut

0 otherwise
�i i = −∑

j, j �=i γi j

(1)

Here, γi j represents the strength or stiffness of interaction
between beads i and j (or the force constant associated with
the spring that connects them), ri j is their separation in the
3D structure, and rcut is the distance limit for making con-
tacts (or for being connected by a spring). In the applica-
tion to proteins, the beads represent the individual amino
acids (n of them), their positions are identified with those
of the α-carbons, and a uniform force-constant γi j = γ is
adopted for all pairs (1 ≤ i, j ≤ n), with a cutoff distance of
rcut ∼ 7 Å. In the extension to human chromosomes, we re-
define the network nodes and springs such that beads repre-
sent genomic loci consistent with the resolution of the Hi-C
data. We set γi j equal to γ zij where zij is the Hi-C contact
counts reported for the pair of genomic bins (15) i and j
after normalization by vanilla coverage (VC) method (13),
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Figure 1. Schematic description of GNM methodology applied to Hi-C data. The inter-loci contact data represented by the Hi-C map (upper left, for n
genomic bins (loci)) is used to construct the GNM Kirchhoff matrix, � (top, middle). Eigenvalue decomposition of � yields a series of eigenmodes which
are used for computing the covariance matrix (lower, right), the diagonal elements of which reflect the mobility profile of the loci (bottom, left), and the
off-diagonal elements provide information on locus-locus spatial cross-correlations. uk, kth eigenvector; λk, kth eigenvalue; m, number of nonzero modes,
starting from the lowest-frequency mode, included in the GNM analysis (m ≤ n − 1). In the present application to the chromosomes, n varies in the range
10 248 ≤ n ≤ 49 850, the lower and upper limits corresponding respectively to chromosomes 22 and 1.

and γ is taken as unity. The element �i j is thus taken to
be directly proportional to the actual number of physical
contacts between the loci i and j, which permits us to di-
rectly incorporate the strength of interactions in the net-
work model. The parameter γ uniformly scales all elements,
physically representing the strength (or spring constant) of
individual contacts. A recent study normalized the diago-
nal elements of the Laplacian matrix (constructed using Hi-
C contact counts, similarly to �) after construction (28,29),
but we choose not to, because it removes the information on
packing density of nodes, renders the calculation of square
fluctuations meaningless, and disables the comparison with
chromatin accessibility.

The cross-correlation between the spatial displacements
of loci i and j is obtained from the pseudoinverse of �, as

〈
�r i .�r j

〉 ∝ [�−1]i j =
∑n−1

k=1

1
λk

[
uk uT

k

]
i j (2)

where the summation is performed over all modes of motion
intrinsically accessible to the network, obtained by eigen-
value decomposition of �. The respective frequencies and
shapes of these modes are given by the n − 1 non-zero eigen-
values (λk) and corresponding eigenvectors (uk) of �, and
[uk uT

k ]i j designates the ijth element of the matrix enclosed
in square brackets. The eigenvector uk is an n-dimensional
vector representing the normalized displacements of the n
loci along the kth mode axis, and 1/�k rescales the am-
plitude of the motion along this mode. Lower frequency
modes (smaller λk) make higher contributions to observed
fluctuations and correlations; they usually embody large
substructures, if not the entire structure, hence their desig-

nation as global modes. In contrast, high frequency modes
are highly localized, and often filtered out to better visu-
alize cooperative events represented by global modes. See
Supplementary Data for more details on the GNM analysis.

Cross-correlations are organized in the n × n covariance
matrix, C (and displayed by an n × n map). The ith diago-
nal element of C, < (�r i )2 >, is the predicted mean-square
fluctuation (MSF) in the positions of the ith loci under phys-
iological conditions; and < (�r i )2 > plotted as a function
of locus index i is called the mobility profile. The MSFs
are inversely proportional to the elastic spring constant γ .
While their absolute values uniformly depend on this pa-
rameter, their relative magnitudes do not; the MSF profiles
thus provide a measure of the relative size of motions of the
different gene loci (irrespective of γ ), exclusively defined by
the particular loci-loci contact topology. They represent en-
semble averages over all accessible motions to a given locus.

