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Abstract
The dynamic coordination of processes controlling the quality of the mitochondrial network is crucial to maintain the 
function of mitochondria in skeletal muscle. Changes of mitochondrial proteolytic system, dynamics (fusion/fission), and 
mitophagy induce pathways that affect muscle mass and performance. When muscle mass is lost, the risk of disease onset 
and premature death is dramatically increased. For instance, poor quality of muscles correlates with the onset progression of 
several age-related disorders such as diabetes, obesity, cancer, and aging sarcopenia. To date, there are no drug therapies to 
reverse muscle loss, and exercise remains the best approach to improve mitochondrial health and to slow atrophy in several 
diseases. This review will describe the principal mechanisms that control mitochondrial quality and the pathways that link 
mitochondrial dysfunction to muscle mass regulation.
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Introduction

Mitochondrial dysfunction has been linked to muscle func-
tion loss that occurs in several age-related metabolic dis-
orders such as diabetes, obesity, cancer, and aging sarco-
penia. In these conditions, the decrease in muscle mass is 
a significant health problem that worsens life quality and 
increases morbidity and mortality. Instead, maintaining a 
healthy skeletal muscle mass is associated with a lower risk 
of mortality [1, 2], highlighting a correlation between mus-
cle health and whole-body homeostasis. Skeletal muscle, the 
most abundant tissue in the human body, is a major site of 
metabolic activity that regulates carbohydrates, lipids, and 
protein homeostasis. Energy requirements during intense 

contraction in skeletal muscles increase to 100-fold the con-
sumption of ATP [3]. To sustain this high energy demand, 
cardiac and skeletal muscles rely on oxidative phospho-
rylation (OXPHOS) for ATP production. Therefore, main-
taining a functional mitochondrial network in this tissue is 
fundamental to sustain the metabolic demands imposed by 
contraction, ultimately regulating fuel utilization, energy 
expenditure, and general metabolism.

Signaling pathways regulating muscle mass

The muscle mass in adulthood is defined by the dynamic 
balance between protein synthesis and protein degrada-
tion. Mechanical overload or anabolic hormonal stimu-
lation shifts the balance toward protein synthesis with 
consequent increases in fiber size, called hypertrophy. 
Conversely, in catabolic conditions, protein degradation 
exceeds protein synthesis leading to muscle weakness and 
muscle atrophy. The main pathways controlling muscle 
size are IGF1–AKT–mTOR–FoxO and TGFβ/myostatin/
BMP signaling. The Smads transcription factors regulate 
muscle mass downstream of the TGFβ/myostatin superfam-
ily of ligands. Myostatin-dependent recruitment of SMAD 
2/3 is a negative regulator of muscle mass [3]. Accordingly, 
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inhibition of SMAD 2 and SMAD 3 is sufficient to induce 
muscle growth [4, 5]. On the other hand, BMP signaling is 
a positive regulator of muscle mass and is dominant over 
the myostatin pathway [6, 7]. BMP pathway is activated 
in myostatin knockout and is sufficient, when induced, to 
promote muscle growth and to counteract muscle loss after 
denervation and in the absence of nutrients [6–8]. Induc-
tion of BMP signaling activates Smad1/5/8, which, together 
with SMAD 4, leads to the suppression of the MUSA1 [6] 
and the activation of mTOR-dependent protein synthesis 
[7]. The IGF1–AKT-–mTOR axis increases protein synthe-
sis by stimulating the translational machinery and simul-
taneously blocks FoxOs transcription factors and protein 
degradation [9]. Two central ATP-dependent proteolytic 
systems are activated during muscle atrophy. The ubiqui-
tin–proteasome system degrades predominantly myofibrillar 
proteins, whereas the autophagy–lysosome system removes 
dysfunctional organelles, protein aggregates, and unfolded 
and toxic proteins. Muscle atrophy requires the activation 
of gene transcription programs that regulate the expression 
of a subset of genes that are named atrophy-related genes or 
atrogenes [10–14]. These atrogenes belong to several fun-
damental biological processes such as the ubiquitin–protea-
some and autophagy–lysosome systems, protein synthesis, 
ROS detoxification, DNA repair, unfolding protein response 
(UPR), mitochondria function, and energy metabolism. 
FoxO family of transcription factors (FoxO1, FoxO3, and 
FoxO4) are critical mediators of the catabolic response 
during atrophy [9, 15, 16]. Muscle-specific inhibition of 
FoxOs protects from cancer cachexia-, fasting-, hindlimb 
suspension- or denervation-induced atrophy [16–18]. More-
over, at least half of the atrogenes require FoxOs for their 
up- or downregulation [16]. FoxOs- dependent atrogenes 
include the E3 Ubiquitin ligases ATROGIN-1, MuRF-1, 
MUSA1, SMART, several autophagy-related genes such 
as LC3, GABARAPL1, BNIP3, CATHEPSIN L, and the 
ER stress genes ATF4, GADD34 and GADD45 [9, 10, 15, 
16]. Importantly, the overexpression of ATF4 and GADD45 
is sufficient to induce muscle loss [19, 20]. Therefore, by 
controlling FoxOs and mTOR, AKT is a regulatory node 
between catabolic and anabolic processes. However, muscle 
atrophy involves not only the breakdown of the myofibrils 
but also the loss of organelles like mitochondria. Moreover, 
mitochondrial function and, thus, energy production are 
generally reduced during muscle wasting. More than 10% 
of the atrophy-related genes are directly involved in energy 
production. Genes encoding for glycolysis and oxidative 
phosphorylation enzymes are coordinately suppressed in 
atrophying muscles during denervation, disuse, diabetes, 
cancer, fasting, and chronic kidney disease [10, 11, 13, 20]. 
This finding suggests that alterations in the mitochondrial 
network contribute to muscle atrophy. Recent data show 
that retrograde signaling from the mitochondrial network to 

the nucleus adapts muscle function to the physiological or 
pathological demands.

Mitochondrial communication is essential 
for optimal mitochondrial function 
in skeletal muscle

Mitochondria populations are connected to support 
energy distribution in skeletal muscle

Adult myofibers have a specific subcellular distribution of 
distinctive mitochondria populations that have been classi-
fied accordingly to their localization as subsarcolemmal and 
intermyofibrillar. Subsarcolemmal (SS) mitochondria have a 
globular shape and are located just beneath the plasma mem-
brane (sarcolemma). A fraction of these surrounds capillar-
ies and nuclei (perivascular and perinuclear mitochondria, 
respectively) [21]. The intermyofibrillar (IMF) mitochon-
dria are elongated with a tubular shape [21] and are inserted 
among myofibrils arranged in pairs at the z-line of each sar-
comere [22]. While less is known regarding perivascular 
and perinuclear mitochondrial function, several reports have 
identified differences in the SS and IMF’s biochemical and 
functional properties [23–25]. Recent findings on high-res-
olution three-dimensional microscopy challenged the exist-
ence of two separated mitochondrial pools and strengthened 
the concept of a physically and functionally highly intercon-
nected mitochondrial network in skeletal muscle [21, 24, 
26]. The mitochondrial muscle reticulum forms a conductive 
pathway that can rapidly transfer energy from the oxygen 
source, the capillary, to the contractile apparatus [24]. The 
physical connection of SS and IMF in human and mouse 
muscles enables the distribution of the membrane potential 
from the subsarcolemmal region, where respiration happens 
to the intermyofibrillar is where the ATP synthase complex 
uses the proton gradient to generate ATP for myosin–actin 
interaction.

Interorganelle communication relies 
on intermitochondrial junctions and nanotunnels

In addition to SS and IMF connection, mitochondria also 
communicate among themselves through intermitochon-
drial junctions (IMJs) and nanotunnels. IMJs are highly 
specific and regulated electron-dense structures, defined 
by the close contact of the inner and outer mitochondrial 
membrane. These structures allow the coordination of 
cristae orientation and electrical coupling between adja-
cent mitochondria within the mitochondrial network [27]. 
To prevent the spread of dysfunction, IMJs are detached 
in dysfunctional mitochondria, promoting the electrical 
isolation and further segregation from the network of the 
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malfunctioning organelle [28]. IMJs’ function and molecu-
lar composition have to be defined, but one possibility is 
that they are ion channels explaining the rapid electro-
chemical inter-mitochondrial communication [27]. Nano-
tunnels are conserved OMM and IMM double-membrane 
projections, connecting two non-adjacent mitochondria 
[29], particularly under pathological conditions [21]. 
These tubular structures can transport ions, metabolites, 
and proteins, between spatially restricted mitochondria 
like the myofibril-embedded IMF [21]. Thus, advances 
in 3D imaging have expanded our knowledge of the 
dynamic mitochondrial communication and energy dis-
tribution across the muscle reticulum that provides a rapid 
mechanism to respond immediately to changes in energy 
requirements.

