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Abstract
Cardiomyocyte	apoptosis	is	a	key	factor	in	the	deterioration	of	cardiac	function	after	
coronary	microembolization	(CME).	Nicorandil	(NIC)	affects	myocardial	injury,	which	
may	be	 related	 to	 the	 inhibition	of	 apoptosis.	However,	 the	 specific	mechanism	of	
cardioprotection	has	not	been	elucidated.	Therefore,	we	analyzed	the	impact	of	NIC	
on	cardiac	function	in	rats	subjected	to	CME	and	its	effect	on	the	high-temperature	
requirement	peptidase	2/X-linked	inhibitor	of	apoptosis	protein/poly	ADP-ribose	pol-
ymerase	 (HtrA2/XIAP/PARP)	pathway.	Sprague	Dawley	rats	were	divided	 into	 four	
groups:	Sham,	CME,	CME	+	NIC,	and	CME	+	UCF.	Echocardiography	was	performed	
9	hours	after	CME.	Myocardial	injury	markers	were	evaluated	in	blood	samples,	and	the	
heart	tissue	was	collected	for	hematoxylin-eosin	staining,	hematoxylin	basic	fuchsin	
picric	acid	staining	staining,	TdT-mediated	DUTP	nick	end	labeling	(TUNEL)	staining,	
Western	blot	analysis	of	the	HtrA2/XIAP/PARP	pathway,	and	transmission	electron	
microscopy.	NIC	ameliorated	cardiac	dysfunctioncaused	by	CME	and	reduced	serum	
levels	of	CK-MB	and	LDH.	 In	addition,	NIC	decreased	myocardial	microinfarct	 size	
and	apoptotic	index.	NIC	reduced	the	Bax/Bcl-2	ratio,	levels	of	cleaved	caspase	3/9,	
cytoplasmic	HtrA2,	and	cleaved	PARP,	and	increased	the	level	of	XIAP.	The	effects	of	
NIC	were	similar	to	those	of	the	HtrA2	inhibitor,	UCF101.	This	study	demonstrated	
that	NIC	reduces	CME-induced	myocardial	injury,	reduces	mitochondrial	damage,	and	
improves	myocardial	function.	The	reduction	in	cardiomyocyte	apoptosis	by	NIC	may	
be	mediated	by	the	HtrA2/XIAP/PARP	signaling	pathway.
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1  |  INTRODUC TION

Coronary	microembolization	 (CME)	 is	a	common	complication	of	
atherosclerotic	plaque	rupture	during	acute	myocardial	infarction	
(AMI)	 and	 percutaneous	 coronary	 intervention	 (PCI).	 CME	 re-
sulting	 in	microinfarction,	myocardial	 injury,	decreased	coronary	
blood	 flow	 reserve.	 Clinical	 manifestations	 of	 CME	 include	 de-
creased myocardial contractility and arrhythmia.1,2	 CME	 affects	
the	prognosis	of	PCI	patients	with	AMI	and	 reduces	 the	benefit	
of	 reperfusion	 therapy.	However,	 effective	measures	 to	 prevent	
and	treat	CME	are	not	currently	available.3-7 Previous studies have 
demonstrated	that	apoptosis	is	an	important	mechanism	of	CME-
induced	myocardial	injury,	and	inhibiting	apoptosis	can	attenuate	
the extent of myocardial injury.8,9	High-temperature	requirement	
peptidase	2	(HtrA2)	is	a	serine	protease	located	in	the	inner	mito-
chondrial	membrane	 space.	HtrA2	 is	 essential	 for	mitochondrial	
quality	control	and	the	maintenance	of	mitochondrial	homeosta-
sis.	 HtrA2	 can	 combine	with	 the	 X-linked	 inhibitor	 of	 apoptosis	
protein	(XIAP),	reducing	the	degradation	of	caspase	3/7	and	pro-
moting	DNA	fragmentation	through	poly	ADP-ribose	polymerase	
(PARP),	thus	activating	promoting	apoptosis.10-13

Nicorandil	 is	 a	mitochondrial	 ATP-sensitive	 potassium	 channel	
activator,	which	effectively	protects	cells	against	ischemia-reperfu-
sion injury.14	The	protective	activity	of	NIC	is	most	likely	related	to	
its	anti-inflammatory	and	antiapoptotic	effects.	Clinical	studies	have	
shown	 that	NIC	 reduces	 the	 incidence	of	 no-reflow	 after	 primary	
PCI	 in	 AMI	 patients	 and	 preserves	 cardiac	 function.15	 However,	
the molecular mechanism of this effect has not been elucidated. 
Therefore,	the	goal	of	this	study	was	to	determine	the	impact	of	NIC	
on	cardiomyocyte	apoptosis	and	the	role	of	HtrA2/XIAP/PARP	sig-
naling	pathway	in	the	mechanism	of	the	NIC-mediated	improvement	
of	cardiac	function	in	rats	subjected	to	CME.	The	obtained	results	
can	provide	evidence	supporting	the	application	of	NIC	in	the	pre-
vention	and	treatment	of	CME.