Data

Our Hi-C data came from the large, high-resolution Hi-C
dataset (GEO accession: GSE63525), pre-processed using
vanilla coverage (VC) normalization (13). The methods sec-
tion in Supplementary Data provides a comparative analysis
of different normalization schema. We used Hi-C data at 5
kb resolution unless otherwise noted. DNase-seq data were
collected as part of the ENCODE project (ENCFF000SKV
for GM12878 cells, ENCFF740JVK for IMR90 cells) (33).
The ATAC-seq measurements (34) were also obtained for
GM12878 and IMR90 cells (GEO accessions GSM1155959
and GSM1418975, respectively). For both of these experi-
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mental datasets, bed-formatted peak files were downloaded
from the study authors and the data was binned to the
same resolution as the Hi-C data by adding all peak values
within each bin. The binned data were then smoothed us-
ing moving average with a window size of 200 kb. The long-
range interactions from ChIA-PET were from ENCODE
(ENCFF002EMO) (35). We used a two-sample t-test as-
suming unequal variances to quantify the difference be-
tween the covariance distributions of ChIA-PET and back-
ground interactions.

GNM domain identification

GNM domain boundaries for a given mode k are identi-
fied by plotting the elements of uk as a function of loci in-
dex, and identifying the crossover region (also referred to
as hinge regions), from positive to negative direction of mo-
tion (or vice versa), along the mode axis. The eigenvectors
are often noisy, so we first smoothed them with local regres-
sion using weighted linear least squares and a first-degree
polynomial model. The smoothing window was chosen to
be the smallest value that minimizes the number of domains
of length one, where a domain of length one is defined as a
domain that begins and ends in the same bin. In general, the
size of the domains decreases with increasing mode number.
The domains resulting from the superposition of multiple
modes were delimited by the union of hinge sites. As a quan-
titative measure of agreement between GNM-predicted do-
mains, TADs, and compartments, the variation of informa-
tion (VI) metric was used as described in the Supplementary
Data.

Co-expression calculation

In order to calculate co-expression values for genes in this
cell type, we downloaded every publicly available RNA-
seq experiment on GM12878 cells from the Sequence Read
Archive (36), which gave 212 data sets. These raw read data
were quantified using Salmon (37), resulting in 212 tran-
scripts per kilobase million (TPM) values for every gene.
Quantification was performed with and without bias cor-
rection, with qualitatively similar results. Co-expression was
then measured as the Pearson correlation of the two vectors
of TPM values for a given gene pair.

RESULTS

Loci dynamics correlate well with experimental measures of
chromatin accessibility

We first evaluated the mobility profiles of the chromosomes
for GM12878 cells from a human lympho-blastoid cell line
with relatively normal karyotype. Figure 2 illustrates the
MSFs obtained with the GNM (blue curves) for the loci on
three chromosomes (1, 15 and 17, in respective panels A, B
and C). Results for all other chromosomes are presented in
Supplementary Figure S1.

GNM application to H/D exchange data has shown that
the MSFs of network nodes can be directly related to the
accessibility of the corresponding sites: exposed sites enjoy
higher mobility, and those buried have suppressed mobili-
ties. The entropic cost of exposure to the environment for

Figure 2. GNM-predicted mobilities of chromosomal loci in GM12878
show good agreement with data from chromatin accessibility experiments.
(A–C) Mobility profiles (MSFs of loci) obtained from GNM analysis of the
equilibrium dynamics of chromosomes 1, 17 and X, respectively, shown in
blue, are compared to the DNA accessibilities probed by ATAC-seq (yel-
low) and DNA-seq (red) experiments. GNM results are based on 500 slow-
est modes. r1 is the Spearman correlations between GNM predictions and
DNase-seq experiments; and r2 is that between GNM and ATAC-seq. (D)
Spearman correlations between theory and experiments for all chromo-
somes (red and yellow bars, as labeled). The Spearman correlation between
the computed MSFs and experimental ATAC-seq data averaged over all
chromosomes is 0.55 ± 0.11, and that between MSFs and DNase-seq data
is 0.80 ± 0.04. For comparison, we also display the Spearman correlation
between the two sets of experimental data (brown bars); the average in this
case is 0.70 ± 0.08.