The conformation and connectivity 
of the mitochondrial network are tailored 
to the metabolism and contractility of each 
fiber type

Skeletal muscles are composed of specialized fiber types 
which differ in their mitochondrial content, metabolic 
properties, and myosin composition. According to the 
functional demand, skeletal muscles recruit the most suit-
able myofibers to modulate the expected response. Mus-
cles that produce a long-lasting contraction, like postural 
muscles, are mainly composed of slow b-oxidative fibers, 
which have high mitochondrial content, increased reliance 
on OXPHOS, and are resistant to fatigue. Instead, muscles 
that generate a high-intensity activity for short periods 
(e.g., jumping, kicking), have a high representation of fast 
glycolytic fibers, which have poor mitochondrial content, 
decreased reliance on OXPHOS and are fatigable. Based 
on myosin heavy chain (MHC) expression, mouse mus-
cles contain four major fiber types, slow type 1 and fast 
2A, 2X and 2B; while human muscles contain three major 
fiber types, slow type 1 and fast 2A and 2X [30]. The 
mitochondrial conformation within myofibers has a fiber-
type-dependent specific pattern. Oxidative fibers have a 
grid-like mitochondrial network conformation, with paral-
lel and perpendicularly oriented elongated mitochondria. 
In contrast, the mitochondrial network in glycolytic fibers 
is fragmented and perpendicularly oriented to the mus-
cle contraction axis and the I bands. The mitochondrial 
connectivity within the network through IMJs is higher 
in oxidative than in glycolytic fibers, reflecting the cell’s 
functional demands. Therefore, the mitochondrial network 
morphology, arrangement, and connectivity adapt to each 
fiber type’s specific functional needs (e.g., OXPHOS 
capacity and contractility) [31, 32].

Quality control pathways finely tune 
mitochondrial function

Mitochondrial dysfunction has been linked to several 
human diseases, like specific genetic defects, neurode-
generative and age-related diseases like aging sarcopenia, 
diabetes, and obesity. Mitochondria are continuously chal-
lenged by reactive oxygen species (ROS), an inexorable 
by-product of oxidative phosphorylation. For this reason, 
the organelle is susceptible to DNA mutations or protein 
misfolding. Thus, mitochondrial integrity and function 
need to be highly regulated. Mammalian cells contain 
several mitochondria quality control systems to preserve 
the organelle homeostasis. According to the degree of 
mitochondrial damage, different pathways can be acti-
vated, ranging from the segmental repair of the damage 
to the whole degradation of the dysfunctional organelle. 
Mitochondrial homeostasis is ensured by the coordination 
of pathways like mitochondrial biogenesis, mitochondrial 
dynamics, and degradative pathways like the activation of 
mitochondrial proteases, mitochondrial-derived vesicles, 
and mitophagy, the selective degradation of mitochondria 
via autophagy (Fig. 1).

Mitochondrial proteostasis—a mitochondrial 
protein quality control mechanism

Mitochondria have their genome, transcription, and trans-
lation machinery [33]. However, only 13 proteins among 
the approximately 1200 proteins from the mitochondrial 
proteome, are encoded by mitochondrial DNA (mtDNA) 
and synthesized inside the organelle [34]. The nuclear 
genome encodes the remaining proteins, which are synthe-
sized by ribosomes in precursor forms. The incorporation 
of these precursors into specific mitochondria subcompart-
ments such as the outer mitochondrial membrane (OMM), 
the intermembrane space (IMS), the inner mitochondrial 
membrane (IMM) and the mitochondrial matrix requires 
specific and highly regulated import machinery [35]. The 
transported proteins are unfolded, with a high risk of mis-
folding, aggregation, mislocalization, and damage. For this 
reason, mitochondria contain a complex interconnected 
quality control system responsible for the maintenance 
of functional proteins. A recent proteomic study in Dros-
ophila fibroblasts identified that most of the mitochondrial 
protein turnover (70% circa) occurs through the combina-
tion of non-autophagic degradative processes like mito-
chondrial proteases, the ubiquitin–proteasome system, and 
mitochondrial-derived vesicles; while the contribution of 
mitophagy to protein turnover is of the remaining one third 
[36].
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Mitochondrial proteases

The first line of defense against mild mitochondrial dam-
age involves the degradation of misfolded or oxidized pro-
teins by activating specific mitochondrial proteases in each 
mitochondrial compartment. In the mitochondrial matrix, 
protein turnover is controlled by 3 AAA proteases: the sol-
uble LONP1 and ClpP and the membrane-bound m-AAA. 

Protein degradation in the IMS is controlled by the mem-
brane-bound i-AAA YME1L1, the soluble HtrA2/OMI, 
the metallopeptidases OMA1 and the rhomboid protease 
PARL. Mitoproteases do not only monitor mitochondrial 
protein quality, but also they can decide mitochondrial 
fate. For example, m-AAA, YME1L1, HtrA2, OMA1, and 
PARL cleave the profusion protein OPA1 affecting mito-
chondrial morphology and function [37]. PARL modulates 

(a)

(b)

(e)

(c)

(d)

Fig. 1   Mitochondria quality control pathways. a The mitochondrial 
proteases LONP1, ClpP, OMA1, YME1L1, and PARL maintained 
mitochondrial proteostasis. PARL, OMA1, and YME1L1 process 
OPA1 protein, critical for mitochondrial fusion and cristae remode-
ling. PARL degrades PINK1, regulating mitophagy. b Mitochondrial 
fusion is mediated by MFN1/2 and OPA1 to produce an elongated 
mitochondrial network. c DRP1 and MFF are the major proteins 
involved in mitochondrial fission. Fragmented mitochondria with low 
ΔΨm are removed by mitophagy. d BNIP3 and NIX are mitophagy 

receptors that bind to LC3 to tether mitochondria to the autophago-
some. PINK1 accumulates on of depolarized mitochondria surface, 
where it phosphorylates ubiquitinated OMM proteins and the Par-
kin UBL domain. Parkin will further promote the ubiquitination of 
the outer mitochondrial membrane proteins. Then, the ubiquitinated 
proteins can be recognized by the p62/SQSTM1 adaptor, to initiate 
mitophagy. e Mild mitochondrial damage activates the release of 
mitochondrial-derived vesicles (MDVs)  containing mitochondrial 
components for their degradation in the lysosome
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mitophagy by degrading the mitophagy protein PINK1 
[38].

Ubiquitin–proteasome system (UPS) 
and mitochondria‑associated degradation pathway (MAD)

In mouse cardiac muscle, the UPS ubiquitinates several 
OMM, IMS, and matrix mitochondrial proteins [39, 40]. The 
association between the UPS and mitochondria is further 
supported by the localization of UPS components in mito-
chondria. The USP30 deubiquitinating enzyme [41], and the 
E3 ubiquitin ligases Parkin [42], MARCHV/MITOL [43, 
44], MAPL/MULAN [45], and RNF185 [46] localize at the 
OMM to mediate protein polyubiquitination. Interestingly, 
these UPS components’ effects go beyond the clearance of 
damaged proteins and include the regulation of mitochon-
drial morphology and turnover. During ER stress, misfolded 
proteins accumulate into the ER lumen. They need to be ret-
rotranslocated into the cytosol, where they are flagged with 
ubiquitin and degraded by the proteasome in a process called 
ER-associated protein degradation (ERAD) [47]. Mitochon-
dria have an ERAD-like mechanism, the mitochondria-asso-
ciated degradation (MAD) pathway, and share with ERAD 
some key components. These are the AAA ATPase p97, 
also referred to as valosin-containing protein (VCP), and 
the cofactor Npl4, both involved in the process of pulling 
out ubiquitinated proteins from the OMM and retrotranslo-
cation to the cytosol [48]. p97 provides the driving force to 
extract Mfn1, Mfn2, and the anti-apoptotic protein MCL1 
from the OMM and chaperone them to the proteasome [49, 
50]. Interestingly, proteasome inhibition leads to accumulat-
ing the IMM proteins UCP2, COXI, III, IV, and OSCP [51]. 
One intriguing issue is whether intramitochondrial proteins 
that do not face the cytosol can be substrates of the MAD 
pathway. Even though retrotranslocation machinery has not 
been identified, some evidence indicates that the UPS con-
trols IMM proteins. In fact, as a consequence of proximity 
to the respiratory chain, IMM proteins are exposed to ROS 
generated by mitochondrial respiration and, therefore, oxi-
dized. For example, the mitochondrial matrix protein OSCP, 
a subunit of OXPHOS complex V, can be retrotranslocated 
to the OMM, where it can be ubiquitinated and degraded 
[51]. Moreover, unfolded IMS proteins can exit the IMS 
through the TOM translocase, which is the same route used 
for import [40].

Mitochondrial unfolding protein response (UPRmt)

Under stress conditions, when the degradation pathways are 
insufficient to repair the consequences of the alteration in 
mitochondrial translation [52] or the accumulation of oxi-
datively damaged or misfolded proteins, a retrograde signal 
is activated which coordinates nuclear gene expression. This 

mitochondria-to- nucleus response is named mitochondrial 
unfolding protein response (UPRmt) [53]. The ultimate pur-
pose of UPRmt is to maintain proteostasis by promoting 
the expression of chaperones and m-AAA proteases ClpP 
and YME1L1, inside mitochondria. This pathway’s activa-
tion improves protein folding, inhibits protein synthesis to 
alleviate ER stress, and removes damaged proteins. Thus, 
repairing and restoring mitochondrial proteostasis complex 
is critical for the adaptation to environmental changes that 
risk mitochondrial proteome integrity and, consequently, 
limit the mitochondrial damage.