2  |  MATERIAL S AND METHODS

2.1  |  Animals

Eight-	to	10-week-old	healthy	Sprague	Dawley	(SD)	rats	(250-300	g)	
of	both	sexes	were	acquired	from	the	Experimental	Animal	Center	
of	 Guangxi	 Medical	 University.	 Experimental	 protocols	 involv-
ing	the	use	of	animals	were	reviewed	and	approved	by	the	Animal	
Experiment	Ethics	Committee	of	Guangxi	Medical	University	 (No.	
201907019).

2.2  |  Model and grouping

The rats were randomly divided into four groups: saline treat-
ment	 (Sham),	 CME,	 NIC	 treatment	 (CME	 +	 NIC),	 HtrA2	 inhibi-
tion	 (CME	 +	 UCF).	 The	 CME	 model	 was	 generated	 as	 described	

previously.16,17	Animals	were	anesthetized	by	intraperitoneal	injec-
tion	of	sodium	pentobarbital	(30-40	mg/kg).	After	establishing	arti-
ficial	airway	and	ventilation,	the	skin	and	rib	structures	were	incised	
along	the	left	midclavicular	line	between	the	3-5	intercostal	space,	
and	the	fascia,	muscle,	and	soft	tissue	structure	were	separated.	The	
ascending	aorta	was	gently	clamped	with	hemostatic	forceps,	and	a	
0.1	mL	aliquot	of	normal	saline	containing	about	4000	microspheres	
(diameter	45	μm,	Polysciences,	Warrington,	PA,	USA)	was	 injected	
from the apical left ventricular area. The aorta was clamped for ap-
proximately	10	seconds	(approximately	20	cardiac	cycles).	After	the	
release	of	the	clamp,	tissue	layers	were	sutured	to	close	the	chest	
cavity.	In	the	Sham	group,	a	corresponding	volume	of	normal	saline	
was	injected	into	the	ventricle,	and	the	rest	of	the	protocol	was	the	
same	 as	 in	 the	CME	group.	 In	 the	CME	+	NIC	 group,	NIC	 (5	mg/
kg,	 Sihuan	Kebao	Pharmaceutical	Co.,	 Ltd.,	Beijing,	China)	was	 in-
jected	intraperitoneally	(i.p.)	15	minutes	before	the	injection	of	mi-
crospheres,	and	in	the	In	CME	+	UCF	group,	UCF101	(1.5	μmol/kg;	
Sigma-Aldrich,	St.	Louis,	MO,	USA)	was	injected	i.p.	15	minutes	be-
fore the injection of microspheres.

2.3  |  Measurement of cardiac function

Since previous studies documented that cardiac function in rats is 
significantly	reduced	6-12	hours	after	CME,18 echocardiography was 
performed done 9 hours after sham operation or the induction of 
CME.	The	rats	were	anesthetized	by	an	i.p.	 injection	of	1%	pento-
barbital	(40	mg/kg)	to	prevent	their	movement	during	image	acquisi-
tion.	The	animals	were	fixed	 in	the	supine	position,	and	a	10	MHz	
frequency	 probe	 of	 the	 MyLabSeven	 ultrasound	 system	 (Esaote,	
Genoa,	Italy)	was	placed	on	the	left	front	wall	of	the	rat,	facing	the	
heart.	Ultrasound	imaging	included	the	long	axis	of	the	left	ventricle	
and	the	apical	 four-chamber	and	two-chamber	views	of	the	heart.	
The	values	of	the	left	ventricular	end-diastolic	diameter	(LVEDd),	LV	
fractional	 shortening	 (LVFS),	 LV	 ejection	 fraction	 (LVEF),	 and	 car-
diac output were measured over three cardiac cycles and averaged. 
Echocardiography was performed blindly by an echocardiography 
physician.