a given site can be shown to be inversely proportional to
its MSFs based on simple thermodynamic arguments ap-
plied to macromolecules subject to Gaussian fluctuations
(such as those represented by the GNM) (38). We examined
whether GNM-predicted mobility profiles were also consis-
tent with data from chromatin accessibility experiments. We
compared our predictions with two measures of chromatin
accessibility, DNase-seq (39) and ATAC-seq (34), shown re-
spectively by the yellow and red curves in Figure 2A–C.

Figure 2 shows that the MSFs of chromosomal loci, pre-
dicted by the GNM, are in very good agreement with the
accessibility of loci as measured by DNase-seq. The corre-
sponding Spearman correlations for the three chromosomes
illustrated in panels A–C vary in the range 0.78–0.85 (see
inset), and the computations for all 23 chromosomes (panel
D, yellow bars) yield an average Spearman correlation of
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0.800 (standard deviation of 0.044). The average Spearman
correlation between GNM MSFs and ATAC-seq data is
somewhat lower: 0.552 ± 0.112. Interestingly, the average
Spearman correlation between the two sets of experimen-
tal data was 0.741 ± 0.089, suggesting that the accuracy of
computational predictions is comparable to that of experi-
ments, and that the DNase-seq provides data more consis-
tent with computational predictions. ATAC-seq maps not
only the open chromatin, but also transcription factors and
nucleosome occupancy (40), which may help explain the ob-
served difference.

We performed the same analysis on the available data for
a different cell type, IMR90, and found even better agree-
ment with experiments (Supplementary Figure S2). The
Spearman correlation between the computed MSFs and ex-
perimental ATAC-seq data averaged over all chromosomes
was 0.63 ± 0.08 IMR90 cells, and that between MSFs and
DNase-seq data was 0.82 ± 0.03. Consistently, the two sets
of experiments also exhibit a higher correlation (0.81 ±
0.06) in this case.

GNM results are robust to changes in the resolution of Hi-C
data and can be efficiently reproduced with a representative
subset of global modes

These results for two different types of cell lines show that
the mobility profiles predicted by the GNM for the 23 chro-
mosomes accurately capture the accessibility of gene loci.
The agreement with experimental data lends support to the
applicability and utility of the GNM for making predictions
on chromatin dynamics.

The current results were obtained by using subsets of
m = 500 GNM modes for each chromosome, which essen-
tially yield the same profiles and the same level of agreement
with experiments as those obtained with all modes (see Sup-
plementary Figure S3). The use of a subset of modes at the
low frequency end of the spectrum improves the efficiency
of computations, without compromising the accuracy of the
results. Computations repeated for different levels of reso-
lution (from 5 to 50 kb per bin) also showed that the results
are insensitive to the level of coarse-graining (Supplemen-
tary Figure S4), which further supports the robustness of
GNM results.

We note that all results are obtained by adopting the VC
normalization for Hi-C data. Computations repeated with
two alternative normalization schema, square-root VC (13)
and Knight-Ruiz (41) normalization, showed a significant
decrease in the level of agreement with experimental data re-
gardless of the number of modes included in the GNM com-
putations (Supplementary Figures S5 and S6), and the un-
derperformance of these schema became particularly pro-
nounced in the case of high resolution data (Supplemen-
tary Figures S6 and S7), in support of the VC normalization
adopted here.