Mitochondrial dynamics

An essential mitochondrial quality control system is the 
dynamic remodeling of mitochondrial membranes, through 
repeated rounds of fusion and fission events. The continuous 
alternation of these two processes regulates mitochondrial 
number, morphology, and distribution, ensuring the adap-
tation of the mitochondrial network to the cellular bioener-
getic requirements. Mitochondrial shape and function are 
strictly connected. Mitochondrial fusion leads to elongated 
organelles, which expand the mitochondrial network and 
its interconnectivity [32]. This process enables the redis-
tribution of energy in the form of mitochondrial potential, 
metabolites, proteins, and mtDNA, improving calcium han-
dling, and ATP synthesis [24, 54–57]. Besides, the fusion 
between healthy and damaged organelles allows to dilute 
the damaged material into the healthy network, avoids the 
accumulation of dysfunctional mitochondria, and maintains 
their overall function [58]. On the contrary, fission separates 
the dysfunctional or damaged components from the network. 
The resulting unconnected shorter mitochondria will be 
further removed via mitophagy. The rapid morphological 
adaptations, by balanced fusion and fission, are crucial to 
counteract defective components’ accumulation within the 
mitochondrial network. However, due to defects in mito-
chondrial fusion, excessive fission generates isolated mito-
chondria that are less efficient in ATP production and are 
dysfunctional because they consume ATP to maintain their 
membrane potential [59]. Similarly, defects in the fission 
machinery can lead to a hyper fused mitochondrial network 
that hinders an efficient mitophagy process. The regulation 
of these processes is mediated by specific cellular proteins 
subjected to specific post-translational modifications that 
modify their function.

A specific machinery regulates cristae remodeling 
and the fusion of the outer and inner mitochondrial 
membrane

In mammals, mitochondrial fusion is independently regu-
lated at the OMM and the IMM. It starts with the tethering 
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of two adjacent mitochondria, continues with the fusion of 
OMM, and concludes with IMM fusion.

Mitofusins and  OMM fusion  The OMM fusion is con-
trolled by the OMM membrane-bound GTPases mitofusin 
1 (MFN1) and mitofusin 2 (MFN2). MFN1 and MFN2 
have a high degree of homology, but they do not have the 
same functions. Genetic loss of MFN1 induces a higher 
degree of mitochondrial fragmentation than MFN2 deletion 
[60]. This difference can be explained because MFN1 has 
a greater GTPase membrane tethering activity [61]. GTP 
hydrolysis of MFN1 causes a conformational change that 
allows the OMMs of opposing mitochondria to contact and 
fuse [61, 62]. Moreover, the role of MFN2 in the fusion 
process remains elusive and additional functions of Mfn2 
have been reported. MFN2, and not MFN1, is expressed on 
the mitochondria-associated endoplasmic reticulum mem-
branes (MAM) and, to a lesser extent, to the endoplasmic/
sarcoplasmic reticulum (ER/SR) [63, 64]. This unique dis-
tribution allows for close communication between the two 
organelles. Indeed, MFN2 bridges mitochondria to ER/
SR, facilitating critical processes linked to ER–mitochon-
dria interactions like calcium homeostasis and the modula-
tion of the UPR during ER stress via PERK [63, 65–68]. 
MFN2, like other mitochondria-shaping proteins, under-
goes post-translational modifications. For instance, when 
PINK1 phosphorylates MFN2, it becomes a receptor for the 
ubiquitin ligase Parkin to activate mitophagy [69]. The E3 
ligases HUWE1 also promotes MFN2 ubiquitination and 
proteasomal degradation [70]. Conversely, the formation of 
a Lys63–polyubiquitin chain by the E3 ligase MARCHV/
MITOLl does not induce MFN2 degradation but increases 
its activity and MAM formation and function [71].

OPA1 and  IMM fusion  Upon OMM fusion, the optic atro-
phy protein 1 (OPA1), a dynamin-like GTPase located in 
the IMM, is required for IMM fusion [72]. OPA1 deletion 
leads to mitochondrial fragmentation, whereas OPA1 over-
expression induces mitochondrial elongation [73]. Post-
translational modifications control mitochondrial fusion and 
dynamics. OPA1 activity is regulated by proteolytic pro-
cessing. There are several splicing variants of OPA1 (eight 
in humans and four in mice), expressed in a tissue-specific 
manner. Some of them are also cleaved to generate soluble 
short OPA1 (OPA1S) from long OPA1 isoforms (OPA1L) 
[74].

The mitoproteases OMA1 and YME1L cleave OPA1 
under different physiological conditions. OPA1L is 
anchored to the IMM by a transmembrane domain at the 
N-terminus and can be further cleaved in exon 5 (site S1) 
by OMA1, a process which depends on the mitochondrial 
membrane potential [75]. YME1L1 cuts the site S2 in 
exon 5b of a subset of OPA1L belonging to the splicing 

variants 4, 6, 7, and 8 [76] under high OXPHOS condi-
tions [77]. OPA1S lacks the transmembrane domain and 
is soluble in the intermembrane space. OPA1-dependent 
mitochondrial fusion needs Mfn1 [73] as well as balanced 
OPA1S and OPA1L forms. However, under stress con-
ditions, fusion can rely only on OPA1L, while OPA1S 
forms are dispensable [76]. Fusion is also enhanced by the 
interaction between OPA1L and the IMM lipid, cardiolipin 
[72]. On the contrary, the complete conversion of OPA1L 
into OPA1S inhibits fusion and increases mitochondrial 
fission [74, 76]. OPA1 is a pleiotropic protein that, by 
forming oligomers of soluble and membrane-bound OPA1 
isoforms, also controls cristae remodeling and the assem-
bly of respiratory chain complexes into supercomplexes, a 
structure that enhances mitochondrial respiration [78]. In 
addition, OPA1 activity and, consequently, mitochondrial 
dynamics are regulated by reversible lysine acetylation. 
Under stress conditions, hyperacetylation of OPA1 reduces 
its GTPase activity while SIRT3-dependent deacetylation 
increases OPA1 GTPase activity [79].

Mitochondrial fission

The central role of DRP1 in OMM fission  Mitochondrial fis-
sion is a multi-step process that depends primarily on the 
cytosolic GTPase dynamin-related protein 1 (DRP1). The 
association of mitochondria with the ER is required to 
identify the scission site in the mitochondrial network. Fis-
sion occurs at mitochondria–ER contact sites marked with 
mtDNA [80]. Here, ER tubules wrap around mitochondria 
and promote an initial reduction of the mitochondrial diam-
eter in a process termed ER-associated mitochondrial divi-
sion (ERMD) [81]. An initial constriction before DRP1ac-
tion is necessary because the DRP1 spiral is narrower than 
the mitochondrial diameter. This process might be facilitated 
by the action of the ER protein inverted formin 2 (INF2), 
which induces actin polymerization at the ER–mitochondria 
contact sites, enabling force generation to drive initial mito-
chondrial constriction [82]. Importantly, ERMD increases in 
the presence of mtDNA. Thus, mtDNA synthesis is coupled 
to mitochondrial division to ensure the distribution of newly 
replicated mtDNA to daughter mitochondria [80]. Subse-
quently, DRP1 is recruited to the marked division sites to 
bind to its OMM receptors/adaptors. This binding facilitates 
DRP1 oligomerization, forming a ring-like structure that 
favors an additional narrowing of the membranes [83]. Also, 
GTP hydrolysis leads to a conformational change that fur-
ther increases membrane constriction. Although DRP1 can 
tubulate the membranes, it cannot complete membrane scis-
sion [84]. Indeed, the GTPase Dynamin 2 (DYN2) assem-
bles in the DRP1-mediated mitochondrial constriction neck 
to drive mitochondrial scission [85].
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DRP1 adaptors  DRP1 lacks hydrophobic membrane-bind-
ing domains, and so, its recruitment depends on integral 
OMM proteins that act as receptors/adaptors. In yeasts, Fis1 
acts as an adaptor to recruit to the OMM the DRP1 ortho-
logue, DNM1, to the additional mitochondrial fission pro-
teins MDV1 and CAV4 [86–88]. In mammals, there are no 
orthologues for MDV1 and Cav 4, and recent evidence sug-
gests that Fis1 is not required for fission [89, 90]. Instead, 
it has been reported that other components of the mam-
malian fission bind to DRP1 and arrange the assembly of 
DRP1 oligomers at constriction sites: mitochondrial fission 
factor (MFF), mitochondrial elongation factor 2/mitochon-
drial dynamics protein 49 (MIEF2/MiD49), and MIEF1/
MiD51 [90–93]. MFF overexpression results in increased 
mitochondrial fission [90, 93]. Selective recruitment of oli-
gomerized forms of DRP1 to mitochondria, and stimulation 
of DRP1 GTPase activity [94]. The DRP1 affinity for MFF 
is higher than for Fis1, suggesting that MFF preferentially 
functions as a DRP1 receptor. On the contrary, silencing 
MFF generates elongated mitochondria and DRP1 cytosolic 
distribution [90, 93]. MIEF1/MiD51 and the variant MIEF2/
MiD49 recruit DRP1 to mitochondria independent of MFF, 
but in contrast to MFF, inhibit DRP1 GTPase activity lead-
ing to mitochondrial elongation when MiD49/51 is overex-
pressed [92, 95, 96]. DRP1-dependent mitochondrial fission 
through MiD49 and/or MiD51, but not MFF, is required for 
cristae remodeling to facilitate cytochrome c release into the 
cytoplasm during apoptosis [97]. Although the DRP1 adap-
tors MiD49/51 and MFF are simultaneously expressed, each 
adaptor’s activation might differ according to physiological 
circumstances since they have distinct roles in the modula-
tion of DRP1-mediated mitochondrial fission.