2.4  |  Collection of blood and heart tissue samples

After	 the	echocardiographic	examination,	 a	2	mL	blood	sample	was	
taken	from	the	abdominal	aorta	of	the	rat.	The	blood	was	allowed	to	
stand for more than 1 hour and centrifuged at 1200 g	for	15	minutes	at	
4°C.	The	serum	was	collected	and	kept	at	−80°C	until	use.	After	blood	
collection,	rats	were	sacrificed	to	collect	cardiac	tissue.	After	washing	
with	ice-cold	normal	saline,	the	atria	and	surrounding	tissues	were	re-
moved,	and	the	ventricle	was	cut	into	several	parts.	One	part	was	fixed	
in	 10%	 neutral	 formalin	 for	 24-48	 hours,	 paraffin-embedded,	 sec-
tioned	and	stained	with	hematoxylin-eosin	(HE)	or	hematoxylin	basic	
fuchsin	picric	acid	staining	(HBFP).	A	second	part	was	cut	into	1	mm3 
pieces	 and	 fixed	with	 2.5%	glutaraldehyde	 for	 electron	microscopy.	
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The remaining portions of the heart were used for Western blotting; 
they	were	snap-frozen	in	liquid	nitrogen	and	stored	at	−80°C.

2.5  |  Detection of serum levels of CK-MB and LDH

Creatine	kinase	isoenzyme	(CK-MB)	was	determined	by	the	DGKC	
optimized	colorimetric	method	kit,	and	lactate	dehydrogenase	(LDH)	
by	the	IFCC	rate	method	kit	(both	kits	from	Zhicheng	Biotechnology,	
Shanghai,	China)	using	an	automatic	biochemical	 analyzer	 (Hitachi	
7600-020;	Hitachi	High-Technologies	Corporation,	Tokyo,	Japan).

2.6  |  Measurement of myocardial microinfarct size

The	HBFP	staining	detects	myocardial	 ischemia	or	 infarct	area	at	an	
early stage and is used to assess the area of microinfarction. Red color 
indicates	 myocardial	 ischemia	 or	 infarct,	 whereas	 yellow	 indicates	
normal	myocardium.	HBFP-stained	sections	were	analyzed	using	the	
DMR-Q550	 imager	 (Leica	 Microsystem,	 Wetzlar,	 Germany).	 Leica	
Qwin	analysis	software	was	used	to	randomly	assign	10	fields	of	view	
(×100)	in	each	sample	and	measure	the	infarct	area.	The	average	value	
of	the	infarct	area	divided	by	the	total	analyzed	area	was	calculated.19

2.7  |  Apoptosis assay

The	 magnitude	 of	 apoptosis	 was	 determined	 using	 the	 TUNEL	
assay	 kit	 (Roche	 Applied	 Science,	 Indianapolis,	 IN,	 USA).	 In	 this	
assay,	 all	 nuclei	 were	 stained	 in	 blue	 by	 2-(4-Amidinophenyl)-6-
indolecarbamidine	 dihydrochloride	 (DAPI),	 and	 apoptotic	 nuclei	
were stained green by fluorescein. Three sections of each specimen 
were	examined	by	counting	stained	nuclei	at	200×	magnification	in	
10	randomly	selected	fields.	Cardiomyocyte	apoptotic	index	(AI)	was	
calculated according to the formula:17

2.8  |  Western blot analysis

Total protein was extracted from the left ventricular myocardium with 
RIPA	 lysis	 buffer,	 and	 protein	 concentration	 was	 determined	 using	
the	BCA	 (bicinchoninic	acid)	method.	Mitochondrial	protein	was	ex-
tracted and measured as described by Ott.20,21	After	SDS-PAGE	gel	
electrophoresis,	 the	 proteins	 were	 transferred	 onto	 a	 PVDF	 mem-
brane	(Millipore,	Bedford,	MA,	USA),	and	the	membrane	was	placed	
in	a	blocking	solution	at	room	temperature	for	1	hour.	Subsequently,	
the	membranes	were	incubated	at	4°C	with	primary	antibodies	against	
cleaved	caspase	9,	cleaved	caspase	3,	Bax,	Bcl-2,	HtrA2,	XIPA,	cleaved	
PARP,	COX-IV,	 and	GAPDH	 (all	 antibodies	 from	Abcam,	Cambridge,	
MA,	USA).	The	antibodies	were	diluted	1:1000.	The	next	day,	mem-
branes	were	washed	with	TBST	and	 incubated	with	goat	anti-rabbit	
IgG	 HL	 (HRP)	 (Abcam),	 diluted	 1:10	 000,	 at	 room	 temperature	 for	

1	hour.	Subsequently,	200-300	μL	of	ECL	chemiluminescence	solution	
were	added,	and	the	membrane	was	placed	in	the	FluorChemFC3	im-
aging	system	(ProteinSimple,	Santa	Clara,	CA,	USA).	The	intensities	of	
bands	were	converted	to	gray-scale	values	using	Image	J	software.	The	
relative expression of the target protein was calculated by dividing its 
gray-scale	value	by	the	value	of	the	internal	control.

