Single Ion Occupancy and Steady-state Gating of Na Channels
in Squid Giant Axon

RoBERT F. RaAkowski, DAviD C. GADSBY, and PAuL DE WEER

Marine Biological Laboratory, Woods Hole, Massachusetts 02543

ABSTRACT The properties of the small fraction of tetrodotoxin (TTX)-sensitive Na channels that remain open in
the steady state were studied in internally dialyzed voltage clamped squid giant axons. The observed Ussing flux ratio
exponent (n') of 0.97 * 0.03 (calculated from simultaneous measurements of TTX-sensitive current and ??Na ef-
flux) and nonindependent behavior of Na current at high internal [Na] are explained by a one-site (“Is”) perme-
ation model characterized by a single effective binding site within the channel pore in equilibrium with internal Na
ions (apparent equilibrium dissociation constant Ky,,(0) = 0.61 = 0.08 M). Steady-state open probability of the TTX-
sensitive channels can be modeled by the product p,p.., where p, represents voltage-dependent activation described
by a Boltzmann distribution with midpoint V, = —7 mV and effective valence z, = 3.2 (Vandenberg, C.A., and F.
Bezanilla. 1991. Biophys. J. 60:1499-1510) coupled to voltage-independent inactivation by an equilibrium constant
(Bezanilla, F., and C.M. Armstrong. 1977. J. Gen. Physiol. 70:549-566) K,, = 770. The factor p., represents voltage-
dependent inactivation with empirical midpoint V., = —83 * 5 mV and effective valence z.= 0.55 = 0.03. The com-
posite p.p..1s model describes the steady-state voltage dependence of the persistent TTX-sensitive current well.

KEY WORDS:

INTRODUCTION

In response to step depolarization, current through
voltage-gated Na channels increases rapidly and then
declines. The classical description of this gating behav-
ior (Hodgkin and Huxley, 1952b,c) postulated two in-
dependent underlying processes, “activation” and “in-
activation.” Much work during the ensuing half-century
has focused on these rapid (millisecond) gating events
that underlie the generation and propagation of action
potentials, and on the mechanisms of open channel
permeation. The understanding gained has informed
the study of other voltage-gated channels important in
excitable cell function (Hille, 1992). Several early stud-
ies suggested the possibility of a second type of Na-
channel conductance at positive membrane potentials
(Adelman and Palti, 1969; Chandler and Meves, 1970;
Bezanilla and Armstrong, 1977). Others demonstrated
“slow” inactivation of the Na channel (Rudy, 1978; Al-
mers et al., 1983; Kirsch and Anderson, 1986; Simoncini
and Stithmer, 1987; Ruben et al., 1992). The existence
of an alternative open Na-channel state arising from
the inactivated state was established by Correa and Bez-
anilla (1994a,b) using macroscopic, gating, and single-
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channel current measurements. The importance for
nerve function of such slower gating processes and of
the very small persistent Na-channel current is now
widely recognized (Crill, 1996; Cummins and Sigworth,
1996). Indeed, anticonvulsant and postischemia pro-
tective effects of drugs like lidocaine, carbamazepine,
and phenytoin (for review see Taylor, 1993) may reflect
their reduction of sustained Na-channel current.

The purpose of our experiments was twofold. First,
we investigated the permeation properties of tetrodo-
toxin (TTX)*-sensitive Na channels that remain open in
the steady state, exploiting a sensitive and stable voltage
clamp in combination with isotopic flux measurements
(Rakowski, 1989; Rakowski, Gadsby and De Weer,
1989). We determined the persistent Na current as the
change in holding current caused by a saturating con-
centration of TTX. The concurrently measured change
in 2Na efflux allowed computation of both unidirec-
tional fluxes and, hence, the Ussing flux ratio expo-
nent (n'). Measurements of n' for K ion channels
(Hodgkin and Keynes, 1955) provided strong evidence
for a multi-ion (about three) pore that was recently
confirmed by crystallography (Doyle et al., 1998; Mo-
rais-Cabral et al., 2001). Because Na channels undergo
extensive inactivation both fast and slow, comparable
data for these channels have been difficult to obtain.
Our method offers the requisite stability and resolu-
tion, and our findings suggest occupancy of the Na-
channel pore by, on average, a single Na ion.

*Abbreviations used in this paper: P,, open probability; TTX, tetrodotoxin.
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FIGUrE 1. Equality of TTX-sensitive 22Na efflux
and current in Na-free extracellular solution. An
axon internally dialyzed with 50 mM Na and 0.25
mM veratridine and superfused with Na-free, 10-
mM K solution was clamped initially at —60 mV.
(a) Addition of 10 uM dihydrodigitoxigenin
(HyDTG, a specific Na/K pump blocker) caused
Na efflux to decrease by 34.6 pmol cm™2 s™! and
outward current by 1.0 A cm™2, which yields a
pump-mediated Na efflux-to-current ratio of 3.3,
which is compatible with the value of 3.0 expected
for a 3 Na/2 K stoichiometry (Rakowski et al.,
1989). Changing the holding potential to 0 mV in
the continued presence of HyDTG (and internal
veratridine) elicited a large Na efflux, which then
declined exponentially with a time constant of
4.00 = 0.11 min. (b) Addition of 0.2 pM TTX
caused Na efflux to decrease by 38.5 pmol cm™
s~! and outward current by 3.68 wA cm™?, yield-
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Our second objective was to analyze the voltage de-
pendence of the open probability (gating) of the few Na
channels that remain open in the steady state. The
product m’(ee) h(ee) of the Hodgkin-Huxley (Hodgkin
and Huxley, 1952c) analysis, which predicts the steady-
state population of open Na channels of squid axon in
the absence of slow inactivation, peaks at —47 mV with
0.5% of Na channels open. Incorporating steady-state
“slow” inactivation (Rudy, 1978) yields the product
m?(eo) h(oo) s(e0), which peaks at —51 mV with 0.4% of
Na channels remaining open. We find that neither
model accurately predicts steady-state open probability
or its voltage dependence. A simple alternative model
that combines voltage-independent inactivation cou-
pled to activation (Bezanilla and Armstrong, 1977)
with an empirical Boltzmann equation encompassing
all other voltage-dependent inactivation processes ade-
quately accounts for our findings.

MATERIALS AND METHODS

Measurement of TTX-sensitive Current and Flux

TTX-sensitive current and ??Na efflux were measured simulta-
neously in squid (Loligo pealei) giant axons as described previ-
ously (Rakowski, 1989; Rakowski et al., 1989). In brief, a 23-mm-
long segment of squid giant axon cannulated at both ends was in-
ternally dialyzed via a cellulose acetate capillary made porous to
low molecular weight solutes. A blackened platinum wire for
passing current and a glass capillary electrode filled with 3 M KC1
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I ing a TTX-sensitive Na efflux-to-current (FA®,,,/
AI) ratio of 1.01. (¢) Washout of H,DTG allowed
recovery of 34.1 pmol cm™2 s™! of Na/K pump-
mediated Na efflux.

were inserted into the axon. The membrane potential was mea-
sured as the voltage difference between this internal electrode
and an external flowing 3-M KCI reference electrode (to mini-
mize junction potentials) placed near the solution outflow. A sta-
ble, low noise voltage clamp (Rakowski, 1989) controlled the
membrane potential. The superfusion chamber, kept at 17-18°C,
comprised two lateral pools that contained the cannulated axon
ends, physically separated by grease seals from the central, super-
fused, experimental pool. Two ancillary voltage-clamp circuits
kept the end and central pools at the same potential to prevent
current flow between them. Efflux of ?Na across the axon mem-
brane in the experimental region was measured by collecting the
central pool superfusate for later assay by either liquid scintilla-
tion or gamma counting. Data are presented as mean * SEM.
Log-normal statistics are applied to ratios.