The missing players of  IMM fission  Mitochondrial division 
requires the division of both the inner and outer mitochon-
drial membranes. In the last fifteen years, we have further 
improved our understanding of the molecular components 
and regulation of the fission machinery, controlling OMM’s 
scission. However, until now, little is known about the 
events leading to the IMM division. In prokaryotic cells and 
certain primitive eukaryotic species, FtsZ is a self-assembly 
GTPase that forms a calcium-mediated constricting ring on 
IMM’s matrix side, suggesting that specific mechanisms for 
IMM constriction must exist [98]. However, mammals lack 
a homolog of the fission protein FtsZ [99]. In the absence 
of DRP1 or OMM constriction, the IMM division still 
occurs, indicating the presence of an inner membrane fis-
sion machinery independent of DRP1 [100, 101]. Recently, 
a Ca + 2-dependent mechanism for IMM constriction and 
division has been reported in neurons and human osteosar-
coma cells. The inner membrane constriction occurs at ER–
mitochondria contact sites before DRP1 recruitment and is 
thus independent of DRP1 action and OMM division [102, 

103]. The mechanism which drives IMM constriction are 
not elucidated, but the requirement of MCU and OMA1-
induced OPA1S has been shown [102, 103]. In line with 
the reports suggesting a link between mitochondrial calcium 
overload and mitochondrial fragmentation [104, 105], MCU 
inhibition leads to mitochondrial elongation [103]. Recent 
studies have underlined the role of OPA1S in the mitochon-
drial division [76]. Mitochondrial calcium overload leads 
to mitochondrial depolarization, leading to the OMA1-
dependent processing of OPA1 in OPA1S. OPA1S accumu-
lation disrupts the MICOS complex’s capacity to stabilize 
OMM–IMM tethering, leading to IMM untethering and pos-
sible constriction [102]. Another player proposed to regu-
late the inner membrane fission is the IMM protein MTP18. 
Overexpression of MTP18 leads to mitochondrial fission, 
while its depletion causes hyperfusion of the mitochondrial 
network [106]. Moreover, MTP18 modulates DRP1 phos-
phorylation and mitochondrial recruitment downstream of 
the mTORC1 signaling pathway [107]. Further studies are 
required to identify the IMM fission machinery players and 
their regulation.

Regulation of  the  fission machinery  Several post-transla-
tional modifications like phosphorylation, ubiquitination, 
SUMOylation, S-nitrosylation, and O‐GlcNAcylation have 
been identified in DRP1 [108]. Phosphorylation of differ-
ent residues of DRP1 can have either enhancing or inhibi-
tory effects. For example, during mitosis, when organelles 
are inherited by daughter cells, Cdk1–cyclin B-dependent 
DRP1 phosphorylation at Ser616 (in humans) in the GTPase 
effector domain (GED), stimulates DRP1 oligomerization 
and thus, mitochondrial fission [109]. Phosphorylation of 
Ser637 by protein kinase A (PKA) inhibits DRP1 by pro-
moting a cytosolic localization that leads to mitochondrial 
elongation [110]. During the early stages of starvation, 
increased phosphorylation of Ser637 due to PKA activ-
ity and decreased phosphorylation of Ser616 retain DRP1 
in the cytosol, and thus, mitochondria are elongated and 
spared from autophagic degradation. The resulting tubular 
mitochondrial network displays an increased number and 
density of cristae and presents more dimers of the ATP 
synthase [55, 111]. DRP1 inhibition is counteracted by the 
calcium-dependent phosphatase, calcineurin, which drives 
DRP1 mitochondrial translocation and fission [110, 112]. 
DRP1 can also be ubiquitinated and targeted for proteasomal 
degradation by the E3 ligase Parkin [113], while the ubiq-
uitination is mediated by MARCHV/MITOL have different 
outcomes depending on cell context [43, 114]. These con-
troversial results might be explained by the fact that MFN1, 
MFN2, and MID49 are also substrates of MARCHV [71, 
115, 116]. Moreover, DRP1 is not only a substrate but also 
a regulator of MARCHV activity along with MFF [117]. 
Thus, in addition to their canonical roles in mitochondrial 
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fission, DRP1 and MFF might also act as regulatory fac-
tors that control mitochondrial fission and fusion. Also, 
MFF can be regulated by post-translational modifications. 
Upon mitochondrial dysfunction, MFF is phosphorylated by 
AMPK. This phosphorylation enhances DRP1 recruitment, 
mitochondrial fission, and mitophagy [118]. Conversely, 
the RNA-binding protein Pumilio 2 (PUM2) mediates a 
transcriptional inhibition of MFF, leading to impairment 
of mitochondrial fission, mitochondrial function, and 
mitophagy [119].

Mitochondrial‑derived vesicles (MDVs)—a 
lysosomal‑dependent mechanism to repair mild 
mitochondrial damage

An alternative system complementary to mitophagy, for 
delivering mitochondrial misfolded or oxidized proteins and 
lipids to the lysosome for degradation, has been described. 
Mild mitochondrial damage, without global mitochondrial 
depolarization, activates the release from mitochondria of 
double-membrane vesicles, selectively enriched of oxidized 
OMM, IMM, and matrix proteins [120, 121]. Thus, oxida-
tive stress triggers MDVs formation via the PINK1–Parkin 
system independent of mitochondrial fission and autophagy 
pathways [120, 122]. Although the identification of the 
machinery necessary for MDVs biogenesis is still unknown. 
These vesicles do not require DRP1 fission activity for 
MDVs budding [120], and their fusion with the lysosome 
depends on the OMM SNARE syntaxin 17 [123]. There-
fore, MDVs function before canonical mitophagy to preserve 
the integrity of the organelle. In addition to the MDVs role 
in mitochondria quality control, the fusion between MDVs 
and ER-derived vesicles is critical for de novo peroxisomal 
biogenesis [124].

Mitophagy—an autophagosome–lysosome 
mechanism for the entire degradation 
of irreversibly damaged mitochondria

The maintenance of an intact mitochondrial network requires 
the degradation of dysfunctional components and their 
replacement with new ones. Thus, the coordination between 
mitochondrial biogenesis and mitophagy processes regu-
lates the constant turnover of the network. The activation of 
mitochondrial biogenesis pathways maintains an adequate 
mitochondrial pool by incorporating new components into 
the pre-existing mitochondrial reticulum. On the other hand, 
during mitophagy, irreversibly damaged organelles that have 
been flagged for degradation by specific proteins, are excised 
from the mitochondrial network by the fission machinery 
and sequestered into autophagic vesicles for their degrada-
tion in the lysosome. The loss of mitochondrial membrane 
potential is a major trigger for mitophagy [125].