2.9  |  Statistical analysis

Data	were	analyzed	by	the	SPSS	23.0	software	 (IBM	Corporation,	
Armonk,	 New	 York,	 USA).	 The	 results	 are	 expressed	 as	 the	
mean ± standard deviation. Student's t-test	or	ANOVA	were	used	to	
compare the differences in outcomes between the groups. P	<	.05	
was considered statistically significant.

3  |  RESULTS

3.1  |  The CME model

HE	staining	of	myocardial	tissue	sections	in	the	CME	group	showed	
transparent polyethylene microspheres lodged in the capillaries. 
Around	 the	microspheres,	 the	 cardiomyocyte	 cytoplasm	was	dark	
red	and	condensed,	the	nucleus	was	shrunk	or	broken,	and	numerous	
inflammatory	cells	were	present.	The	HE	staining	of	the	CME	+	NIC	
and	CME	+	UCF	groups	showed	the	same	as	the	CME	group.	In	the	
Sham	group,	there	was	a	small	amount	of	inflammatory	cell	infiltra-
tion,	and	the	myocardium	did	not	exhibit	 the	changes	observed	 in	
the	CME	group	(Figure	1).

3.2  |  NIC improved cardiac function after CME

Echocardiogram	showed	that	LVEDd	increased,	whereas	LVEF,	LVFS,	
and	cardiac	output	decreased	after	CME	 (P	<	 .05).	These	changes	
demonstrate	 that	 CME	 induces	 cardiac	 dysfunction.	 NIC	 amelio-
rated	cardiac	dysfunction	caused	by	CME,	and	a	similar	effect	was	
seen	in	the	CME	+	UCF	group	(P	<	.05)	(Figure	2).

3.3  |  NIC reduced myocardial injury after CME

The	serum	concentration	of	CK-MB	and	LDH	in	the	CME	group	was	
significantly	higher	than	in	the	Sham	group	(P	<	.05).	NIC	and	UCF	sup-
pressed	the	increase	in	the	level	of	these	markers	(P	<	.05)	(Table	1).

3.4  |  NIC reduced myocardial microinfarct size 
after CME

To	determine	the	size	of	microinfarcts,	paraffin	sections	of	my-
ocardial	tissue	were	stained	with	HBFP.	The	microinfarct	area	

AI = TUNEL - positive nuclei∕ total nuclei × 100%.
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was	not	observed	in	the	Sham	group.	In	the	CME,	CME	+	NIC,	
and	 CME	 +	 UCF	 groups,	 multiple	 red-stained	 infarcts	 were	
widely distributed. There was no evident infarcted area in the 

Sham	 group	 (Figure	 3).	 Infarct	 size	 in	 CME,	 CME	 +	 NIC,	 and	
CME	 +	 UCF	 groups	 was	 13.24	 ±	 2.04%,	 8.01	 ±	 1.51%,	 and	
7.76	±	1.04%,	respectively.	In	comparison	with	the	CME	group,	

F I G U R E  1 Hematoxylin-eosin	
staining	of	the	myocardium	(100×,	Scale	
bar = 200 μm;	200×,	Scale	bar	=	100	μm).	
Microspheres,	microinfarctions,	and	
inflammatory cell infiltration are apparent 
in	coronary	microembolization	(CME),	
whereas a small amount of inflammatory 
cell infiltration can be seen in the 
Sham group. The thin arrow indicates 
a microsphere in the microcoronary 
circulation,	and	the	thick	arrow	indicates	a	
microinfarct below the microsphere

F I G U R E  2 Representative	M-mode	echocardiograms	(A)	and	echocardiographic	measurement	values	(B)	in	the	four	groups	(n	=	10	in	
each	group).	#P <	.05	vs	Sham,	*P	<	.05	vs	coronary	microembolization	(CME)
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the	 infarct	 area	 in	 rats	 treated	with	 NIC	 or	 UCF	was	 signifi-
cantly	reduced	(P	<	.05)	(Figure	3).