Solutions

Internal and external solutions were the same as in Rakowski et
al. (1989). The standard artificial seawater contained the follow-
ing (in mM): 425 NaCl, 10 CaCl,, 25 MgCly,, 25 MgSO,, 0.05
EDTA, and 5 Tris-HEPES, pH 7.7. 0.2 pM TTX was added from a
1-mM aqueous stock solution. In Na-free artificial seawaters, 425
mM NMG, TMA, or choline replaced Na; intermediate exter-
nal Na concentrations were obtained by mixing. The high [Na]
dialysate contained the following (in mM): 12.5 MgSO,, 5
MgEGTA, 5 Na,ATP, and 190 NaOH, pH 7.4 with ~500 mM
HEPES. The osmolality of the dialysate was adjusted to within 1%
of that of the extracellular solution (typically 940 mOsm kg™!).
In Na-free dialysate, 10 Tris and 190 NMG replaced Na. Interme-
diate internal Na concentrations also were achieved by mixing.
In experiments to assess the inertness of internal NMG, it was re-
placed by equimolar TMA. In some early experiments, the inter-
nal solution also contained 5 mM potassium phosphoarginine.
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FIGURE 2. Recovery of inward current after re-
moval of TTX. Axons were bathed in 425 mM Na
seawater containing 0.2 uM TTX and internally di-
alyzed with 50 mM Na. Shortly after the bathing
solution was replaced by one lacking TTX, the re-
covery of inward current became monoexponen-
tial. (A) Axon held at 0 mV. (B) A second axon
held at —10 mV. Leastsquares fits to the latter part

15 min

RESULTS

Our experimental approach demanded certain condi-
tions: (1) membrane current and isotopic flux must be
measured simultaneously from the same area of cell
surface; (2) such measurements must be repeatable, re-
producibly, on a preparation that has reached true
steady state; (3) any spontaneous drift or channel run-
down must be carefully monitored and corrected for;
(4) inert nonpermeant Na replacements must be avail-
able; and (5) membrane potential must be measured
accurately. We address each of these conditions before
turning to the permeation properties and open proba-
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| of records A and B yielded exponential time con-
stants of 3.19 = 0.01 and 3.19 * 0.02, respectively.

bility of TTX-sensitive Na channels open in the steady
state.

Stmultaneous TTX-sensitive Current and Flux Measurements

Simultaneous measurement of TTX-sensitive current
(AI) and ?’Na efflux (A®,,) is illustrated in Fig. 1,
which also emphasizes the need to allow sufficient time
to achieve steady state after membrane potential shifts.
To enhance TTX-sensitive current in this experiment,
the 50-mM Na internal dialysate contained 250 uM ver-
atridine (Ohta et al., 1973). The current traces (Fig. 1,
insets, a and b) have been scaled by Faraday’s constant

5 min
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FiGure 3. Repeated (in al-
phabetical order) exposures
to 0.2 uM TTX (each fol-
lowed by ~20 min of wash-
out; not shown) of a single
axon, bathed in 425 mM Na

p (-55) solution and internally dia-
lyzed with Na-free solution, at

s (-20) various holding potentials.
—— TTX reached the axon ~40 s

into each 5-min record. The
leftmost column shows all the
records made at —30 mV.



to allow comparison of the amplitudes of changes in
current (in pA cm™2?) and flux (in pmol cm™2 s71)
which, on addition of TTX (Fig. 1 b), were similar. Our
previous simultaneous measurements of TTX-sensitive
Na efflux and outward current under the same zero-
trans conditions (Na-free external solution) gave a
mean flux/current ratio (FA®,,,/Al) of 1.00 = 0.04
(Rakowski et al., 1989), which demonstrates that TTX-
sensitive current and ??Na efflux both derive from the
same membrane area. A similar ratio, 1.05 = 0.11, was
obtained in five axons not exposed to veratridine (see
Fig. 8). Veratridine was omitted in all subsequent ex-
periments presented here.

Since many of our experiments required repeated
exposure to TTX, it was important to establish the rate
of recovery from block by TTX. In both axons of Fig. 2,
the time constant for the exponential part of the recov-
ery was 3.2 min. Since essentially complete recovery
from TTX is achieved within 20 min, this was the mini-
mum time allowed for TTX washout in all experiments.

Correction for Channel Rundown

Fig. 3 shows the outward shifts of holding current pro-
duced by 21 consecutive 5-min exposures of a single
axon to TTX, at holding potentials between —90 and
+10 mV. A semilog plot of all eight TTX-induced cur-
rent shifts at —30 mV (Fig. 4 A, closed circles), which
served as controls for rundown, shows a roughly expo-
nential loss of functional TTX-sensitive channels with
time. To estimate the initial magnitude of TTX-sensi-
tive current that would have been measured at —30 mV
without rundown, an exponential fit to the first three
TTX-induced shifts under those reference conditions
(425 mM external [Na], internal Na-free, —30 mV) was
extrapolated to the start of dialysis (Fig. 4 A, closed tri-
angle on the ordinate). Thus, the initial TTX-induced
shift estimated for this axon was 5.7 * 0.6 pA cm™2,
and the rundown time constant was 230 min. For 10 ax-
ons, the mean estimates were 3.3 = 0.3 pA cm™2 and
340 = 40 min, respectively; the cause of this rundown is
unknown. The absolute magnitude of the holding cur-
rent near the end of each exposure to TTX in the ex-
periment of Fig. 3 is plotted against membrane poten-
tial in Fig. 4 B. The reproducibility of the repeated
measurements at —30 mV over the 10-h period con-
firms the remarkable stability of the background cur-
rent, in contrast to the TTX-sensitive current.

To correct TTX-induced current shifts recorded at
other holding potentials (Fig. 3) for rundown, they
must be scaled to the response predicted for —30 mV
at the time of each measurement. These predictions
(Fig. 4 A, open circles) were obtained by exponential
interpolation (extrapolation for the final test) be-
tween successive measurements at —30 mV. TTX-sen-
sitive currents normalized in this way for this axon are
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FiGure 4. Steady-state TTX-sensitive and background currents at
various membrane potentials. (A) TTX-sensitive currents measured
at —30 mV in records a, b, e, h, k, n, q, and t of Fig. 3 are plotted
(closed circles) on a semi-log scale against the time after starting di-
alysis. Estimated values for TTX-sensitive current at —30 mV at the
start of dialysis (closed triangle on the ordinate) and at the times
measurements were made at other holding potentials (open circles)
were obtained as described in the text. (B) Steady-state background
current, measured at various holding potentials in the presence of
TTX, is plotted against membrane voltage. The eight measurements
made at —30 mV over 9 h are almost superimposed. (C) TTX-sensi-
tive currents recorded at various holding potentials in Fig. 3 ¢, d, f,
g,1,j,1, m, o, p, 1, s, and u were scaled (to correct for rundown) to
the reference values at —30 mV (from A) and plotted against hold-
ing potential (closed circles). The closed triangle at —30 mV is the
normalization point. The theoretical curve is described in the text.

plotted against holding potential in Fig. 4 C. The the-
oretical curve shown was calculated using parameters
obtained from a global least squares fit (see Table I in
DISCUSSION) to all relevant data obtained in this work.
The good agreement of this theoretical curve with the
data in Fig. 4 C shows this one axon to be representa-
tive.
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NMG, Choline, and TMA Are Impermeant Substitutes for Na