Domains identified by GNM at different granularities corre-
late with known structural features

Compartments, first identified by Lieberman-Aiden et al.
(6), are multi-megabase-sized regions in the genome that
correspond to known genomic features such as gene pres-
ence, levels of gene expression, chromatin accessibility, and

Figure 3. Comparison of GNM domains with TADs and Compartments
in GM12878. Variation of information (VI) measures for comparing GNM
domains with (A) TADs and (B) compartments (lower VI indicates greater
agreement). Box plots show the distribution of VI values obtained by ran-
domly shuffling GNM domains and comparing to original TAD and com-
partment boundaries. Blue dots represent the VI value of the true GNM
domains with TADs and compartments, respectively.

histone markers. Hi-C experiments have revealed two broad
classes of compartments: ‘A’ compartments generally as-
sociated with active chromatin, containing more genes,
fewer repressive histone markers, and more highly expressed
genes; and ‘B’ compartments, for less accessible DNA,
sparser genes, and higher occurrence of repressive histone
marks. TADs (8) are finer resolution groupings of chro-
matin distinguished by denser self-interactions and asso-
ciated with characteristic patterns of histone markers and
CTCF binding sites near their boundaries. The multiscale
nature of GNM spectral analysis allows hierarchical levels
of organization to be identified computationally, and it is
of interest to examine to what extent these two levels can be
detected.

As presented above, the GNM low frequency modes re-
flect the global dynamics of the 3D structure, and increas-
ingly more localized motions are represented by higher
frequency modes. We identified domains from subsets of
GNM modes that group regions of similar dynamics (see
Methods). In order to verify whether these dynamical do-
mains correspond to TADs at various resolutions, we used
the TAD-finder Armatus (14), varying its ‘γ ’ parameter that
controls resolution. We refer to this latter parameter as the
Armatus γ , to distinguish it from the force constant in the
GNM. We measure the agreement between GNM domains
and TADs using the variation of information (VI) distance,
which computes the agreement between two partitions, and
where a lower value indicates greater agreement (42). For
more information on the VI metric, see the Methods sec-
tion of Supplementary Data. For each choice k of number
of modes, the Armatus γ k that minimizes the VI distance
between the GNM domains and the Armatus domains was
selected. This resulted in a mean VI value for optimal pa-
rameters of 1.251, significantly lower than the VI distance
of 1.946 obtained when the GNM domains were randomly
re-ordered along the chromosome and compared back to
the original TADs (empirical p-value < 0.01 for all chromo-
somes). Figure 3A shows the comparison for each chromo-
some between the VI value for the optimally matched TAD
boundaries with the GNM domains and the distribution of
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VI values from the randomly shuffled domains. As the num-
ber of included GNM modes is increased, γ k monotonically
increases as well, showing that the number of GNM modes
is a good proxy for the scale of chromatin structures sought
(Supplementary Figure S8).

Furthermore, GNM predicts large-scale global motions
using a relatively low number of modes, so we compared
these to larger-scale compartments. We found that the first
5–20 non-zero modes correspond fairly well to compart-
ments. For each chromosome, we selected the number of
modes that produced the smallest VI distance between
Lieberman–Aiden compartments and GNM domains. This
yielded a mean optimal VI distance of 1.771 (using an av-
erage of 13 modes). This is significantly lower than the
mean optimal VI distance of 2.088 when the locations
of Lieberman–Aiden compartments are randomly shuffled
along the chromosome, though the difference is only sta-
tistically significant for 16 of the 23 chromosomes, with p-
value equal to 0.05. The comparisons of GNM domains
with compartments for each chromosome in GM12878
cells can be seen in Figure 3B. The same calculations were
performed on IMR90 cells, with qualitatively similar re-
sults. For the comparisons with randomly shuffled domains
on IMR90 cells, only 1 chromosome for TADs and 3 for
compartments were statistically insignificant (see Supple-
mentary Figure S9). Supplementary Figure S10 shows an
example of the GNM domains found using the number
of modes that minimizes the VI with compartments or
TADs. The ability of GNM to recapitulate both TADs and
compartments––two organizational levels of wildly differ-
ent scales––shows the flexibility and generality of the GNM
approach. We note that a TAD-finding method using only
the second eigenpair (Fiedler value/vector) of the Laplacian
has also been developed (28) and tested on 100 kb resolu-
tion data. By including more eigenvectors, we are able to
identify TADs closer to Armatus on all chromosomes (as
measured by lower VI) at 5 kb and for 18/23 chromosomes
at 100 kb resolution (see Supplementary Figure S11A and
C). Though the Fiedler vector-based method identifies com-
partments better at low resolution, that method performs
poorly at finer resolution, while GNM remains robust to
resolution changes. We are also able to identify compart-
ment sets with lower VI on all chromosomes at 5 kb (Sup-
plementary Figure S11B and D). Further corroborating the
benefit of using multiple modes, it has been shown in early
studies that spectral clustering by using more eigenvectors
can outperform partitioning methods which only use one
eigenvector (43,44).