3.5  |  The effect of NIC on cardiomyocyte 
mitochondrial ultrastructure

The	ultrastructure	of	the	myocardium	was	analyzed	by	transmission	
electron	microscopy.	 In	 the	Sham	group,	 the	myofibrillar	 architec-
ture	was	clear,	and	the	mitochondrial	membranes	were	essentially	
intact.	In	contrast,	mitochondria	in	the	CME	group	were	significantly	
swollen,	and	their	cristae	were	broken.	However,	the	mitochondrial	
structure	 in	 the	CME	+	NIC	and	CME	+	UCF	groups	remained	es-
sentially	 intact.	Although	they	were	slightly	swollen,	 there	was	no	
evidence	of	the	breakage	of	the	cristae	(Figure	4).

3.6  |  NIC attenuated myocardial apoptosis 
after CME

Apoptotic	index	(AI)	measured	by	the	TUNEL	assay	was	1.56	±	0.78%,	
25.34	 ±	 1.45%,	 17.55	 ±	 1.96%,	 19.32	 ±	 1.94%	 in	 the	 Sham,	 CME,	
CME	+	NIC,	and	CME	+	UCF	groups,	respectively.	In	comparison	with	
the	Sham	group,	AI	was	significantly	increased	after	CME	(P	<	.05),	and	

the	AI	 in	 the	CME	+	NIC	and	CME	+	UCF	groups	was	 significantly	
lower	than	in	the	CME	group	(P	<	.05).	There	was	no	statistical	differ-
ence	in	AI	between	the	CME	+	NIC	and	CME	+	UCF	groups	(Figure	5).

3.7  |  Expression of apoptosis-related proteins

Protein expression levels were measured in all groups by Western 
blotting.	In	the	CME	group,	the	Bax/Bcl-2	ratio,	the	relative	level	of	
cleaved	caspase	3	and	cleaved	caspase	9	were	elevated	(P	<	.05).	In	
comparison	with	the	CME	group,	CME	+	NIC	and	CME	+	UCF	groups	
showed	decreased	 levels	of	 cleaved	caspase	3,	 cleaved	caspase	9,	
and	Bax,	as	well	as	increased	expression	of	Bcl-2	(P	<	.05).	The	dif-
ference	between	the	CME	+	NIC	and	CME	+	UCF	groups	was	not	
statistically	significant	(P	<	.05)	(Figure	6).

3.8  |  The effect of NIC on the HtrA2/XIAP/
PARP pathway

The	 expression	 of	 HtrA2	 protein	 was	 determined	 in	 mitochon-
dria	and	cytoplasm	of	cardiomyocytes.	The	 level	of	HtrA2	in	the	
cytoplasm	of	the	CME	group	was	significantly	higher	than	in	the	
Sham	group,	whereas	the	level	of	HtrA2	in	the	mitochondria	was	
decreased	 (P	 <	 .05)	 (Figure	 7A).	 Western	 blotting	 documented	
that	CME	increased	the	cytoplasmic	 levels	of	HtrA2	and	cleaved	
PARP	protein	but	decreased	the	expression	of	XIAP	(all	P	<	 .05).	
Treatment	with	NIC	 suppressed	 these	 changes,	 significantly	 de-
creasing	cytoplasmic	HtrA2	and	cleaved	PARP	and	increasing	XIAP	
(all	P	<	.05).	A	similar	effect	was	achieved	with	UCF	(Figure	7B).

4  |  DISCUSSION

This	 obtained	 results	 demonstrate	 CME	 in	 rats	 results	 in	 myo-
cardial	 injury,	 decreased	 cardiac	 function,	 and	 cardiomyocyte	

TA B L E  1 The	serum	CK-MB	and	LDH	concentrations	(x ± s)

Group n CK-MB (U/L) LDH (U/L)

Sham 10 772.50	±	101.68 614.50	±	130.10

CME 10 3075.70	±	562.51* 2396.90	±	482.60*

CME	+	NIC 10 1383.30	±	272.54#  1967.30	±	338.16# 

CME	+	UCF 10 1526.30	±	737.64#  1867.40	±	327.20# 

Abbreviations:	CK-MB,	creatine	kinase	isoenzyme;	CME,	coronary	
microembolization;	LDH,	lactate	dehydrogenase;	NIC,	nicorandil.
*P <	.05	compared	with	Sham.	
#P <	.05	compared	with	CME.	