Several experiments required inert substitutes for Na.
No steady-state TTX-sensitive current was detected (Fig.
5 A) when NMG replaced all internal Na, and 425 mM
choline (Fig. 5 A, b), TMA (Fig. 5 A, c¢), or NMG (Fig. 5
A, e) replaced all external Na (Fig. 5 A, a, d, and g),
which signifies that all three cation substitutes are imper-
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FiGure 5. Full and partial
replacement of external Na
by NMG, choline, or TMA.
Axons were held at —30 mV
and internally dialyzed with
Na-free solution. Records
were taken in alphabetical or-
der. (A) Repeated exposure
to0 0.2 pM TTX in 425 mM Na
(a, d, and g), choline (b),
TMA (c), or NMG (e). (B)
Same axon as in A; experi-
ment continued (f-p) to in-
clude partial replacement of
external Na by choline or
TMA. (C) Repeated exposure
to 0.2 pM TTX in solutions
with [Na] between 425 and 0
mM (see column headings
s for Na mole fraction) re-
placed by equimolar NMG.

meant. Fig. 5 B shows records when external Na was only
partially replaced by choline or TMA. At 0.5 mole frac-
tion external Na (Fig. 5 B, i and k) the TTX-sensitive cur-
rent was about half that seen in the nearest test with 425
mM Na (mole fraction 1.0), which suggests that TMA
and choline are not only impermeant, but also inert, i.e.,
do not hinder Na permeation. In contrast to these find-
ings with choline or TMA, partial replacement of exter-
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FIGURE 6. Summary of external-Na substitution experiments like
those shown in Fig. 5. Relative TTX-sensitive inward current is
plotted against external [Na]. Replacement for Na was either cho-
line (closed circles; 7 axons), TMA (open circles; 7 axons), or
NMG (closed triangles; 10 axons). SEM not shown when smaller
than the symbol. The dashed and solid lines are drawn according
to Egs. 1 and 2, respectively.

nal Na by NMG (Fig. 5 C) reduced TTX-sensitive current
further than expected if NMG were inert. For example,
the size of the TTX-sensitive current at 0.5 mole fraction
Na (Fig. 5 C, e and n) was about one quarter, rather than
the anticipated one half, of that of the bracketing deter-
minations at 425 mM Na. Average normalized data from
17 axons in which TMA, choline, or NMG replaced ex-
ternal Na are summarized in Fig. 6. With choline or
TMA as substitutes, TTX-sensitive current was propor-
tional to external Na concentration (Fig. 6, dashed line)
as if the channel’s apparent affinity for external Na were
very low:

RCZ_M

INa - 425 > (1)

where [Na] is in mM. It can be shown that a linear rela-
tionship between current and the concentration of Na
replacing another ion also would obtain if that ion
were a competitive blocker, and if its apparent affinity
were identical to that for Na. But the likelihood of
TMA and choline sharing this special property must be
small, and so we conclude that, instead, external TMA
and choline are impermeant, nonblocking, substitutes
for external Na and that the linear relationship (up to
at least 425 mM Na,,) reflects a very low apparent affin-
ity for external Na.

The curved line fitted to the NMG substitution data
(Fig. 6) reflects a model in which external NMG binds
to a site that, when occupied, blocks the channel:

JRel [Na] . Kyme
e 425 Kyy+ [NMG]

(2)

where Ky, is the dissociation constant for NMG at that
site. The low affinity for external Na precludes experi-
mental distinction between competitive and noncom-
petitive inhibition by NMG. Nevertheless, other data
discussed below suggest that the NMG binding site, un-
like that for Na, lies at the external mouth of the chan-
nel outside the membrane electrical field. The overall
least- squares fit (which also includes data from Fig. 10
A to be discussed below) gave an estimate for Ky, of
209 = 15 mM (see Table I). A similar inhibitory effect
of external NMG was seen on 2?Na efflux (experiments
not shown). Because NMG was our standard replace-
ment for internal Na, we checked for block of outward
TTX-sensitive current by internal NMG. TTX-sensitive
outward current, measured at —45 mV in Na-free (cho-
line) external solutions with a dialysate containing 105
mM Na and 105 mM of either NMG or TMA, averaged
—0.046 = 0.008 (n = 3) and —0.049 = 0.006 (n = 2)
LA cm™2, respectively. On the assumption that internal
TMA is an inert substitute for internal Na (but see
Horn et al., 1981), as established above for external
TMA, this result implies that internal NMG does not in-
hibit TTX-sensitive channels. The alternative possibility
is rendered unlikely by the close agreement between
the currents measured with NMG or TMA, which
would require the apparent K; for any putative block by
internal NMG and TMA at —45 mV to be identical.

We also examined whether small amounts of contam-
inating internal K, or the 5-mM internal K added as po-
tassium phosphoarginine in early experiments, support
a detectable outward TTX-sensitive current. Although,
with 200 mM Na in the dialysate, we observed the usual,
substantial, TTX-sensitive outward current in Na-free
(choline) external solution, after exchanging the dialy-
sate for one containing 5 mM K, but no Na (replace-
ment: NMG), we could detect no TTX-sensitive current
in Na-free external solution containing either choline
or TMA (two measurements on one axon). Thus, up to
5 mM contaminating internal K carries no measurable
TTX-sensitive steady-state current even in the absence
of competing internal or external Na.

Accuracy of Membrane Potential Measurement: Reversal of the
TTX-sensitive Current

To observe both inward and outward steady-state TTX-
sensitive currents in an axon under fixed ionic condi-
tions, we chose appropriate Na concentrations (184 mM
inside and 111 mM outside, confirmed by flame pho-
tometry). Fig. 7 A shows records of repeated exposures

240 Na Channel Occupancy and Steady-state Open Probability
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FIGURE 7. Reversal potential of the steady-state TTX-sensitive
current. (A) An axon dialyzed with 184 mM Na and bathed in 111
mM Na (choline substitution) was repeatedly exposed to 0.2 uM
TTX. Measurements were made at holding potentials of —30, 0,
and —15 mV in the alphabetical sequence shown. (B) The TTX-
sensitive current changes measured in A are plotted (closed cir-
cles) against the holding potential. The current change measured
at —15 mV was not different from zero. The calculated equilib-
rium potential for Na (—12.7 mV) is shown as the open circle
(Eyo)- The solid line connecting the means at —30 and at 0 mV
crosses the voltage axis at —14.4 mV.

to TTX alternately at —30 or 0 mV (Fig. 7 A, a-h), and
at —15 mV (Fig. 7 A, i). The magnitudes of the TTX-
sensitive currents (Fig. 7 B) gave (by linear interpola-
tion) an estimate for the reversal potential of —14.4
mV, close to the calculated value of E,, (—12.7 mV). A
second axon treated similarly gave a reversal potential
of —14.6 mV. These findings corroborate the accuracy
of our membrane potential measurements (i.e., within

2 mV).
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Flux Ratio Exponent

TTX-sensitive 2?Na efflux and net current were simulta-
neously measured (Fig. 8) in axons held at —30 mV, in-
ternally dialyzed with 200 mM Na, and exposed alter-
nately to 425 mM external Na (b, d) or choline (a, c).
Five axons in the Na-free solution gave mean values of
0.198 = 0.009 pA cm™2 (n = 17 trials) for TTX-sensitive
current and 2.15 * 0.22 pmol cm™?s™! (n = 15 trials) for
TTX-sensitive ??Na efflux, yielding a ratio FA® /Al =
1.05 = 0.11. This good agreement with the expected ra-
tio of 1.0 and with our findings on veratridine-treated ax-
ons (Fig. 1) validates our comparisons of simultaneously
measured flux and current. The magnitudes of TTX-
induced changes in net current and unidirectional efflux
in 425 mM external and 200 mM internal Na solution
(Fig. 8, episodes b and d) can be used to calculate the
Ussing flux ratio exponent (Ussing, 1949; Hodgkin and
Keynes, 1955). Thus, the TTX-sensitive net current (AI)
represents, via Faraday’s constant, a net flux (A®) from
which the simultaneously measured unidirectional 2?Na
efflux component (A®,,) can be subtracted to yield uni-
directional influx (A®;,). The flux ratio exponent (n’)
then follows from Eq. 3