Loci pairs separated by similar 1D distance exhibit differ-
ential levels of dynamic coupling, consistent with ChIA-PET
data

Figure 4 displays the covariance map generated for the
coupled movements of the loci on chromosome 17 (of
GM12878 cells), based on Hi-C data at 5 kb resolution.
Panel A displays the cross-correlations (see Equation 2) be-
tween all loci-pairs as a heat map. Diagonal elements are the
MSFs (presented in Figure 2C). The curve along the upper
abscissa in Figure 4A shows the average cross-correlation
of each locus with respect to all others; the peaks indicate

the regions tightly coupled to all others, probably occupying
central positions in the 3D architecture. Results for other
chromosomes are presented in Supplementary Figure S12.
The covariance map is highly robust and insensitive to the
resolution of the Hi-C data. The results in Figure 4A were
obtained using all the m = 15 218 nonzero modes corre-
sponding to 5 kb resolution representation of chromosome
17. Calculations repeated with lower resolution data (50 kb)
and fewer modes (500 modes) yielded covariance maps that
maintained the same features (Supplementary Figure S13).

Owing to their genomic sequence proximity, the entries
near the main diagonal of the covariance map tend to show
relatively high covariance values (colored yellow-to-brown;
Figure 4A). Note that even the close vicinity of the diag-
onals (e.g. loci intervals of ≥200) represents (at 5 kb reso-
lution) genomic loci separated by >1 Mb. The covariance
map clearly shows that there are strong couplings between
loci separated by a few megabases. We show an example
of such regions in Figure 4B. While the loci pairs located
in the dark red band along the diagonal appear all to ex-
hibit strong couplings, a closer examination reveals differ-
ential levels of cross-correlations that are in good agree-
ment with the data from Chromatin Interaction Analysis by
Paired-End Tag Sequencing (ChIA-PET) experiments (45).
The ‘long-range’ interactions identified by ChIA-PET (35)
are indicated in panel B by red dots (close to the diagonal).
These are interacting loci separated by several hundreds of
kb. We selected background pairs separated by the same 1D
distance, on both sides of the ChIA-PET pair, and com-
pared the cross-correlations predicted for the two sets along
each chromosome (Figure 4C). The background pairs (blue
bars) show weaker GNM cross-correlations compared to
the ChIA-PET pairs (red bars) although they are separated
by the same genomic distance along the chromosome.

Similar statistical analysis repeated for all 23 chromo-
somes showed that the cross-correlations of ChIA-PET
pairs were greater than those of background pairs of the
same genomic distance on every chromosome, with all P-
values less than 10−19 (two-sided t-test).

Cross-correlations between loci motions are global properties
that result from the overall chromosomal network topology

In general, loci-loci cross-correlations become weaker with
increasing distance along the chromosome, and some pairs
show anticorrelations (i.e. move in opposite directions; see
scale bar in Figure 4A). Yet, we can distinguish distal re-
gions that exhibit notable cross-correlations in the spatial
movements (off-diagonal lighter-colored blocks). The lev-
els of cross-correlations do not necessarily need to scale
with the interaction strengths between the correlated loci
(or number of contacts detected by Hi-C). On the con-
trary, a broad range of cross-correlations is observed for
a given number of contacts, indicating that the observed
correlations are global properties defined by the entire net-
work topology and reflect the collective behavior of the
entire structure. Figure 4D displays the computed cross-
correlations as a function the number of contacts, showing
that some pairs of loci display much stronger correlations
revealed by the GNM than others that make more Hi-C
contacts. Figure 4E shows that the anticorrelated pairs of