F I G U R E  3 Hematoxylin	basic	fuchsin	
picric acid staining of myocardium 
shows microinfarct after modeling. 
(magnification	200×;	bar	=	50	μm)	
(Sham	=	5,	CME	=	10,	CME	+	NIC	=	10,	
CME	+	UCF	=	10).	Normal	myocardium	
is	stained	yellow,	whereas	ischemic	or	
infarcted	myocardium	is	stained	dark	red.	
Arrow	points	to	the	microinfarct	area.	
There was no clear red infarct area in the 
Sham group. The microinfarct area in the 
CME	+	NIC	and	CME	+	UCF	groups	was	
significantly	reduced.	*P <	.05
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apoptosis.	Administration	of	NIC	prior	to	CME	reduced	apoptosis	
and	mitochondrial	damage,	thereby	limiting	myocardial	injury	and	
improving cardiac function. The mechanism underlying the effects 
of	NIC	likely	involves.	This	cardioprotective	effect	of	NIC	may	be	
mediated	 by	 a	 reduction	 in	 the	 translocation	 of	 HtrA2	 into	 the	
cytoplasm	 and	 the	 suppression	 of	 the	HtrA2/XIAP/PARP	 signal-
ing,	 resulting	 in	 the	 inhibition	 of	 the	 activation	 of	 caspases	 and	
apoptosis.

Coronary	microembolization	is	a	recurrent	consequence	of	PCI	
and	the	burst	of	unstable	plaque	in	acute	coronary	syndrome.	Unlike	
proximal	epicardial	coronary	artery	occlusion,	CME	causes	myocar-
dial	microinfarction,	but	its	effect	on	the	degree	of	LV	systolic	dys-
function does not correlate with the magnitude of cardiomyocyte 
necrosis.22-24 Cardiac cell apoptosis around microvascular infarction 
plays	a	key	role	in	the	progressive	deterioration	of	cardiac	function	
caused	by	myocardial	injury	after	CME,	and	inhibiting	apoptosis	can	
ameliorate	CME-induced	myocardial	 injury.9,25,26	 In	 this	 study,	 the	
rats	subjected	to	CME	showed	elevated	levels	of	myocardial	injury	
markers,	cardiac	dysfunction,	microinfarction,	and	increased	cardio-
myocyte	apoptosis,	consistent	with	the	diverse	pathophysiological	
manifestations	of	CME.

Mitochondria	 are	 the	 center	 of	 cell	 energy	 metabolism	 and	
form the hub of signaling pathways regulating cell survival and 
apoptosis.	 Mitochondrial	 permeability	 transition	 plays	 an	 im-
portant role in cell apoptosis and necrosis. Physical and chemi-
cal	 factors,	hypoxia,	and	absence	of	nutrients	 trigger	changes	 in	
mitochondrial	membrane	permeability,	resulting	in	the	release	of	

F I G U R E  4 Transmission	electron	micrograph	of	rat	myocardium	
(magnification:	30	000×,	scale	bar	=	1	μm).	The	arrows	indicate	
mitochondria. The mitochondrial membrane in the Sham 
group was essentially intact. The mitochondria in the coronary 
microembolization	(CME)	group	were	significantly	swollen,	and	
the	ridges	were	broken.	The	mitochondria	in	the	CME	+	NIC	group	
were	slightly	swollen,	and	the	structure	was	appeared	intact.	The	
changes	in	CME	+	NIC	were	similar	to	CME	+	UCF	(n	=	5	in	all	
groups)

F I G U R E  5 TUNEL	staining	shows	myocardial	apoptosis	(magnification:	200×,	scale	bar	=	50	μm)	Blue	fluorescence:	nuclei	stained	by	
DAPI;	green	fluorescence:	apoptotic	nuclei	stained	by	TUNEL	(fluoresceine	isothiocyanate	(FITC).	Apoptotic	index	(AI)	in	the	CME	group	
was	significantly	higher	than	in	the	Sham	group,	whereas	the	AI	in	the	CME	+	NIC	and	CME	+	UCF	groups	was	significantly	lower	than	in	the	
CME	group.	n	=	10	in	all	groups;	*P	<	.05
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proapoptotic	proteins	from	mitochondria	into	the	cytoplasm.	After	
signal	transduction,	a	series	of	cascade	reactions	are	activated	to	
promote	 cell	 apoptosis,	 characterized	 by	 nuclear	 pyknosis,	 cell	
shrinkage,	 cell	 membrane	 blebbing,	 and	 DNA	 fragmentation.	
Because	the	intracellular	content	is	not	released,	inflammation	is	
not	induced.	However,	if	the	damage	is	severe	and	lasts	for	a	long	
time,	 the	membrane	permeability	 continues	 to	 increase,	 causing	
the	cells	and	the	organelles	to	deform	and	swell.	Finally,	the	cells	
rupture	and	the	contents	are	discharged,	often	causing	inflamma-
tion.	Although	the	molecular	effectors	of	apoptotic	cell	death	have	
been	extensively	 investigated	over	 the	past	30	years,	enhancing	
the	understanding	of	the	importance	of	this	process	in	cell	biology,	
until	recently,	necrotic	cell	death	was	considered	to	generate	sim-
ilar effects. The regulation process of the molecule is defined as 
necroptosis.	Mitochondria	 are	 important	mediators	 of	 apoptosis	
and regulatory necrosis.27,28