A(I)ou[ _ [Na]z X_I; '
AD, [[Na]o' ¢ ) (3)

m

For eight paired measurements of Al and A®,,, on four
axons at a holding potential (V) of —30 mV, we find
n’ = 0.97 = 0.03. For visual corroboration of this re-
sult, we show in Fig. 8 C (smoother downward traces in
b and d) the hypothetical TTX-induced current shift
expected for abolition of the outward component
alone, which is computed from the actually observed
net current shift assuming a flux ratio exponent n’ = 1.

Comparison of TTX-sensitive Currents with and without
trans Na Present: Evidence for Nonindependence

According to the independence principle, “the chance
that any individual ion will cross the membrane in a
specified interval of time is independent of the other
ions which are present” (Hodgkin and Huxley, 1952a).
To test whether Na fluxes are influenced by Na present
on the trans side, we measured TTX-sensitive currents
first under zero-trans conditions, i.e., with Na present ei-
ther on the outside of the axon only (Fig. 9, left column)
or on the inside only (Fig. 9, middle column), and then
with Na on both sides (Fig. 9, right column). The mea-
surements were made in the (alphabetical) order shown,
and all were subject to rundown, so that comparison re-
quired interpolation between adjacent pairs of like mea-
surements. The traces marked by asterisks in the right
column are hypothetical and were constructed as the
sum of the two zero-trans currents (Fig. 9, left and mid-
dle columns), both interpolated to the time of the actual
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Ficure 8. Determination of
the flux ratio exponent n'.
(A) An axon held at —30 mV
and internally dialyzed with
200 mM radiolabeled Na was
repeatedly exposed to 0.2 uM
TTX in 425 mM choline, Na-
free solution (a and c) or in
425 mM Na, choline-free so-
i lution (b and d). (B) The two
i TTX induced #Na efflux
; drops in Na-free (choline) so-
lution (a and c) are replotted
on expanded time bases and
scaled by Faraday’s constant,
together with the TTX-
induced shifts in holding
current recorded at the same
time. (C) Comparison of cur-
rent transients b and d (also
on expanded time bases) with
the simultaneously measured
drop in ?>Na efflux. TTX ad-
dition in the presence of 425
mM external Na blocked
(net) inward currents (noisy
traces; 1.47 and 1.11 pA cm™2,
respectively). For illustration,
H a theoretical outward compo-
nent of the observed net cur-
rent was computed assuming
an Ussing flux ratio exponent

S — d i
T — — ool — n' = 1, and is shown (in-
verted) in each case as a

smoother downward trace su-
perimposed on the corre-

measurement (Fig. 9, right column, no asterisk) with
Na present on both sides. Evidently, the in- and out-
ward movements of Na did not obey independence, as
the net current measured with Na present on both
sides (Fig. 9, right column) was significantly and con-
sistently smaller than the sum of the corresponding
zero-trans currents. The observed net current aver-
aged 0.81 = 0.01 (n = 7 on two axons) of the sum of
the corresponding zero-trans currents. A measure-
ment artifact is highly unlikely since (1) each compar-
ison was made on a single axon at constant holding
potential and only the solutions were varied; (2) lig-
uid junction potentials at the external reference elec-
trode were minimized by means of a flowing 3-M KCl
junction; and (3) any liquid junction potential differ-
ence at the internal electrode between Na-containing
and Na-free dialysates would be expected to exagger-
ate, not lessen, the discrepancy depicted in the right-
hand column of Fig. 9.

Furthermore, the observed zero-trans TTX-sensitive
outward current (inward shifts, middle column) is sig-
nificantly (17%) smaller than calculated (assuming in-

sponding observed drop in

. 22 :
10 min 'Na efflux.

dependence) for the same potential from the (appro-
priately interpolated) corresponding zero-trans inward
current (outward shifts, left column): the observed ra-
tio of zero-trans currents averaged —0.123 * 0.003
(n =12 from 2 axons) compared with —0.149 predicted
at —30 mV for independent zero-trans fluxes at 425
mM external and at 200 mM internal [Na]. This obser-
vation furthers the evidence against independence. Al-
though a sizeable constant error in our measurement
of membrane potential (=35 mV instead of —30 mV)
would be able to account for the discrepancy and, thus,
weaken it as evidence, such a large error seems unlikely
in view of the good agreement we find between com-
puted and measured reversal potentials (Fig. 7). More-
over, this smaller-than-expected zero-trans outward Na
current cannot be attributed to block by external cho-
line, which we have shown (Figs. 5 and 6) to be an inert
substitute for Na. Finally, any channel block by internal
NMG, which was present only during the measure-
ments of zero-trans inward Na current in these experi-
ments (Fig. 9, left column, 425/0), could only cause us
to underestimate the size of that inward current: in
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425/0 0/200

r‘*—-—*

[Na],/ [Na];

- —

425/200

* Ficure 9. TTX-sensitive
current with Na-free internal
or external solution or with
Na present on both sides. An
axon held at —30 mV was ini-
tially dialyzed with Na-free

(NMG) solution and bathed
in 425 mM [Na]. After the re-
sponse to 0.2 uM TTX was re-
corded (a), the dialysate was
replaced by one containing
200 mM [Na] and the exter-
nal medium by a Na-free,
TTX-Aree solution (choline
substitution). After another
30 min of dialysis, the re-
sponse to 0.2 pM TTX was
measured again (b). The ex-
[ ternal solution was then

changed to TTXAfree, 425

mM Na solution. After 30

min, the response to TTX was

1uAch

———.

turn, this would cause us to also underestimate the de-
gree of nonindependence.

Voltage Dependence of Steady-state TTX-sensitive Current

We have already illustrated (Figs. 3 and 4) our method
for examining the voltage dependence of steady-state
TTX-sensitive inward current in axons exposed to 425
mM Na and dialyzed with Na-free solution. We similarly
examined the voltage dependence of outward persistent
TTX-sensitive currents in axons dialyzed with 200 mM
Na and exposed to Na-free (choline) solutions. To per-
mit direct comparison of normalized outward currents
with normalized inward currents, we exploited data
from experiments like that in Fig. 9 in which both types
of TTX-sensitive current were measured in a single axon
at a constant holding potential of —30 mV. Two further

243 RAKOWSKI ET AL.

measured a third time (c).
The record shown as c* was
calculated from a, b, d, and e
as described in the text. This
protocol was repeated three
more times in the same axon
(records d—m), and a similar
experiment with three repeti-
tions of the protocol was
done in another axon.

10 min

conditions were also examined: (1) with 50 mM Na in-
side and 425 outside; and (2) with 266 mM Na plus 159
mM NMG outside and Na-free solution inside.