Parkin‑dependent mitophagy

In mammals, the best described mitophagy pathway is the 
one regulated by the proteins PINK1 and Parkin. Reces-
sively inherited forms of Parkinson’s disease are associ-
ated with loss-of-function mutations of the PTEN-induced 
kinase 1 (PINK1) and the E3 ubiquitin ligase Parkin. Under 
basal conditions, PINK1 is imported into the IMM, which 
is cleaved by PARL in a voltage-dependent manner. The 
resulting fragments retro translocate from mitochondria to 
the cytosol, where they are further degraded by the UPS 
[38, 126]. Thus, healthy mitochondria have undetectable 
levels of PINK1. However, when the mitochondrial mem-
brane potential is dissipated, full-length PINK1 is not further 
imported to the IMM and instead accumulates on OMM. 
Here, PINK1 is activated and phosphorylates at Ser65 of 
Parkin’s ubiquitin-like domain, increasing its E3 ligase 
activity [127, 128]. PINK1 also phosphorylates at Ser65 
the pre-existing ubiquitin molecules at the OMM, leading 
to further Parkin recruitment and activation [128]. Once 
phosphorylated, Parkin amplifies the mitophagy signal by 
building ubiquitin chains on OMM proteins to recruit the 
autophagy receptors on depolarized mitochondria [129]. 
The role of the autophagy receptors is to promote a bridge 
between the autophagosome and the ubiquitinated OMM 
protein. These receptors have a ubiquitin-binding domain 
that binds to the ubiquitin chains in the OMM and an LC3 
Interacting Region (LIR) domain to interact with LC3 on 
the autophagosome. p62, optineurin, NDP52, and NRB1 
receptors bind both ubiquitin and LC3 to initiate mitophagy 
[129]. In cells, p62/SQSTM1 is not required for mitophagy, 
but it is important for the perinuclear clustering of depolar-
ized mitochondria [129, 130]. OPT and NDP52 are both 
required for mitophagy, but they have redundant roles 
[129]. However, these data were obtained in vitro, and thus, 
the physiological relevance in vivo needs to be validated. 
For instance, while p62 and NBR1 are well expressed in 
adult muscles, optineurin and NDP52 proteins are barely 
detectable [129, 131]. Recently, an inner membrane Parkin-
dependent mitophagy receptor was identified. The IMM pro-
tein Prohibitin 2 (PHB2) promotes PINK1/Parkin-mediated 
mitophagy by decreasing PINK1 processing through PARL 
inhibition and the stabilization of PINK1 on the OMM 
through the action of mitochondrial serine/threonine-protein 
phosphatase PGAM5 [132]. Upon mitochondrial depolari-
zation, Parkin mediates the recruitment of the proteasomes 
to damaged mitochondria, where they induce the rupture of 
the OMM [133, 134]. A proteasome-dependent outer mem-
brane rupture is required for Parkin-mediated mitophagy. 
OMM rupture exposes PHB2 to the cytoplasmic environ-
ment, where it binds directly LC3 through a LIR domain 
via the cytosolic exposure of PHB2 [135]. The inhibition 
of the proteasome activity with epoxomicin prevents OMM 
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rupture and the co-immunoprecipitation and colocalization 
of PHB2 with LC3, suggesting that OMM degradation pre-
cedes PHB2–LC3 interaction [135]. Importantly, PHB2 is 
required for the elimination of paternal mitochondrial DNA 
after embryonic fertilization in C. elegans [135]. However, 
basal mitophagy can also occur independent of the PINK1/
Parkin pathway [136, 137]. Moreover, PINK1 and Parkin 
mice are viable and develop normally [138, 139]. Thus, the 
PINK1/Parkin mitophagy pathway could be compensated 
by other pathways during development and more generally 
during physiological mitophagy.

Parkin‑independent mitophagy

Several constitutively expressed autophagy receptors 
are localized at the OMM and can interact via their LIR 
domains with the autophagosome protein LC3, triggering 
mitophagy independently of Parkin recruitment. The Parkin-
independent mitophagy receptors are BNIP3, BNIP3L/NIX, 
FUNDC1, Bcl2-L-13, and AMBRA1. BNIP3 and BNIP3L/
NIX are BH3-only proteins that are implicated in both apop-
tosis and mitophagy. These proteins translocate to mito-
chondria, form homodimers, and disrupt the mitochondrial 
membrane potential [140]. They contain two evolutionary 
conserved LIR domains, which can be post-translationally 
modified to regulate their interaction with LC3 and with the 
LC3 homologous protein, GABARAPL1. BNIP3 is phos-
phorylated on Ser 17 and 24, which promotes its interaction 
with LC3 [141]. The phosphorylation of BNIP3L/NIX on 
Ser 34 and 35 increases its interaction with GABARAPL1 
[142]. Moreover, BNIP3 overexpression in cardiomyocytes 
requires DRP1 translocation to mitochondria to promote 
mitochondrial fission and mitophagy [141]. Besides remov-
ing damaged mitochondria, BNIP3L/NIX is also required 
for the selective mitochondrial elimination during reticulo-
cyte differentiation [140, 144]. FUNDC1, like BNIP3 and 
BNIP3L/NIX, is tightly regulated by the phosphorylation of 
residues near the LIR domain. In basal conditions, FUNDC1 
is inhibited by the phosphorylation on Tyr 18 by the Src 
kinase and Ser 13 by the kinase casein kinase 2 (CK2) [142, 
143]. Upon stress, like hypoxia or mitochondrial uncoupling, 
the mitochondrial phosphatase PGAM5 removes the Ser 13 
phosphorylation to allow FUNDC1 association with LC3B 
[142]. Moreover, the association of FUNDC1 with LC3 is 
further increased by ULK1-dependent phosphorylation on 
Ser 17 located in the LIR domain, [144]. The ubiquitina-
tion of FUNDC1 by the OMM resident ubiquitin E3 ligase 
MARCHV and its further proteasomal degradation is the 
mechanism that fine-tunes the mitophagy response under 
hypoxia [145]. Bcl2 like protein 13 (Bcl2-L-13), the mam-
malian homolog of Atg32, is localized in the outer mito-
chondrial membrane and induces mitochondrial fragmen-
tation in the absence of Drp1 [146]. Bcl2-L-13 induces a 

Parkin-independent mitophagy through the interaction with 
LC3 via a conserved LIR motif [146]. Moreover, Bcl2-L-13 
recruits the ULK1 complex, which binds to LC3 through 
a LIR domain [147]. The interconnection between Bcl2-
L-13, ULK1, and LC3 is critical for Bcl2-L13-mediated 
mitophagy [147].

In summary, mitophagy works in conjunction with other 
mitochondria quality control pathways like mitochondrial 
proteolysis and dynamics.

Mitochondria quality pathways are essential 
for skeletal muscle physiology

Skeletal muscle is a post-mitotic tissue. Its cells do not 
divide, and consequently, damaged/dysfunctional mitochon-
dria cannot be diluted through cellular division. Therefore, 
post-mitotic tissues depend on the activation of coordinated 
pathways to preserve or restore mitochondrial function. The 
central role of mitochondria in skeletal muscle homeostasis 
depends not only on energy production, but also on the buff-
ering of intracellular calcium, and the signaling pathways 
that control nuclear gene programs which regulate muscle 
mass. Alterations in mitochondrial distribution, morphol-
ogy, and function are present in atrophic muscles in aging 
[148–150], muscle disuse [151, 152], burn injury [153], 
intensive care unit-acquired weakness [154], insulin resist-
ance [155] chronic obstructive pulmonary disease (COPD) 
[156], cancer cachexia [157–159], and different neuromus-
cular disorders [160]. Over the last years, gain- and loss-of-
function studies have further improved our understanding of 
the critical role of mitochondrial quality control pathways 
in regulating the nuclear programs controlling muscle loss 
(Fig. 2).

Mitochondrial proteostasis is critical for skeletal 
muscle function

Different mechanisms degrade misfolded, aggregated, or 
damaged mitochondrial proteins and, thus, help avoid mito-
chondrial proteotoxicity (see paragraph 5.1). The coordi-
nated action of specific mitochondrial proteases with the 
cytoplasmic UPS and a mitochondrial–nuclear communi-
cation stress response (UPRmt) culminates in repairing the 
organelles that are salvageable to yield a healthier mito-
chondrial network. These mechanisms are essential to keep 
under control the quality of the mitochondrial proteome. 
They are also critical for regulating mitochondrial dynamics, 
mitophagy, and apoptosis. The matrix mitochondrial pro-
tease LonP1 is necessary for the maintenance of mitochon-
drial matrix proteostasis. In mice, the homozygous deletion 
of LonP1 causes early embryonic death [161]. In human 
skeletal muscle, the reduction of LonP1 activity results in 
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electron-dense intra-mitochondrial accumulations, mito-
chondrial dysfunction, oxidative stress, and muscle weak-
ness [162–164].

Deletion of the mitoproteases involved in OPA1 processing 
in skeletal muscle

The accumulation of damaged proteins due to a homozygous 
missense mutation that impairs the IMS protease maturation, 
YME1L1, causes infantile onset mitochondriopathy with 
severe intellectual disability, muscular impairments, and optic 
nerve atrophy. Muscle biopsies from these patients display 
alterations in cristae morphology and paracrystalline inclu-
sions and fiber-type grouping, indicating denervation [165]. 
In mice, total genetic ablation of Yme1L1 leads to embryonic 
death, while the specific inhibition of the gene in the heart 
causes dilated cardiomyopathy that shortens lifespan (median 
life span:46 weeks). Mechanistically, YME1L ablation in car-
diomyocytes activates OMA1 and promotes OPA1 processing 
and mitochondrial fragmentation, which causes heart failure 
[166]. In agreement, double deletion of Yme1L1 and OMA1, 

specifically in the heart, restored mitochondrial morphology 
and rescued cardiac function [166]. Thus, Yme1L1 is essen-
tial for normal cardiac function. Interestingly, cardiac func-
tion and lifespan of mice lacking YME1L in cardiomyocytes 
are normalized without restoring mitochondrial morphology, 
when the deletion of YME1L happens in both cardiomyocytes 
and skeletal muscle fibers (median life span 125 weeks). This 
recovery is because the loss of YME1L in skeletal muscle 
and the consequent mitochondrial dysfunction triggers sys-
temic glucose intolerance and lowers insulin levels prevent-
ing cardiac glucose overload and cardiomyopathy [166]. In 
contrast to Yme1L1, the germline deletion of OMA1 does not 
impair embryogenesis, which indicates that OMA1-induced 
OPA1 processing is dispensable for embryonic and adult 
mouse development [166, 167]. OMA1 deficiency causes 
the lack of processing of OPA1L, which results in the shift 
of mitochondrial dynamics towards fusion. OMA1-deficient 
mice display a diet-induced obesity phenotype, with increased 
hepatic steatosis and alteration of glucose metabolism, in addi-
tion to defective thermogenesis, suggesting a role for OMA1 
in energy metabolism [167]. Likewise, also defects in PARL 