The mitochondrial apoptotic pathway is the endogenous signal 
pathway.	The	pro-apoptotic	members	Bad	/	Bak	of	the	BCL-2	pro-
tein	 family	 form	an	oligomer	 complex,	which	 is	 then	 inserted	 into	
the	 outer	 mitochondria	 membrane,	 changing	 the	 permeability	 of	
the mitochondrial membrane in response to damage signals.29,30 
Smac	 (second	 mitochondria-derived	 activator	 of	 caspases),	 apop-
tosis-inducing	 factor,	 and	 cytochrome	 c	 (Cyt	 c)	 are	 then	 released,	
and	caspase	9	 is	 recruited	to	the	apoptosome	composed	of	Cyt	c,	
dATP,	and	Apaf-1.	These	events	 initiate	the	execution	of	the	mito-
chondrial	pathway-mediated	apoptosis	by	activating	caspase	3.	This	
study	 documented	 that	 the	mitochondria	 in	 the	CME	 group	were	

significantly	 swollen	 and	 had	 an	 abnormal	 structure.	 Additionally,	
the	Bax/Bcl-2	 ratio	 in	 the	CME	group	was	elevated,	 and	 the	 level	
of	cleaved	caspases	9	and	3	was	 increased,	 indicating	that	the	mi-
tochondrial apoptosis pathway was activated. The administration of 
NIC	before	CME	reduced	mitochondrial	damage,	lowered	the	Bax/
Bcl-2	 ratio,	 and	 decreased	 the	 level	 of	 cleaved	 caspases	 9	 and	 3.	
Together,	these	results	indicate	that	NIC	inhibits	the	mitochondrial	
apoptotic pathway.

The	HtrA	family	of	proteins	is	a	class	of	heat	shock-induced	ser-
ine proteases whose main role is to degrade misfolded proteins in 
the	cytoplasm.	The	precursor	of	HtrA2	is	located	in	the	mitochon-
dria,	but	the	activated	and	mature	HtrA2	translocates	to	the	cyto-
plasm	where	it	binds	and	inactivates	IAP,	such	as	XIAP,	c-IAP1,	and	
C-IAP2,	which	degrade	caspases.31-35 Inactivation of these inhibitors 
increases	caspase	activity,	potentiating	 the	cleavage	of	PARP.	The	
limited	ability	of	PARP	to	 repair	DNA	breaks	promotes	DNA	frag-
mentation during apoptosis.36-39 This study documented that the 
cytoplasmic	HtrA2	was	significantly	increased	after	CME,	whereas	
its level in the mitochondria was decreased. This finding implies that 
HtrA2	migrates	from	mitochondria	to	cytoplasm	due	to	the	myocar-
dial	 injury	produced	by	CME.	Additionally,	 the	expression	of	XIAP	
decreased,	and	that	of	cleaved-PARP	increased,	suggesting	that	the	
HtrA2/XIAP/PARP	 mitochondrial	 apoptosis	 pathway	 may	 partici-
pate	in	CME-induced	myocardial	injury.