Nucleic Acids Research, 2017, Vol. 45, No. 7 3669

Figure 4. Covariance map computed for chromosome 17 and comparison with ChIA-PET data and contacts from Hi-C experiments in GM12878. (A)
Covariance matrix computed for chromosome 17, color-coded by the strength and type of cross-correlation between loci pairs ranged from 5th to 95th
percentile of all cross-correlation values (see the color bar on the left). The curve on the upper abscissa shows the average overall off-diagonal elements in
each column, which provides a metric of the coupling of individual loci to all others. The blocks along the diagonal indicate loci clusters of different sizes
that form strongly coupled clusters. The red dashed boxes indicate the pairs of regions exhibiting weak correlations despite genomic distances of several
megabases. The blue bands correspond to the centromere, where there are no mapped interactions. (B) Close-up view of a region along the diagonal. Red dots
near the diagonal indicate pairs (separated by ∼100 kb) identified by ChIA-PET to interact with each other; nearby blue points are control/background
pairs. (C) Stronger cross-correlations of ChIA-PET pairs compared to the background pairs. (D) Dependence of cross-correlations on the number of
contacts observed in Hi-C experiments. A broad distribution is observed, indicating the effect of the overall network topology (beyond local contacts) on
the observed cross-correlations. (E) Loci pairs exhibiting anti-correlated (same direction, opposite sense) movements usually have fewer contacts, compared
to those exhibiting correlated (same direction, same sense) pairs of the same strength.

loci (blue) usually have fewer contacts than those (red) ex-
hibiting positive cross-correlations of the same strength.

Distal regions that are predicted to be strongly correlated in
their spatial dynamics exhibit higher co-expression

The GNM covariance map further shows correlations be-
tween farther apart (>10 Mb) regions. In contrast to the
main diagonal, the majority of the off-diagonal space typi-
cally shows significantly weaker correlations. Regions in this
space with higher than expected covariance values represent
dynamically linked windows along the chromosome, which
may represent long-range interactions. We call these pairs
of windows cross-correlated distal domains (CCDDs). To
identify CCDDs, we set a threshold for each covariance ma-
trix equal to the absolute value of the minimum covariance.
Treating the remaining adjacent pairs as edges in a graph,
we then locate connected components beyond the widest
section of the main diagonal and above the threshold that
contain more than one bin pair, and find the maximal-area
rectangle contained within each connected region of high

covariance values (see Supplementary Figure S14). These
CCDDs are therefore pairs of regions distant along the
chromosome, composed each of highly interconnected loci,
which also exhibit relatively high cross-correlations com-
pared to other regions of similar genomic separation. Pre-
vious methods for identifying long-range chromatin inter-
actions (13,20,21,45) have focused on locating individual
points of interaction within 1–2 Mb apart, while CCDDs
tend to be on the order of tens of Mb apart and supported
by groups of interacting loci.

The covariance matrix results from the overall coupling
of the complete network of loci upon inversion of the
connectivity/Kirchhoff matrix for the entire chromosomes.
As such, it permits to capture, or better discriminate, the
long-range correlations resulting from the complex topol-
ogy of loci-loci contacts, as opposed to the raw data on lo-
cal loci-loci contacts described by Hi-C maps. The covari-
ance data also permit the identification of an appropriate
threshold value for defining the significant CCDDs, consis-
tent with the cooperative couplings within the entire struc-
ture, including distal correlations. There is no correspond-
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Figure 5. Co-expression is significantly enriched in distant CCDDs. In
each histogram, the yellow distribution represents gene pairs from CCDDs
and the blue distribution represents background gene pairs. All are show-
ing the normalized number of gene pairs with a particular Pearson expres-
sion correlation for gene pairs within a distance of (A) 0–25 million base
pairs, (B) 25–50 million base pairs, (C) 50–75 million base pairs and (D) 75–
100 million base pairs. The more distant pairs (50–100 million base pairs
apart) within the CCDDs show enriched expression correlations as com-
pared to the background pairs. There were not enough gene pairs within
CCDDs more than 100M base pairs apart to draw significant conclusions.

ingly clear threshold value for raw Hi-C data, which makes
identifying these regions difficult without covariance matri-
ces.