(a) (b) (c)

Fig. 2   Mitochondria-derived signaling pathways controlling muscle 
mass and whole-body homeostasis. a Increased fission or decreased 
fusion leads to dysfunctional fragmented organelles, which activate 
the energy sensor AMPK by increasing the AMP/ATP ratio, ROS 
production, and the inflammatory response. P-AMPK directly phos-
phorylates FoxO3 increasing its transcriptional activity and affect-
ing muscle mass. ROS production causes endoplasmic reticulum 
(ER) stress and activation of unfolded protein response (UPR). UPR 
induces the ATF4-dependent upregulation of FGF21 secreted by the 

muscle that contributes to muscle loss, causes a systemic metabolic 
shift, and premature senescence. b Balanced mitochondrial fusion 
and fission are critical for muscle function and whole-body homeo-
stasis. c A reduction of mitochondrial fusion results in the accumula-
tion of elongated dysfunctional mitochondria resulting in mitophagy 
impairment, loss of ER tethering, ER stress, increased mitochondrial 
calcium overload, and decreased cytosolic calcium causing cell death, 
muscle loss, and weakness.  Dashed lines indicate mechanisms that 
need more studies
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have been linked to metabolic dysfunction. PARL levels are 
reduced in skeletal muscle during aging and type 2 diabetes 
mellitus [168]. In mice, muscle knockdown of PARL results 
in an alteration in mitochondrial cristae morphology, mito-
chondrial dysfunction, oxidative stress, and altered insulin 
signaling, which probably can be explained by the reduction 
in PARL-mediated OPA1 processing [168]. The total genetic 
inactivation of PARL in mice supports this protease’s impor-
tant role in OPA1 processing and tissue homeostasis [175]. 
PARL-ablated mice display reduced levels of a soluble, inter-
membrane space (IMS) form of OPA1, which results in mito-
chondrial dysfunction, increased apoptosis, neurodegenera-
tion, and progressive muscle wasting that shortens lifespan 
(median life span 10 weeks) [169].

p97/VCP and skeletal muscle mass

p97/VCP is critical in the retrotranslocation and degrada-
tion of endoplasmic reticulum-associated proteins (ERAD) 
[47] and mitochondrial proteins ( MAD) [49, 50]. Its gene 
disruption causes early embryonic lethality in mice, high-
lighting the importance of maintaining proteostasis during 
embryogenesis [170]. The relevance of mitochondrial retro-
translocation mechanism in quality control has been dem-
onstrated by the direct link between p97/VCP mutation and 
human neuromuscular diseases, like Inclusion Body Myo-
pathy, Frontotemporal dementia and Amyotrophic Lateral 
Sclerosis [171, 172]. Mutations in p97 in mice [173] and 
humans [174] cause mitochondrial swelling, cristae disrup-
tion, oxidative stress, and decreased ATP, resulting in skel-
etal muscle atrophy and weakness. Similarly, the inhibition 
of p97/VCP in zebrafish leads to mitochondrial morphology 
and cristae alterations in skeletal muscle and the heart [175]. 
Moreover, p97/VCP deficiency resulted in the accumulation 
of numerous vesicular bodies, autophagy impairment, and 
altered myofibrillar organization, causing a severe myopa-
thy. Consequently, skeletal muscle [175], and cardiac func-
tion are impaired [175, 176]. In skeletal muscle, p97/VCP is 
critical in extracting ubiquitinated proteins from myofibrils 
during fasting- and denervation-induced atrophy. Interest-
ingly, during muscle atrophy, induction of p97/VCP occurs 
when protein breakdown is maximal in myofibers [177].

In summary, the physiological role of the different mecha-
nisms in charge of preserving mitochondrial proteostasis and 
thus, mitochondrial function is critical for skeletal muscle 
homeostasis and of muscle pathology control.

Dysregulation of mitochondrial fusion in skeletal 
muscle leads to muscle atrophy, weakness, and have 
severe consequences in whole‑body physiology

It was initially thought that because IMF mitochondria are 
densely packed between the myofibrils, communication and 

fusion between the surrounding organelles might be lim-
ited. This view changed when live-cell imaging experiments 
using photoswitchable probes showed that mitochondrial 
fusion occurs with rates that depend on the fiber’s meta-
bolic status. Mitochondrial fusion rates correlate with the 
OXPHOS capacity, higher in oxidative fibers than in glyco-
lytic fibers [60]. Moreover,

mitochondrial fusion in skeletal muscle is necessary to 
adapt to the cell’s specific functional needs and support 
skeletal muscle myofibers contractile function [54]. The 
full knockout mice of either Mfn1, Mfn2, or OPA1 result in 
embryonic lethality of mice, demonstrating the biological 
importance of mitochondrial fusion in early development 
[60, 178]. The relevance of mitochondrial fusion has also 
been highlighted in humans. Loss-of-function mutations 
in MFN2 and OPA1 genes cause two neurodegenerative 
diseases, Charcot–Marie–Tooth type 2A (CMT2A) [179] 
and dominant optic atrophy (DOA) [180, 181], respectively. 
CMT2A is an inherited neuropathy that is clinically char-
acterized by muscle atrophy. OPA1 heterozygous missense 
recessive mutations cause DOA characterized by an aspecific 
myopathy with mitochondrial features [182, 183]. The first 
case of homozygous missense mutation has been recently 
reported in two sisters. They died at 2 and 10 months of 
age, showing myopathy, encephalopathy, and cardiomyo-
pathy [184]. Therefore, mutations in fusion genes result in 
brain and muscle dysfunction. Accordingly, the reduction 
of the mitochondrial fusion machinery in muscle has been 
linked to age-related sarcopenia [185–187], and metabolic 
diseases like obesity and type 2 diabetes [188, 189] in both 
rodents and humans.

Inhibition of MFN1 and MFN2 in skeletal muscle

Muscle-specific simultaneous ablation of MFN1 and MFN2 
induces profound muscle atrophy. The conditional deletion 
was generated using a Cre-recombinase that starts to be 
expressed in skeletal muscle during mice embryogenesis. 
Knockout mice are viable at birth, but they display muscle 
growth defects characterized by mitochondrial dysfunction, 
reduction of mitochondrial DNA (mtDNA) in skeletal mus-
cle, and accumulation of point mutations deletions in the 
mitochondrial genome that cause death within 6–8 weeks of 
age [190]. Accordingly, inhibition of MFN1 GTPase activity 
leads to mitochondrial fragmentation and dysfunction that 
contribute to heart failure progression in mice [191]. MFN2 
deletion in young muscle causes extensive mitochondrial 
fragmentation, mitochondrial dysfunction, ROS production, 
ER stress, and autophagy inhibition resulting in muscle atro-
phy [67, 186]. Importantly, MFN2 deficiency during aging is 
contributes to mitophagy flux inhibition and the accumula-
tion of dysfunctional mitochondria driving age-associated 
metabolic alterations and sarcopenia [186].
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OPA1 and the control of skeletal muscle homeostasis

OPA1 deletion  Inhibition of the IMM profusion factor, 
OPA1, in muscle resulted in a similar but more severe phe-
notype than skeletal muscle MFN1 and MFN2 ablation [187, 
192, 193]. Deletion of OPA1 in adult mice (3–5 months of 
age) resulted in a decrease of mtDNA, reduced respiratory 
complexes and supercomplexes content, and complex activ-
ity, respiration, and mitochondrial membrane potential. 
When OPA1 was deleted during fetal development, animals 
died a few days after birth. Accordingly, acute OPA1 inhi-
bition in adult animals’ skeletal muscles triggers oxidative 
stress, ER stress, muscle atrophy, and weakness, recapitulat-
ing several features of the conditional model [187]. Moreo-
ver, OPA1-deficient muscles reverberate to the whole body, 
causing a systemic inflammatory response, senescence of 
epithelial tissues, and premature death. FGF21 mediates 
these pro-aging effects because the deletion of both OPA1 
and FGF21 reverts precocious senescence and mortality 
[187]. Mechanistically, OPA1 inhibition causes mitochon-
drial dysfunction, ROS production, and mitochondrial DNA 
release that trigger different transcription factors such as 
FoxO3, NFkB, and ATF4 that coordinate the upregulation of 
atrophy-related genes, FGF21 and inflammatory cytokines 
like IL6. Altogether, these transcriptional-dependent pro-
grams enhance ubiquitin–proteasome and autophagy–lyso-
some protein breakdown, hypoglycemia, lipolysis, liver 
steatosis, inflammation, and a pro-senescent phenotype.

Interestingly, a mild inhibition of OPA1, which does not 
alter mitochondrial complex and supercomplex formation 
as well as mitochondrial DNA content and citrate synthase 
activity, in muscle during neonatal growth results in sev-
eral beneficial metabolic changes in terms of resistance to 
obesity when the animals were challenged with a high-fat 
diet [193]. Consistent with the other OPA1 knockout mice, 
also in this model, the metabolic changes are mediated by 
the muscle secretion of FGF21, whose level was mildly 
increased when compared to the ones present in mice in 
which OPA1 is completely deleted in adulthood.