All of our data concerning the steady-state voltage de-
pendence of TTX-sensitive currents obtained under
these four experimental conditions, annotated as (ex-
ternal [Na]/internal [Na], both in mM) 425/0, 425/50,
266/0, or 0/200, are summarized in Fig. 10 A. The theo-
retical curves through the data represent the currents
calculated for each of the four ionic conditions, using a
single set of parameters obtained from a simultaneous
least-squares fit to all relevant data of an economical
steady-state gating and permeation model that postu-
lates a single binding site for Na in the pore (the pp..Is
model, to be presented in the piscussion). In the glo-
bal least-squares fit, the estimation of individual model



Normalized Current

Figure 10. Summary of the steady-state voltage
dependence of normalized TTX-sensitive cur-
rents. (A) TTX-sensitive currents were measured

Membrane Potential / mV

at the Na concentrations indicated, given (in
mM) as external [Na]/internal [Na]: 425/0
(nine axons; closed circles); 425/50 (nine axons;

open circles); 266 (NMG replacement)/0 (nine
axons; closed triangles); and 0 (choline replace-

ment) /200 (seven axons; closed squares). Cur-
rent amplitudes under all four conditions, at each
membrane potential, were normalized to the cur-
rent at —30 mV with 425 mM external Na and
zero internal Na. The solid lines are calculated
from a least-squares fit, to the entire dataset, of a
permeation, steady-state gating, and (for the 266/
0 condition) NMG block model described in DIs-
cussioN. The dashed line is described in the text.
(B) Theoretical steady-state channel open proba-
bility functions p, (Eq. 10) and p,p.. (product of

B 0015
Pa

2 00010
E
© |
Q
S
% 0.0005

papaa

\
0.0000 : . : . ‘
4100 -80 -60 -40 -20

Membrane Potential / mV

parameters is governed by various data subsets: (1) the
gating parameters are governed by the voltage depen-
dence data (Fig. 10 A); (2) the apparent dissociation
constant for binding of internal Na, Ky, by the ratios
of current amplitudes at —30 mV in the 425/200 and
0/200 conditions to those in 425/0 (Fig. 9) as well as
by the in- versus outward current pairs over a range of
voltages (Fig. 10 A); and (3) the Ky for channel
block by external NMG by data of Fig. 6 together with
the 266/0 curve of Fig. 10 A. The assumption of volt-
age-independent block by external NMG is validated
here by the demonstration that inward currents mea-
sured in the presence of 159 mM external NMG are
adequately fit (266/0 curve; Fig. 10 A) by an equation
that is scaled uniformly across the entire voltage range
by a single factor appropriate for block by that concen-
tration of NMG. The theoretical curves in Fig. 10 B will
be described in the piscussioN. The dashed line in
Fig. 10 A represents the outward current expected in
0/200 conditions for a model (Fig. 10 B, curve p,) that
lacks voltage-dependent inactivation (i.e., p,Is, without
p..). Its poor fit to the 0/200 data demonstrates (see
DISCUSSION) the need to include voltage-dependent

I Egs. 10 and 12), as described in DISCUSSION, cal-
20 culated with the overall least-squares fit parame-
ters listed in Table L.

inactivation (Fig. 10 B, curve p,p.) in our pp.Is
model.

DISCUSSION

The presumption seems justified that the extremely
small fraction of TTX-sensitive channels that remain
open in the steady state represent “classical” voltage-
sensitive Na-selective channels: the experimental rever-
sal potential of the currents they carry was close to the
theoretical value for E,,; choline, TMA, and NMG were
impermeant; and recovery from TTX inhibition had a
time course similar to that found for classical Na chan-
nels. Flux ratio measurements revealed an Ussing flux
ratio exponent close to 1.0. However, inward and out-
ward Na movements were not independent of one an-
other, a property that requires at least one saturable, if
low affinity, binding site for Na ions within the pore.
Moreover, as discussed in the section on persistent gat-
ing, voltage dependence of channel open probability
was consistent with literature values of the steady-state
gating parameters that describe voltage-dependent acti-
vation and fast voltage-independent inactivation of Na
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channels, but necessitated an additional parameter de-
scribing steady-state voltage-dependent inactivation.

Minimal Model for Nonindependent Sodium Permeation that
Exhibits an Ussing Flux Ratio Exponent (n') of Unity

From eight paired measurements of TTX-sensitive cur-
rent and ??Na efflux including those in Fig. 8 with 425
mM external and 200 mM internal Na, we find an
Ussing flux ratio exponent (n’) of 0.97 = 0.03. This re-
moves the need to postulate a multi-ion pore to ac-
count for the ion flux behavior under our experimen-
tal conditions. A flux ratio exponent of unity implies
ion movements that either obey the independence
principle or are mediated by (effectively) one-site
channels; multi-site channels with very low occupancy
(rarely exceeding one ion per channel) also yield n’
values close to one (Hille and Schwarz, 1978; Begeni-
sich, 1987). However, Fig. 9 shows that ion movements
through persistent Na channels are not independent,
as net current measured with Na both inside (200 mM)
and outside (425 mM) is less than the sum of the corre-
sponding zero-trans currents. Nonindependence re-
quires that permeating ions interact with, i.e., “bind” to
a “site” within, the channel. Since the Ussing flux ratio
exponent of unity does not require a multi-ion pore,
this observed deviation from independence can be ex-
plained by a simple permeation model (Scheme I):

k k
E + Na, & ENa <—= E + Na,
-1 -2

(SCHEME I)

in which both external Na (Na,) and internal Na (Na;)
have direct access to a single effective binding site in
the pore of the channel protein (F). This effective
binding site could, in reality, be distributed over several
physically distinct points in space as long as occupancy
of the “site” precludes concomitant binding of a sec-
ond ion in the pore. At this site, the permeating ion
senses a fraction 8y, (arbitrarily set here at 0.5) of the
electrical field (from the internal solution), so that the
rate coefficients k,...k_, of Scheme I become functions
ki (V)... k_3(V) (defined in Egs. 8 and 9) of membrane
potential. In the absence of membrane potential (V =
0), microscopic reversibility constrains as follows:

k(0) _ ks(0)

— L = = 4
720~ Ta(0) ®

The expressions for zero-trans Na influx (inward flux is
negative) and efflux rates (i.e., ions traversing each
pore per unit time) are as follows:
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otrans —kyky[ Na]
q)z.ma trans — 179 0 d
in Jo + kot k[ Nal, " “
q)zem-tmns _ k—l k,Q[Nd]i
out k_l T kQ T k_Q[Na]i'

Our finding that TTX-sensitive inward current is a linear
function of external [Na] (Fig. 6) while a finite apparent
affinity for internal Na is required to account for the ob-
served nonindependence (Fig. 9) permits a further sim-
plification. These features are satisfied over practical
voltage ranges by setting the rate coefficients for transi-
tions between binding site and internal solution, k, and
k_o, very large compared with those for the transition be-
tween binding site and external solution, k; and k_;:

kosk g > kyk

Zero-trans influx (Eq. 5, top) will then be linearly pro-
portional to [Na], as required by Fig. 6, whereas
Ky5(Na;) (given by (k_; + ky)/k_, [Eq. 5, bottom]) as-
sumes a finite value as required of the saturable bind-
ing site that underlies nonindependence. The simplifi-
cation yields:

kl KNai
E + Na, k_" ENag <—> E + Na,

-1

(SCHEME 1II)

in which equilibrium prevails between binding site and
internal solution, governed by the equilibrium dissocia-
tion constant for internal sodium binding, Ky,(V)=
ks (V) /k_o(V). The net flux is then:

_ k_(V)[Nal;— k (V) Ky,(V)[Nal,

(0] =
et K’Vai( V) + [Na]l

(6)

From Boltzmann’s law the equilibrium constant varies
with membrane voltage, decreasing with depolarization
(steepness being determined by 8y,) as given by Eq. 7:

By, DVF

Kyal(V) = Ky(0)- e ™ (7)

The sole determinants of site occupancy, therefore, are
internal [Na] and membrane potential. For simplicity,
we further assume symmetry in the effect of membrane
potential on the rate coefficients £, and k_;:

- 5 N a ‘/1"

ki (V) = ky(0)- e 27 (8)
SNa VF

ka(V) = ky(0)- e (9)

As our fluxes are normalized to a reference value, and
because of Eq. 4, only a single adjustable parameter



(Kyai) 1s required to account for the open-channel flux
properties in the absence of NMG. The leastsquares
value for Ky,;(0) (see Table I) yields a Ky, (V) of 1.12 M
at —30 mV. From measurements of peak Na-channel
current as a function of internal ion activity, Begenisich
and Cahalan (1980a,b) found a Ky, of 0.86 M at +25
mV. Our value for Ky, at —30 mV correctly predicts
the nonindependence of unidirectional fluxes we ob-
served: net flux under 425/200 conditions is calculated
to be only 0.82 of the sum of fluxes measured under
the corresponding zero-trans conditions 425/0 and
0/200 (observed current ratio was 0.81 = 0.01; Fig. 9).
Furthermore, the model predicts a ratio of currents
under zero-trans (0/200 and 425/0) conditions of
—0.125, which is compatible with the observed current
ratio of —0.123 = 0.003.

The Is model has an obligatory Ussing flux ratio ex-
ponent of unity (we observed 0.97 = 0.03). Begenisich
and Busath (1981) also found a value (1.03 = 0.04) not
significantly different from 1, and independent of volt-
age between —22 and +33 mV. Though a one-site
model suffices to account for these data, multi-site
models that have low occupancy could also explain
them, but need more parameters than can be uniquely
determined. Such a multi-site (but single ion occu-
pancy) model for the Na channel has been invoked to
describe Na current-voltage relationships (Hille, 1975).
Begenisich (1987) concluded that, although two sites
are needed to explain the concentration dependence
of the Py/Py, permeability ratio, both sites are rarely si-
multaneously filled. We conclude that the Na channel
either has one effective binding site with relatively low
affinity or is a multi-site channel rarely occupied by
more than one Na ion at a time. It remains to be
seen whether other models of ion permeation such as
the Poisson-Nernst-Planck formulation (Nonner et al.,
1998; Levitt, 1999) can also explain the observed devia-
tions from independence.

Gating Model for the Persistent Na Channels

Three processes govern the theoretical curves in Figs. 4
and 10 A: channel gating, open channel permeation,
and (for the data at 266 mM external [Na]) block by ex-
ternal NMG. Our leastsquares fit to the data uses two in-
dependent (i.e., multiplicative) factors for steady-state
channel gating: one (p,) reflecting activation coupled to
voltage independent inactivation, and a second (p..) en-
compassing all other (voltage dependent) inactivation
processes. The first factor (p,) is the steady-state open
probability function for Scheme III:

(SCHEME 1II)

in which activation and voltage-independent inactiva-
tion are coupled (Goldman and Schauf, 1972; Beza-
nilla and Armstrong, 1977) rather than independent:

_ __al»)
Pa = T+ a(=)K, (10)
where a(e) describes the steady-state voltage depen-
dence of channel activation (Cz=—=0), and K, is a
voltage-independent equilibrium constant governing
inactivation (O——=1). For the steady-state activation
function, a(ee) we use a Boltzmann distribution

1

a(=) = ——5 = (11)
1+e ™
with midpoint V, = —7 mV and effective valence z, =

3.2, as determined by Vandenberg and Bezanilla (1991)
in L. pealei axons under ionic conditions comparable to
ours. For the voltage-dependent steady-state inactivation
factor (p..), a Boltzmann distribution function

1
P = 2 (V=V_)F’ (12)

RT

1+e

with empirical midpoint V, = —83 mV and effective va-
lence z., = 0.55 was found to be sufficient. The five pa-
rameters (Kgq, 24 Vs %o, and V) that describe the chan-

nel’s open probability (Egs. 10-12) are constrained by
the experimental open probability

P = 1 (13)

2,(V,~ V. 2 (V- V_)F.

e

for which we have an estimate at —30 mV (see Absolute
Magnitude...) so that effectively only four parameters
are independent. For algebraic convenience, we chose
to calculate K, from the others:

{Keq+l+e

2,(V,+30)F

K, = 1 {1+e T } (14)

“q —2_ (V. +30)F.
P|1+e e }

Egs. 10 and 12 may be combined with our one-site
(Is) model for open channel permeation (Eq. 6) to
give an overall model, p,p..Is (the product of Egs. 6, 10,
and 12), for the voltage dependence of steady-state
TTX-sensitive current. Although fitting this model to
normalized data (Fig. 10 A) discards information on
absolute current magnitude, we used the mean value of
TTX-sensitive currents measured under reference con-
ditions, corrected for rundown, to recover the lost in-
formation (see Absolute Magnitude...).
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Global Least-squares Fit to the Entive Data Set

We verified the ability of the p p.. Is model, augmented
with noncompetitive voltage-independent channel block
by external NMG, to account for our combined find-
ings on the following: (1) current ratios reflecting non-
independent permeation (Fig. 9 and similar experi-
ments not shown); (2) the voltage dependence of
steady-state TTX-sensitive inward and outward current
(Fig. 10 A); and (3) inhibition by external NMG (Figs.
6 and 10 A). To this end, we fitted the model (using a
single set of parameters) simultaneously to the entire
data set. The augmented p,p..1s model contains six in-
dependent parameters. Two (V, and z,) were taken
from measurements of the steady-state voltage depen-
dence of Na channel activation in squid giant axon
(Vandenberg and Bezanilla, 1991). Our global fit then
yields estimates (Table I) for the remaining four adjust-
able model parameters: Ky,(0), Ky Ve, and z.. K,
calculated via Eq. 14 from our estimate (0.0003; see
next section) of P, at —30 mV was 770, which is compa-
rable to the corresponding value of k/A = 1,000 esti-
mated for L. pealei by Bezanilla and Armstrong (1977).
The principal determinants of the shape of the I-V
curves in Fig. 10 A are the gating parameters (z,, V,, z.,
and V,,) that describe the voltage dependence of the
channel’s open probability in the steady state. The in-
versus outward current ratios (not only those obtained
at —30 mV in Fig. 9 and similar experiments, but also
those of the in- versus outward pairs at various voltages
in Fig. 10 A) constrain the estimation of Ky,(0), the
cause of nonindependent behavior. The NMG inhibi-
tion data in Fig. 6 and the 266/0 curve in Fig. 10 A
yield Ky (the voltage-independent equilibrium con-
stant for NMG block). All curves in Figs. 4 C, 6, and 10
are drawn using the parameters listed in Table I. A
striking feature of Fig. 10 A is the fact that the outward
currents do not steadily increase with voltage at positive
membrane potentials, as would be expected (Fig. 10 A,
dashed line) in a model lacking p.., the voltage-depen-
dent inactivation factor. Also indicative of voltage-
dependent inactivation is the inflection in the inward
I-V curve near 0 mV.