Highly distant gene pairs within CCDDs show greater
co-expression values than gene pairs outside these regions
(p-value < 10−7 using the background defined below). For
each CCDD, we identified the genes contained within the
region and measured the co-expression of each gene pair
from distant chromosomal segments. The background gene
pairs were gathered from outside the CCDDs but with sim-
ilar genomic separation as the CCDD gene pairs. We com-
puted gene expression correlations from 212 experiments
(see Methods and Supplementary Table S1).

As seen in Figure 5, the CCDDs containing specifically
gene pairs that are between 50 and 100 Mb apart are much
more highly co-expressed than background gene pairs at the
same genomic distance (P-value < 10−19, see Methods for
details). This indicates that the dynamic coupling of these
genes, as revealed by GNM, may often be biologically im-
portant. CCDDs at smaller genomic distance (<50 Mb) ex-
hibit similar co-expression distributions to the background
gene pairs, likely due to the effect of shorter genomic dis-
tances including more co-regulated genes within the back-
ground. Beyond distances of 100 Mb, there are not sufficient
gene pairs within CCDDs to draw any meaningful conclu-
sions. Dynamically coupled regions that are very distant se-
quentially but biologically linked through gene expression
are therefore identifiable using the GNM covariance matrix.

DISCUSSION

This work represents the first analysis of chromosome dy-
namics using an elastic network model, GNM, which has
found wide applications in molecular structural biology.
Though other models (28,29) have examined genome struc-

ture through graph theoretical methods, the inclusion of the
complete spectrum of motions in the analysis provides a
more realistic picture of chromosomal dynamics in accord
with a wealth of experimental data. The approach brings
three key advantages. First, this is a mathematically rigor-
ous approach, based on first physical principles, with in-
tuitive interpretations and well-established theoretical and
physical underpinnings. Second, it enables us to evaluate,
compare and consolidate a broad range of biologically sig-
nificant genome-wide properties with the help of a unified
model. These include the evaluation of loci MSFs at 5 kb
resolution, the discrimination of short-range regulatory in-
teractions among close-neighboring loci, and the identifi-
cation of TADs and compartments. These respective pre-
dictions were shown to satisfactorily compare with data
from chromatin accessibility (DNase-seq and ATAC-seq)
and ChIA-PET experiments, and predictions from previous
computational methods. The agreement with experiments
not only validates the applicability of the GNM, but also
provides a new set of independent data, which consolidate
those from experiments, especially when the experimental
data themselves exhibit some differences (see Figure 2D and
Supplementary Figure S2D). The application to two differ-
ent cell types also showed that GNM data comply with cell-
cell variability. This unifying framework further led to the
discovery of biologically significant, dynamically coupled
regions, termed CCDDs. No existing method has located
spatially coupled co-expressed regions of the genome which
are so distant (over 50 Mb apart) along the chromosomes,
and this information cannot be found from gene expression
or other experimental data alone.

Due to the fact that the Hi-C experiment is known to
suffer several systematic biases, we chose Vanilla Coverage
normalization to eliminate such biases based on the cor-
relation with chromatin accessibility (see Normalization in
Supplementary Data) (13,46), and we assessed the impact
of one type of simplest bias, GC content, on our results. In
order to verify that the agreement with experimental data
was not simply due to obvious covariates, we measured the
correlation between GC content and both DNase-seq and
ATAC-seq. On all chromosomes, the MSFs from GNM ex-
hibited higher correlation with both experimental data sets
than GC content. The correlation between GC content and
accessibility data averaged to 0.606 and 0.278 for DNase-
seq and ATAC-seq, respectively, compared to 0.800 and
0.552 achieved by the GNM-predicted MSFs (Supplemen-
tary Figure S15). In the case of structural component iden-
tification (TADs and Compartments), GNM clearly locates
boundaries of multiple resolutions of structural domains
beyond the influence of GC content. GC content shows no
significant change in behavior around TAD or compart-
ment boundaries as compared to its behavior at the center
of these structures (see Supplementary Figure S16), demon-
strating that this feature of GNM has no dependence on GC
content bias. Finally, co-expression enrichment of CCDDs
was maintained after bias-corrected RNA-seq quantifica-
tion (Supplementary Figure S17), again supporting the sig-
nificance of the GNM-predicted distal correlations. Future
efforts may focus on deploying methods that can remove
bias factors from both Hi-C and accessibility data, in or-
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der to fully separate the capabilities of GNM from simple
covariates.