OPA1 overexpression  Further support in the role of OPA1 
in the homeostatic control of muscle mass comes from the 
observations obtained with a genetic model of controlled 
OPA1 overexpression. OPA1 transgenic mice are protected 
from acute muscle loss induced by denervation [194] as well 
as from chronic muscle loss in a model of myopathy caused 
by muscle-specific deletion of the mitochondrial subunit 
COX15 [195].

Altogether, the maintenance of mitochondrial shape and 
function, through fusion events, is required not only to mod-
ulate nuclear gene expression programs and, thus, muscle 
mass but also to control the crosstalk of muscle with distant 
organs influencing the whole-body metabolic homeostasis.

Mitochondrial fission controls muscle development, 
maintenance, and function; the link with ER stress 
and calcium homeostasis.

Mitochondrial fission is a quality control mechanism 
required to maintain a healthy mitochondrial network. 
Impairment of fission leads to the disruption of selective 
mitochondrial autophagic degradation, followed by dysfunc-
tional organelles accumulation [58, 196–200]. Severe human 
disorders have been linked to defects in the fission machin-
ery. Mutations in DRP1 lead to a severe neurological syn-
drome with microencephaly, hypotonia, alterations in brain 
development, and metabolism that cause neonatal lethality 
due to multi-system damage [201–203]. Patients with muta-
tions in the DRP1 receptor MFF, suffer from developmental 
delay and acquired microcephaly, seizures, spasticity, and 
optic atrophy [204, 205]. Loss-of-function mutations in 
MiD49 cause severe myopathy in humans, with Complex I 
and Complex IV deficiency in muscle [206]. In mice, MFF 
deletion leads to smaller animals that display neuromuscular 
defects, kyphosis, and premature death at 13 weeks due to 
dilated cardiomyopathy [207].

DRP1 and muscle atrophy

Constitutive DRP1 knockout animals are embryonically 
lethal, demonstrating that the fission machinery is critical for 
tissue development and function [208, 209]. Consistent with 
this crucial role, conditional ablation of DRP1 in the heart, 
brain, and skeletal muscle causes lethality [196, 198–200, 
208, 209]. Disrupted mitochondrial fission, obtained with 
the specific ablation of DRP1 in the heart, induces accumu-
lation of defective mitochondria due to impaired autophagy/
mitophagy, that over-time promotes cardiomyocyte death 
[198–200]. There is strong evidence in skeletal muscle that 
supports a causal link between the dysregulation of mito-
chondrial fission and alterations in muscle maintenance 
[152, 196, 197, 210, 211].

DRP1 overexpression  Acute overexpression of DRP1 is suf-
ficient to activate mitochondrial dysfunction, mitophagy, 
and energy stress, which result in the activation of an atro-
phy program via the AMPK–FoxO3 axis [152]. Accord-
ingly, the constitutive overexpression of DRP1 in skeletal 
muscle caused muscle loss and decreased exercise perfor-
mance. In this mouse model, stress-induced mitochondria-
dependent signals activate both the UPRmt and the eIF2α–
ATF4– FGF21 axis, causing a reduction in protein synthesis 
and a blockade of growth hormones actions that prevent 
muscle growth [210]. Of note, FGF21 overexpression in 
skeletal muscle induces BNIP3-dependent mitophagy and 
muscle atrophy [212].



1317The connection between the dynamic remodeling of the mitochondrial network and the regulation…

1 3

DRP1 ablation  We have recently explored the physiologi-
cal relevance of DRP1 in skeletal muscle homeostasis by 
generating two muscle-specific DRP1-null mouse models. 
Early deletion of DRP1 in skeletal muscle during embryo-
genesis resulted in reduced postnatal growth and prema-
ture lethality, while its acute ablation in adulthood causes 
muscle loss and degeneration [196]. Mechanistically, DRP1 
inhibition induced autophagy and mitophagy impairment, 
MCU upregulation and mitochondrial calcium overload, 
ER stress, UPR activation, and FGF21 induction. ER stress 
is induced by the decrease of the ER–mitochondria tether-
ing protein Mfn2 and the down- and upregulation of the ER 
chaperones calnexin and Bip/Grp78, respectively [63, 65, 
66, 213]. Increased FGF21 levels can explain the observed 
metabolic changes, such as basal hypoglycemia, liver GH 
resistance, and conditional knockout mice’s reduced animal 
size. In DRP1-null muscles, the sarcoplasmic reticulum’s 
calcium stores are unchanged, while abnormal elongated 
mitochondria display increased MCU-dependent mitochon-
drial Ca2 + uptake capacity, leading to myofiber death and 
muscle regeneration [196]. Another study using muscle-
specific DRP1 heterozygote mice showed reduced muscle 
endurance and running performance, and altered muscle 
adaptations in response to exercise training [211].

MFF regulation and muscle mass

A recent report investigated the physiological role of the 
post-transcriptional regulation of MFF in skeletal muscle. 
The RNA-binding protein PUM2 binds and represses, spe-
cifically the translation of MFF mRNA [119]. PUM2 levels 
increase with age in worms, mice and humans, while MFF is 
reduced upon aging, suggesting that abnormal mitochondrial 
fission and mitophagy contribute to age-related sarcopenia. 
Accordingly, the specific deletion of PUM2 in old mice’s 
skeletal muscle increases MFF levels, enhances mitochon-
drial fission and mitophagy, and improves mitochondrial 
function and lifespan [119]. In line with this report, DRP1 
overexpression in muscles of Drosophila slows aging sarco-
penia by ameliorating mitochondrial morphology, function, 
and mitophagy [214].

Thus, mitochondrial fission is critical for muscle mass 
maintenance and homeostasis and can be protective or det-
rimental according to the degree of induction and the physi-
ological context.

The balance between fusion and fission events 
is critical for muscle mass and whole‑body 
homeostasis.

Muscle loss in aging sarcopenia [185, 187, 215], cancer 
cachexia, chemotherapy-induced cachexia [157–159], and 
in a model of myasthenia gravis [216], is characterized by 

the decline of both fusion and fission machinery. Under 
physiological conditions, fusion and fission processes are 
balanced to control mitochondrial morphology, size, and 
number. This equilibrium can transiently change to meet 
the metabolic needs of the cell. However, an excessive acti-
vation or the impairment of either fusion or fission alter 
the balance and compromise mitochondrial function and 
cell health. Several reports have shown that rebalancing of 
mitochondrial dynamics rescues the phenotype of certain 
diseases associated with alterations of mitochondrial fusion 
or fission [119, 194, 195, 214], thus raising the question of 
whether it is more important the proper balance or the abso-
lute levels of mitochondrial fusion and fission events. For 
instance, the specific deletion of MFN1, MFN2, and DRP1 
leads to less severe cardiomyopathy and delays mortality 
with respect to unopposed fission or fusion [217]. Similarly, 
the simultaneous deletion of MFN1 and MFF in mice res-
cues mitochondrial function, heart dysfunction, and lifespan 
of both lethal MFN1 and MFF knockout mice [207]. Acute 
muscle-specific ablation of OPA1 and DRP1 (DKO) [197] 
shows a less severe phenotype when compared to OPA1 
knockout mice. DKO showed muscle loss and weakness 
due to FoxO-dependent activation of the ubiquitin–pro-
teasome system and general autophagy impairment. As a 
consequence of mitochondrial dysfunction, ER stress, UPR, 
and FGF21 pathways are activated and further contribute 
to muscle atrophy. The atrophy program’s initial activation 
and the induction of FGF21 resolve over time in DKO mus-
cles despite persistent mitochondrial dysfunction. Moreover, 
muscle denervation, oxidative stress, and inflammation are 
mitigated in DKO muscles, rescuing the lethal phenotype 
of OPA1 knockout mice [197]. In conclusion, unbalanced 
mitochondrial dynamics are more deleterious than the simul-
taneous reduction of fusion and fission processes. Therefore, 
it is possible that in case of a profound inhibition of either 
fusion or fission machinery, muscle cells downregulate the 
other one to mitigate the detrimental effects of an unbal-
anced mitochondrial dynamics. This compensatory effect 
would explain why both fusion and fission can be reduced 
simultaneously in different catabolic conditions.