Absolute Magnitude of the Persistent TTX-sensitive Current

After correction for rundown, we found the persistent
TTX-sensitive current at —30 mV and 425 mM external
[Na] to have an amplitude of 3.3 = 0.3 pA cm™2 (11 ax-
ons). Baker et al. (1969) found a TTX-sensitive Na in-
flux in resting intact L. forbesi axons in 10 mM K artifi-
cial seawater (and resting potential likely near —60
mV) of ~1.6 pA cm™2, which is compatible with our re-
sults at —30 mV. To calculate the fraction of Na chan-
nels that remain open in the steady state requires
knowledge of the current expected at —30 mV if all Na
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channels were open. Using the maximum Na conduc-
tance of 130 mS cm ™2 for L. pealei axons at 20°C not ex-
posed to internal fluoride (Rosenthal and Bezanilla,
2001; and Rosenthal, J.J.C., and F. Bezanilla, personal
communication), we estimate the maximum possible
inward Na current at —30 mV to be ~11 mA cm™2,
which implies that the persistently open fraction of the
total population of channels at —30 mV averages only
~0.03% (i.e., P, = 0.0003, the value we used to con-
strain the other fit parameters via Eq. 13). This is more
than an order of magnitude smaller than the value of
0.43% predicted by the classical product m’(ee)h(e),
using the parameter values listed by Meves (1984).
Even after introducing a slow inactivation factor, s(eo)
(Rudy, 1978), the product m*(ee) h(e)s(eo) at —30 mV
predicts a persistent open channel fraction of 0.19%,
still much larger than our estimate. Fig. 10 B shows
steady-state absolute open probabilities calculated for
p, alone as well as for the product p,p.., using the least-
squares parameters found and the value calculated for
K., The latter defines the amplitude of the p, curve as-
ymptote at positive voltages. At —30 mV, the value of p,
(i.e., the steady-state open probability resulting solely
from activation coupled to voltage-independent inacti-
vation) is 0.0013. The voltage-dependent steady-state
inactivation factor p., of our model closes another 76%
of those open channels, yielding the open probability
of 0.0003 at —30 mV.

Assuming a Na-channel density in squid axon of
~600 pm? (Levinson and Meves, 1975) for a P, of
0.0003 there will be 1.8 X 107 channels cm™2 open in
the steady state at —30 mV, sustaining the observed
zero-trans inward current of 3.3 WA cm~2 when [Na], =
0.425 M, or 1.1 X 10° ions s™! channel™!. Eq. 8 then
yields an estimate for the second-order rate coefficient
k1 (0) = ~2 X 105 s M~L. Any correction of the 130-mS
cm~? maximum Na conductance value for the inactiva-
tion likely present in those experiments would tend to
increase our estimate of the maximum current at —30
mV (perhaps by about one third; Stimers et al., 1985).
That would, in turn, further reduce (by the same fac-
tor) our estimate of the fraction of persistently open
channels, engendering (via Eq. 13) minor adjustments
in our fit parameters and estimate of k,(0).

Voltage-dependent Inactivation, or Block?

We do not know the mechanism underlying the volt-
age-dependent inactivation, but one possibility is block
by internal Mg?*, which is well documented for K chan-
nels (for review see Stanfield, 1988). Indeed, Pusch et
al. (1989) have described voltage-dependent block of
outward Na current by internal Mg?* in Xenopus oo-
cytes injected with cRNA encoding rat brain type II Na
channels; K,; at 0 mV was 3-4 mM. Since the free
[Mg?*] in our experiments was ~12.5 mM (17.5 mM



TABLE 1

Parameters Determined from the Overall Least-squares Fit

Description Parameter Units Opverall fit value
Open channel permeation:
Equilibrium constant for internal
Na* binding Kyuio) M 0.61 = 0.08
Dissociation constant for external NMG block Knve mM 209 £ 15
Voltage-dependent inactivation (f,,)
gating parameters:
Midpoint voltage of p, V. mV —-83+*5
Effective valance of p., Zeo 0.55 = 0.03
Values calculated from those determined above
Calculated value of the equilibrium constant
for voltage-independent inactivation K, 770
Alternative parameters calculated for
internal Mg?* block (py):
Dissociation constant at 0 mV K, (0) mM 2.0
Fractional depth of Mg?* binding site
from the inside Byig 0.28

total [Mg?*] with 5 mM ATP present) we may consider
a model of voltage-dependent Na-channel block by in-
ternal free Mg?*, with the fraction of channels not
blocked given by

1
ng = ot 32 VE’ (15)
14+ [Mg" ] &7
Ki(0)

where K,,(0) is the dissociation constant for the puta-
tive Mg** binding site at 0 mV, 3, is the fraction of the
membrane potential (V) at the site, and the valence of
Mg?* (z) is 2. Eq. 15 has the same canonical form as the
empirical steady-state Eq. 12 we used to describe p.,
steady-state voltage-dependent inactivation. The two
formulations are identical when

RT Kyi(0)
V.= 1 g
- (QFSMg) n([Mg2+])

and z,, = 208,

Substitution of Eq. 15 for Eq. 12, thus, yields an alterna-
tive model, p,py, s, indistinguishable from p,p.. Is until
experiments are performed at various internal [Mg2?*].
The fit parameters obtained for this internal Mg?* block-
ing model are also listed in Table 1. With K, (0) = 2.0
mM and 3, = 0.28, the “pure” Mg** block model
yields the required 76% block at —30 mV.

Estimated K, for TTX Binding to Persistent Na Channels

Cuervo and Adelman (1970), recording the time course
of recovery of (depolarization induced) peak inward
current after TTX withdrawal, found a mean time con-
stant of 8.6 min at 7°C or (taking a Q;, of 2.0 calculated
from their data) 4.3 min at 17°C, which compares rea-

sonably with our value of 3.2 min (Fig. 2). Keynes et al.
(1975) have pointed out that recovery of current does
not straightforwardly reflect the rate of dissociation of
bound TTX since the toxin’s escape is retarded in the
restricted-diffusion Frankenhaeuser-Hodgkin (Franken-
haeuser and Hodgkin, 1956) space within which it can
rebind to vacant sites. After their treatment, the time
constant, T,,, for the latter part of the recovery is 1,,, =
N/ (PrrxKy), where N is the surface concentration of
TTX binding sites in moles per unit area, Pyryx is the ap-
parent permeability to TTX of the virtual boundary de-
limiting the Frankenhaeuser-Hodgkin space, and K, is
the TTX dissociation constant. Assuming a site density
of 600 pm~2 (Levinson and Meves, 1975) and a Py
value of 2 X 1075 cm s™! (Keynes et al., 1975), we calcu-
late a K, of 5 nM for TTX block of persistent Na-chan-
nel current, which is comparable to the value of 4.7 nM
obtained by Schwarz et al. (1973) for peak Na current in
frog myelinated nerve.

We thank Wolfgang Nonner for pointing out the work of Pusch
etal. (1989).

This work was supported by National Institutes of Health
grants NS-22979, HL-36783, and NS-11223.

Submitted: 13 September 2001
Revised: 18 January 2002
Accepted: 30 January 2002

REFERENCES

Adelman, WJ., and Y. Palti. 1969. The effects of external potassium
and long duration voltage conditioning on the amplitude of so-
dium currents in the giant axon of the squid, Loligo pealei. J. Gen.
Physiol. 54:589-606.

Almers, W., P.R. Stanfield, and W. Stithmer. 1983. Slow changes in
currents through sodium channels in frog muscle membrane. J.
Physiol. 339:253-271.

248 Na Channel Occupancy and Steady-state Open Probability



Baker, P.F.,, M.P. Blaustein, R.D. Keynes, J. Manil, T.I. Shaw, and R.A.
Steinhardt. 1969. The ouabain-sensitive fluxes of sodium and po-
tassium in squid giant axons. J. Physiol. 200:459-496.

Begenisich, T. 1987. Molecular properties of ion permeation
through sodium channel. Annu. Rev. Biophys. Biophys. Chem. 16:
247-263.