In general, the evaluation of dynamic features using
structure-based models becomes prohibitively expensive
with increasing size of the structure, hence the develop-
ment of coarse-grained models and methods for explor-
ing supramolecular systems dynamics. The chromatin size
is well beyond the range that can be tackled efficiently by
structure-based methods and realistic force fields. The ap-
plicability of the GNM to modeling chromatin dynam-
ics lies in its ability to solve for the collective fluctuations
and cross-correlations based on network contact topol-
ogy, exclusively. No knowledge of structural coordinates
is needed, nor do we predict structural models––a task
that has been undertaken successfully by recent studies
(17,18,47–55). We characterize the collective dynamics en-
coded by the overall chromosomal contact topology, driven
by entropy, consistent with the ensemble-based properties
of the genome structure. MSFs predicted by the GNM
represent ensemble averages over thermal fluctuations (or
spectrum of modes; see Supplementary Methods), and re-
flect population-averaged behavior examined in the Hi-C
experiments, hence their applicability to population-average
based experiments such as ATAC-seq and DNase-seq.

The method is extremely efficient. For example, GNM av-
erages a real computing time of 1.5 h per chromosome at
5 kb resolution using 10 CPUs, and no multiple runs are
needed, since a unique analytical solution is obtained for
each system. The computing time is further shortened when
lower resolution data are used: all GNM computations are
performed within 1 min for every chromosome at the reso-
lution of 50 kb. The efficiency of the computations permits a
systematic study of different types of cell lines as well as the
extension of the methodology to the entire set of interchro-
mosomal contacts, rather than individual chromosomes.

Future GNM analyses of chromatin dynamics could fo-
cus on the nature of the long-range couplings, analysis of
their biological significance, or the meaning of genomic
regions that exhibit high covariances. GNM also predicts
a measure of overall coupling of each genomic locus to
others (see the curve along the upper abscissa in Figure
4A), the significance of which requires further investigation.
The GNM was shown to capture several biological prop-
erties of chromosomes, but further insights on cooperative
events, including the interchromosomal (trans) interactions
is within reach by focusing on the softest (lowest frequency)
modes of motion predicted by the GNM. Finally, advances
in 3D embeddings of Hi-C data may open the way to adopt-
ing the Anisotropic Network Model (ANM) (56–58) for ef-
ficient modeling and visualization of the whole chromatin
dynamics.

The present study is performed on GM12878 and IMR90
cells, but the GNM can be readily used for analyzing dif-
ferent cell types provided that Hi-C data are available, and
the comparative analysis of the fluctuation spectrum and
CCDDs can reveal the differences across cell types. Our pre-
liminary analysis of the equilibrium fluctuations of chromo-
some 17 for four other cell types (K562, KBM7, HUVEC
and NHEK) indeed showed similarities between the MSFs
of gene loci as well as their cross-correlations, although
some notable differences were also seen, e.g. the mobility

profile for the epidermal cell line, NHEK, exhibited distinc-
tive patterns at selected regions. Further work is needed to
understand the biological significance of the observed het-
erogeneities in the genome-wide fluctuation spectrum of the
different types of cells. Examination of structural variabili-
ties across orthologous proteins and their mutants revealed
close similarities between evolutionary changes in struc-
ture and the intrinsic dynamics of proteins (59). Conversely,
ANM-predicted global dynamics conforms to the principal
changes in structure across different forms of the same pro-
tein (60,61), and thus explains the structural adaptability of
the protein to different functional states (62). It would be
of interest to explore whether cell-cell variabilities as well
differences in disease vs normal states could equally be ra-
tionalized in the light of chromatin dynamics as more data
become accessible on cell-specific 3D genome organization.
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