FGF21 and the inhibition of fusion, fission, 
or both in skeletal muscle—a common factor 
with different outcomes

As stated before, muscle-specific OPA1, DRP1, and the 
double OPA1/DRP1 (DKO) knockout mice have common 
alterations in mitochondrial function, ER stress, and UPS 
activation but different phenotypes in terms of muscle atro-
phy, weakness, senescence and animal survival (Table 1). 
Interestingly, the stress-response myokine FGF21 is dra-
matically increased in muscle and serum of all these three 
models, even if with a different degree. FGF21 serum 
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levels are lower in DRP1 knockout mice than OPA1-null 
mice. Since FGF21 effects are dose dependent, a moderate 
induction results in adaptive responses to stress, while a 
dramatic increase is detrimental [218]. Another possibility 
explains the difference in the phenotypes, the induction of 
the inflammatory response might synergize with FGF21 
in senescence induction. OPA1 inhibition triggers IL6 
and IL1 upregulation via ROS [187], while the ablation 
of DRP1 does not alter the expression of inflammatory 
cytokines [196]. Consistently, the simultaneous inhibition 
of OPA1 and DRP1 rescues mortality [197] and FGF21 
serum levels are only transiently elevated. Notably, the 
decrease of FGF21 levels correlated with a partial muscle 
mass recovery [212]. Thus, FGF21 is commonly induced 
when mitochondrial function is impaired and dictates 
healthy or unhealthy skeletal muscle outcomes. The effects 
of FGF21 will result from the combination of several fac-
tors, including the presence of synergizing or antagonizing 
factors; FGF21 blood level that reaches a certain threshold 
can elicit adverse effects and acute and transient versus 
chronic and persistent FGF21 secretion. According to the 
combination of these variables, FGF21 can be both a ther-
apeutic agent and a biomarker of disease [219].

Balanced mitophagy flux is a crucial regulator 
of muscle mass and homeostasis

Mitophagy is a cellular housekeeping mechanism to keep 
under control the mitochondrial network in both physi-
ological conditions and in response to cellular stress. For 
example, during starvation, the activation of autophagy is 
a fundamental survival mechanism that ensures optimal 
energy utilization. The protective role of the autophagy 
pathway is most evident immediately after birth when the 
transplacental nutrient supply is interrupted. Indeed, mice 
deficient for autophagy essential genes, such as ATG5, or 
ATG7, die soon after birth [220, 221].

Exercise and autophagy in skeletal muscle

Energy stress consequent to acute or chronic exercise trig-
gers autophagy in different tissues [197–200]. The acute 
deletion of ATG7, specifically in skeletal muscle, does 
not affect exercise performance suggesting that autophagy 
is not required to sustain muscle contraction during 
exercise training [222, 223]. However, the activation of 
autophagy during exercise is important for maintaining 
muscle energy homeostasis. Moreover, mitophagy activa-
tion removes dysfunctional mitochondria that have been 
altered by exercise-dependent ROS production [222].

Muscle mass depends on the fine‑tuning of the autophagy 
and mitophagy flux

The mechanisms regulating mitophagy during exercise have 
been recently reviewed in [224]. Importantly, the protective 
effects of autophagy and mitophagy rely on the fine-tuning 
of the flux; otherwise, it can become detrimental instead of 
being protective. Both excessive autophagy [140, 186] and 
the deficient degradation of cytosolic components [225, 226] 
contribute to muscle atrophy. The activation of mitophagy 
triggered by the transient overexpression of BNIP3 and 
BNIP3L induce muscle atrophy [15, 152]. In agreement, 
transient inhibition of BNIP3 in skeletal muscle partially 
protects from muscle loss induced by fasting, FoxO3, and 
FGF21 overexpression [15, 152, 212]. Conversely, reduction 
of mitophagy caused by the ablation of PINK and Parkin 
induces mitochondrial dysfunction and increased sensi-
tivity to oxidative stress followed by muscle degeneration 
[225–228]. Accordingly, skeletal muscle-specific casein 
kinase 2 (CK2) deletion leads to a block of the autophagy 
and mitophagy flux that results in myopathy and muscle 
weakness [229]. The reduced CK2-mediated TOMM22 
phosphorylation weakens the binding between PINK1 and 
TOMM22, leading to decreased IMM PINK1 import and 
further OMM PINK1 accumulation. Consequently, there is 
an increase in autophagosome formation on mitochondria, 
that however, cannot fuse with the lysosome resulting in 
mitophagy impairment and mitochondrial dysfunction dur-
ing the time [229]. Likewise, impairment of autophagy by 
muscle-specific ablation of ATG5 and ATG7 induces accu-
mulation of abnormal mitochondria, induction of oxidative 
stress, apoptosis, muscle atrophy, weakness, several features 
of myopathy [230, 231]. Also, it exacerbates fasting- and 
denervation-induced atrophy [231]. Accordingly, inhibition 
of autophagy by Parkin inhibition exacerbates statin-induced 
myopathy [232]. Similarly, in sarcopenia, the age-related 
loss of muscle mass, there is a progressive accumulation 
of macromolecules and dysfunctional mitochondria due to 
a decline of both general autophagy and mitophagy [233]. 
Accordingly, muscle-specific ATG7 null mice display pre-
mature aging characterized by increased oxidative stress, 
mitochondrial dysfunction, muscle loss and weakness, and 
degeneration of neuromuscular junctions [234]. Further indi-
cations of the role of mitophagy in the maintenance of mus-
cle homeostasis and neuromuscular junctions, comes from 
a paper investigating the role of mTORC1 in adult skeletal 
muscle [235]. Long-term mTORC1 inhibition in muscles 
results in myopathy, muscle weakness, and alterations in 
neuromuscular junctions reducing general autophagy and 
mitophagy. Reactivation of the autophagy and mitophagy 
flux with the autophagy activating peptide Tat-beclin1 is suf-
ficient to prevent mitochondrial dysfunction and fiber dener-
vation [235]. Boosting mitophagy by overexpressing PINK1, 
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Table 1   Signaling and phenotype of muscle-specific of Opa1-, Drp-, and Drp1/Opa1-null mice

Early: 70 days post-deletion, late: 365 days post-deletion. 
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Parkin, DRP1, or p62 in Drosophila muscles improves the 
age-dependent muscle function deterioration and extends 
lifespan [214, 236, 237]. Moreover, exercise is the best non-
pharmacological strategy to reactivate mitophagy, which 
reduces the accumulation of ROS and thus, improves mito-
chondrial health and delays the loss of muscle mass that 
accompanies various pathologies, including aging sarcope-
nia, heart failure and neurogenic myopathy [224, 238–240]. 
Thus, the selective removal of defective mitochondria via 
mitophagy is critical to preserve muscle function.

Alterations of the autophagy flux and myopathy

Dysregulation of the autophagy flux is detrimental for 
myofiber health and is a common feature of several myopa-
thies [241]. The autophagic vacuolar myopathies (AVMs) 
are a group of muscle disorders characterized by the accu-
mulation of autophagosome vesicles in muscles due to 
alterations in proteins involved in lysosomal acidification, 
lysosomal degradation of glycogen, and the maturation and 
fusion of autophagosomes that result in defective autophagy. 
AVMs include X-linked myopathy with excessive autophagy 
(XMEA), Danon disease (DD), and Pompe/glycogen storage 
disease type II (GSD II) [241]. VPS15 is a PI3 kinase regula-
tor involved in autophagosome maturation. Muscle-specific 
VPS15 knockout mice develop a severe myopathy with hall-
marks of DD myopathy, including alterations in mitochon-
drial morphology, and accumulation of autophagosomes and 
glycogen due to a defect in the fusion of autophagosomes 
with lysosomes. Also, over-expression of the VPS34–VPS15 
complex in Danon disease patients in myoblasts results in 
a partial amelioration of glycogen overload [242]. Defec-
tive autophagy plays a role in congenital muscular dystro-
phies caused by defects in collagen VI production [243], 
laminin A/C [244] or dystrophin [245]. These dystrophic 
models have, in common, hyperactivation of the Akt/mTOR 
signaling pathway that inhibits autophagy. Dystrophic mus-
cles present the accumulation of structurally altered mito-
chondria together with myofiber degeneration. Importantly, 
autophagy flux reactivation by dietary or pharmacological 
tools, like rapamycin, cyclosporine A, or AICAR, rescues 
the dystrophic phenotype by clearing the abnormal mito-
chondria [243–246]. Altogether, the regulation of a finely 
tuned mitophagy flux is central in preventing mitochondrial 
dysfunction, denervation, and weakness during aging and in 
several pathological conditions.

Conclusions and perspectives

Mitochondria undergo adaptive structural and functional 
remodeling to meet the dynamic changes in the cell’s meta-
bolic demands. Multiple mechanisms have evolved to couple 

the constant reshaping of the mitochondrial network to the 
regulation of mitochondrial function, including the activa-
tion of proteolytic cascades, mitochondrial fusion, and fis-
sion mitophagy. These mechanisms collectively constitute 
an interconnected mitochondrial quality control system that 
recognizes and resolves mitochondrial dysfunction, crucial 
for skeletal muscle mass maintenance. Dysregulation in any 
of these mechanisms triggers catabolic signaling pathways, 
which feed-forward to the nucleus to promote the activation 
of muscle atrophy. A deeper understanding of these signal-
ing pathways is required to identify pharmacological targets 
that modulate mitochondrial function and prevent muscle 
loss.

Moreover, skeletal muscle is an endocrine organ that 
releases myokines in response to mitochondrial stress, such 
as FGF21, regulating the physiology of the organism, and 
influencing disease progression in other tissues. Thus, mito-
chondria are signaling platforms that not only control muscle 
mass, but also mediate systemically the communication of 
the muscle with distant tissues influencing the whole-body 
homeostasis. The complete identification of the myokines, 
which are released by muscle in response to exercise and 
disease, as well as unraveling their mechanism of action, 
is crucial to provide therapeutic applications in age-related 
diseases.
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