Begenisich, T., and D. Busath. 1981. Sodium flux ratio in voltage-
clamped squid giant axons. J. Gen. Physiol. 77:489-502.

Begenisich, T.B., and M.D. Cahalan. 1980a. Sodium channel per-
meation in squid axons I: reversal potential experiments. J. Phys-
iol. 307:217-242.

Begenisich, T.B., and M.D. Cahalan. 1980b. Sodium channel per-
meation in squid axons II: non-independence and current-volt-
age relations. J. Physiol. 307:243-257.

Bezanilla, F., and C.M. Armstrong. 1977. Inactivation of the sodium
channel: I. Sodium current experiments. J. Gen. Physiol. 70:549—
566.

Chandler, WK., and H. Meves. 1970. Evidence for two types of so-
dium conductance in axons perfused with sodium fluoride. J.
Physiol. 211:653-678.

Correa, A., and F. Bezanilla. 1994a. Gating of the squid sodium
channel at positive potentials. I. Macroscopic ionic and gating
currents. Biophys. J. 66:1853-1863.

Correa, A., and F. Bezanilla. 1994b. Gating of the squid sodium
channel at positive potentials. II. Single channels reveal two
open states. Biophys. J. 66:1864—1878.

Crill, W.E. 1996. Persistent sodium current in mammalian central
neurons. Annu. Rev. Physiol. 58:349-362.

Cuervo, L.A., and W.J. Adelman. 1970. Equilibrium and kinetic prop-
erties of the interaction between tetrodotoxin and the excitable
membrane of the squid giant axon. J. Gen. Physiol. 55:309-335.

Cummins, T.R., and FJ. Sigworth. 1996. Impaired slow inactivation
in mutant sodium channels. Biophys. J. 71:227-236.

Doyle, D.A., ]J. Morais Cabral, R.A. Pfuetzner, A. Kuo, ].M. Gulbis,
S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure
of the potassium channel: molecular basis of K* conduction and
selectivity. Science. 280:69-77.

Frankenhaeuser, B., and A.L. Hodgkin. 1956. The after-effects of
impulses in the giant nerve fibres of Loligo. J. Physiol. 131:341-376.

Goldman, L., and C.L. Schauf. 1972. Inactivation of the sodium
current in Myxicola giant axons. Evidence of coupling to the acti-
vation process. J. Gen. Physiol. 59:659-675.

Hille, B. 1975. Tonic selectivity, saturation and block in sodium
channels: a four-barrier model. J. Gen. Physiol. 66:535-560.

Hille, B. 1992. Ionic Channels of Excitable Membranes, 2nd ed.
Sinauer Associates, Inc., Sunderland, MA. 607 pp.

Hille, B., and W. Schwarz. 1978. Potassium channels as multi-ion
single file pores. J. Gen. Physiol. 72:409-442.

Hodgkin, A.L., and A.F. Huxley. 1952a. The currents carried by so-
dium and potassium ions through the membrane of the giant
axon of Loligo. J. Physiol. 116:449-472.

Hodgkin, A.L., and A.F. Huxley. 1952b. The dual effect of mem-
brane potential on sodium conductance in the giant axon of Lo-
ligo. J. Physiol. 116:497-506.

Hodgkin, A.L., and A.F. Huxley. 1952c. A quantitative description
of membrane current and its application to conduction and exci-
tation in nerve. J. Physiol. 117:500-544.

Hodgkin, A.L., and R.D. Keynes. 1955. The potassium permeability
of a giant nerve fibre. J. Physiol. 128:61-88.

Horn, R, J. Patlak, and C.F. Stevens. 1981. The effect of tetrameth-

249 RAKOWSKI ET AL.

ylammonium on single sodium channel currents. Biophys. J. 36:
321-327.

Keynes, R.D., F. Bezanilla, E. Rojas, and R.E. Taylor. 1975. The rate
of action of tetrodotoxin on sodium conductance in the squid gi-
ant axon. Phil. Trans. Roy. Soc. Lond. B. 270:365-375.

Kirsch, G.E., and M.F. Anderson. 1986. Sodium channel kinetics in
normal and denervated rabbit muscle membrane. Muscle Nerve.
10:738-747.

Levinson, S.R., and H. Meves. 1975. The binding of tritiated tetro-
dotoxin to squid giant axons. Phil. Trans. Roy. Soc. Lond. B. 270:
349-352.

Meves, H. 1984. Hodgkin-Huxley: Thirty years after. Curr. Top.
Membr. Transp. 22:279-329.

Morais-Cabral, J.H., Y. Zhou, and R. MacKinnon. 2001. Energetic
optimization of ion conduction rate by the K* selectivity filter.
Nature. 414:37-42.

Levitt, D.G. 1999. Modeling of ion channels. J. Gen. Physiol. 113:
789-794.

Nonner, W., D.P. Chen, and B. Eisenberg. 1998. Anomalous mole
fraction effect, electrostatics and binding in ionic channels. Bio-
phys. J. 74:2327-2334.

Ohta, M., T. Narahashi, and R. Keeler. 1973. Effects of veratrum al-
kaloids on membrane potential and conductance of squid and
crayfish giant axons. J. Pharmacol. Exp. Ther. 184:143-154.

Pusch, M., F. Conti, and W. Stithmer. 1989. Intracellular magne-
sium blocks sodium outward currents in a voltage- and dose-
dependent manner. Biophys. J. 55:1267-1271.

Rakowski, R.F. 1989. Simultaneous measurement of changes in cur-
rent and radiotracer flux in voltage-clamped squid giant axon.
Biophys. J. 55:663-671.

Rakowski, R.F., D.C. Gadsby, and P. De Weer. 1989. Stoichiometry
and voltage dependence of the sodium pump in voltage-
clamped, internally-dialyzed squid giant axon. J. Gen. Physiol. 93:
903-941.

Rosenthal, J.J.C., and F. Bezanilla. 2001. Changes in Na* and K*
conductance levels underlie species-dependent action potential
properties in squid giant axon. Biophys. J. 80:209a. (Abstr.)

Ruben, P.C,, J.G. Starkus, and M.D. Rayner. 1992. Steady state avail-
ability of sodium channels: interactions between activation and
slow inactivation. Biophys. J. 61:941-955.

Rudy, B. 1978. Slow inactivation of the sodium conductance in
squid giant axon: pronase resistance. J. Physiol. 283:1-21.

Schwarz, J.R., W. Ulbricht, and H.-H. Wagner. 1973. The rate of ac-
tion of tetrodotoxin on myelinated nerve fibres of Xenopus laevis
and Rana esculenta. J. Physiol. 233:167-194.

Simoncini, L., and W. Stthmer. 1987. Slow sodium channel inacti-
vation in rat fast-twitch muscle. J. Physiol. 383:327-337.

Stanfield, P.R. 1988. Intracellular Mg?* may act as a co-factor in ion
channel function. Trends Neurosci. 11:475-477.

Stimers, J.R., F. Bezanilla, and R.E. Taylor. 1985. Sodium channel
inactivation in the squid giant axon. Steady state properties. J.
Gen. Physiol. 85:65-82.

Taylor, C.P. 1993. Na* currents that fail to inactivate. Trends Neuro-
sci. 16:455-460.

Ussing, H.H. 1949. The distinction by means of tracers between ac-
tive transport and diffusion. Acta Physiol. Scand. 19:43-56.

Vandenberg, C.A., and F. Bezanilla. 1991. Single-channel, macro-
scopic, and gating currents from sodium channels in the squid
giant axon. Biophys. J. 60:1499-1510.