Nicorandil	 is	 a	 selective	 opener	 of	 the	 mitochondrial	 ATP-
dependent	 potassium	 channel	 (mitoKATP).	 Many	 clinical	 trials	
have	 shown	 that	 NIC	 significantly	 improves	 the	 no-reflow	 in	 PCI	

F I G U R E  6 Impact	of	nicorandil	on	the	expression	of	apoptosis-related	proteins	(n	=	6	or	8);	*P <	.05	vs	Sham;	#P <	.05	vs	coronary	
microembolization	(CME)
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patients.40-43	 In	 animal	 experiments,	 NIC	 pretreatment	 decreased	
infarct	size	in	the	ischemia-reperfusion	model,	reduced	myocardial	
stunning,	 improved	 systolic	 function,	 and	 lowered	 the	 incidence	
of arrhythmia.44-49	These	cardioprotective	effects	are	 likely	 linked	
to the reduction in cardiomyocyte apoptosis and inflammation. Su 
et al50	 documented	 that	 oral	NIC	 pretreatment	 ameliorates	CME-
induced myocardial injury and improves cardiac function by inhib-
iting	myocardial	 inflammation.	Akao	et	al46	demonstrated	that	NIC	
inhibits apoptosis induced by oxidative stress in cardiomyocytes in 
vitro.	He	et	al17	showed	that	oral	NIC	pretreatment	effectively	 in-
hibits	CME-induced	cardiomyocyte	apoptosis	and	improves	cardiac	
function	in	rats.	Numerous	studies	analyzed	the	molecular	mecha-
nism	of	action	of	NIC,44,51-54 but the specific mechanism by which 
it	 affects	 the	 HtrA2	 pathway	 involved	 in	mitochondrial	 apoptosis	
remains	 unclear.	 This	work	 showed	 that	 the	 LVFS,	 LVEF,	 and	 car-
diac	output	in	the	NIC	group	were	improved	in	comparison	with	the	
CME	group.	Additionally,	CK-MB	and	LDH	were	lower,	and	the	mi-
tochondrial	swelling	was	less	pronounced,	indicating	that	NIC	pro-
tects	 against	myocardial	 injury	generated	by	CME.	These	 findings	
are in agreement with previous studies suggesting that the mito-
chondrial	apoptosis	pathway	participates	 in	CME-induced	myocar-
dial	 injury	 and	may	be	 inhibited	by	NIC.17	The	analysis	of	 the	key	
proteins	of	the	HtrA2	signaling	pathway	showed	that	NIC	decreases	
the	cytoplasmic	 level	of	HtrA2	and	cleaved-PARP	and	upregulates	
the	expression	of	XIAP	 in	 a	manner	 similar	 to	 the	HtrA2	 inhibitor	
UCF101.	 Thus,	 the	 hypothesis	 can	 be	 advanced	 that	 NIC,	 acting	

as	a	mitoKATP	activator,	may	suppress	apoptosis	by	 inhibiting	the	
HtrA2/XIAP/PAR	 pathway,	 thereby	 reducing	 myocardial	 damage	
and improving cardiac function.

This	study	has	some	limitations.	First,	the	physical	properties	of	
the	microspheres	 used	 to	 induce	CME	 are	 not	 completely	 consis-
tent	with	the	components	causing	microembolization	clinically,	such	
as	 fragments	 of	 atherosclerotic	 plaques,	 neutrophils,	 and	 platelet	
aggregates.	Thus,	 it	 cannot	be	assumed	 that	 they	strictly	 simulate	
pathophysiological	changes	consequent	to	CME.	Second,	the	small	
size	of	 rats	necessitates	 the	opening	of	 the	 chest	 to	 inject	micro-
spheres	for	CME	modeling,	and	this	procedure	affects	cardiopulmo-
nary	 function.	Although	 the	 Sham	group	was	 included,	 the	 actual	
damage to heart function by microspheres was more serious than 
in	clinical	CME.	Third,	although	 the	selection	of	 rats	was	 random-
ized,	no	special	attention	was	given	to	gender	balance.	Therefore,	it	
is impossible to eliminate gender differences in responses to drugs.

5  |  CONCLUSIONS

In	summary,	NIC	reduces	CME-induced	myocardial	injury,	decreases	
myocardial	mitochondrial	 damage,	 and	 improves	 cardiac	 function.	
The	 possible	 mechanism	 of	 NIC	 action	 involves	 the	 reduction	 in	
CME-induced	 cardiomyocyte	 apoptosis	 by	 affecting	 the	 HtrA2/
XIAP/PARP	signaling	pathway.	This	pathway	may	become	a	new	tar-
get	for	CME	prevention	and	therapy.

F I G U R E  7 Effect	of	nicorandil	on	the	HtrA2/XIAP/PARP	signaling	pathway.	A,	The	effect	of	CME	on	HtrA2	by	Western	blotting.	B,	The	
effect	of	nicorandil	on	HtrA2/XIAP/PARP	by	Western	blotting	(n	=	6	or	8	per	group).	Cyto.,	cytoplasmic,	Mito.,	mitochondrial.	*P <	.05
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