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A B S T R A C T   

Background: Fractal geometry measures the morphology of the brain and detects CNS damage. We aimed to 
assess the longitudinal changes on brain’s fractal geometry and its predictive value for disease worsening in 
patients with Multiple Sclerosis (MS). 
Methods: We prospectively analyzed 146 consecutive patients with relapsing-remitting MS with up to 5 years of 
clinical and brain MRI (3 T) assessments. The fractal dimension and lacunarity were calculated for brain regions 
using box-counting methods. Longitudinal changes were analyzed in mixed-effect models and the risk of 
disability accumulation were assessed using Cox Proportional Hazard regression analysis. 
Results: There was a significant decrease in the fractal dimension and increases of lacunarity in different brain 
regions over the 5-year follow-up. Lower cortical fractal dimension increased the risk of disability accumulation 
for the Expanded Disability Status Scale [HR 0.9734, CI 0.8420–0.9125; Harrell C 0.59; Wald p 0.038], 9-hole 
peg test [HR 0.9734, CI 0.8420–0.9125; Harrell C 0.59; Wald p 0.0083], 2.5% low contrast vision [HR 
0.4311, CI 0.2035–0.9133; Harrell C 0.58; Wald p 0.0403], symbol digit modality test [HR 2.215, CI 
1.043–4.705; Harrell C 0.65; Wald p 0.0384] and MS Functional Composite-4 [HR 0.55, CI 0.317–0.955; Harrell 
C 0.59; Wald p 0.0029]. 
Conclusions: Fractal geometry analysis of brain MRI identified patients at risk of increasing their disability in the 
next five years.   

1. Introduction 

The course of Multiple Sclerosis (MS) is highly unpredictable, but 
tissue damage accumulates overtime at different speeds, creating sig
nificant clinical heterogeneity (Thompson et al., 2018; Kotelnikova 
et al., 2017). Due to the high uncertainty regarding the disease course in 
each patient, prognostic biomarkers are being pursued to support the 
decision-making process and to employ precision medicine when 
defining the best therapeutic regimen for a given patient (Pulido-Val
deolivas et al., 2017). Brain magnetic resonance imaging (MRI) is the 
most informative and well-studied prognostic biomarker, having been 
included in the diagnostic criteria (Polman et al., 2010) and in the 
recommendations to assess the response to therapy as a predictive 
biomarker (Wattjes et al., 2015). 

The fractal dimension of the brain is altered significantly in in
dividuals with MS, both that corresponding to the gray and the white 
matter obtained from either 2D or 3D MRI images (Esteban et al., 2007, 
2009). Indeed, similar alterations to the fractal dimension of the brain 
have also been found in other CNS diseases like dementia, stroke, or 
conditions like prematurity (Esteban et al., 2010; Di Ieva et al., 2015). 
The brain shows such fractal properties over certain scales, and hence, 
analyzing the fractal geometry (fractal dimension or lacunarity) of the 
brain reflects abnormalities due to tissue damage (Di Ieva et al., 2014). 
Changes in the fractal dimension are associated with the presence of 
focal lesions or microscopic alterations to the shape of the grey and 
white matter (Di Ieva et al., 2015). The higher the fractal dimension, and 
the lower the lacunarity, the more complex and healthier is the brain. 
For this reason, fractal geometry is altered as brain damage increases, 
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and it is therefore associated with corresponding disability. 
Because the fractal dimension of the brain is calculated from T1 se

quences, it is a metric that can be readily applied in the clinic without 
the need for a specialized scanner or sequences. Indeed, the brain’s 
fractal dimension is little influenced by variability in the scanner and 
sequences, becoming less noisy than other MRI metrics (Di Ieva et al., 
2015; Krohn et al., 2019). For this reason, the fractal dimension analysis 
of brain MRI is being pursued as a potential biomarker to monitor brain 
damage. 

The objective of this study was to assess the changes in fractal ge
ometry of the brain in people with MS and to assess whether changes in 
fractal dimension predicts the changes in disability accumulation in the 
short to medium term (up to 5 years). 

2. Methods 

2.1. Patients 

We recruited the first 146 consecutive relapsing-remitting MS pa
tients fulfilling the criteria approved at the time of inclusion (2010 
McDonald criteria (Polman et al., 2010) of the prospective MSVi
sualPath cohort, followed at the Hospital Clinic of the University of 
Barcelona (Spain), which started in 2011 and is described in detail 
elsewhere (Martínez-Lapiscina et al., 2014; Andorra et al., 2018). We 
also collected 34 healthy volunteers for baseline comparisons. Patients 
were allowed to change disease-modifying therapies as indicated pre
viously (Andorra et al., 2018), and they were subjected to a baseline and 
annual clinical and brain MRI assessment over 5 years, except for year 4. 
Thus, five assessments were made on each patient. The study was 
approved by the Ethical Committee of the Hospital Clinic of Barcelona, 
and the patients were recruited by their neurologist after providing their 
signed informed consent. 

2.2. Clinical assessments 

The variables collected included the Expanded Disability Status Scale 
(EDSS) (Kurtzke, 1983), MS Severity scale (MSSS) (Roxburgh et al., 
2005), Age-Related MSSS (ARMSS) (Manouchehrinia et al., 2017), the 
MS functional composite 4 (MSFC-4) (Goldman et al., 2019), Timed 25 
feet Walking Test (T25WT) (Motl et al., 2017), 9-Hole Peg Test (9HPT) 
(Feys et al., 2017), Symbol Digit Modality Test (SDMT) (Strober et al., 
2018), low contrast visual acuity using the Sloan 2.5% contrast cards 
(SL25) (Balcer et al., 2017), and No Evidence of Disease Activity (NEDA, 
defined as no relapses, no increase on the EDSS, and no new Gad+ or T2 
lesions) (Giovannoni et al., 2018). At the time of analysis, the number of 
cases that either has not achieved a 5-year follow-up or for which there 
was missing data regarding the different clinical scales were: EDSS: 0; 
9HPT: 24; T25WT: 29; SDMT: 8; and SL25: 9. The EDSS and the other 
outcomes were confirmed at each yearly visit based on the results of the 
clinical visit 6-months earlier to define the Confirmed Disability Accu
mulation (CDA). The EDSS related CDA was established as an increase of 
1 point on the EDSS (for an EDSS at baseline between 0 and 5.5) or of 0.5 
points for patients with an EDSS at baseline ≥ 5.5 confirmed after 6 
months. For the 9HPT and T25WT, the CDA was defined as a 20% 
change in each score, whereas it was 4 points for the SDMT and 7 letters 
for the SL25 confirmed after 6 months as described in (Goldman et al., 
2019). 

2.3. Brain MRI acquisition and image processing 

The MRI acquisition and analysis carried out on this cohort is 
described in detail in (Andorra et al., 2018). Briefly, MRI studies were 
performed with a 3 T Magnetom Trio scanner (Siemens). The scans were 
acquired using a 32-channel phased-array head coil. In this study, we 
used the 3-dimensional (3D) structural T1-weighted voxel 
magnetization-prepared rapid gradient echo (T1-MPRAGE, voxel size 

0.9 × 0.9 × 0.9 mm3), 3-D T2-fluid-attenuated inversion recovery (T2- 
FLAIR) images with the same voxel size to quantify the change in brain 
volume. In short, the T2-FLAIR images were registered to the T1- 
MPRAGE scans to ease the manual segmentation of the lesions by a 
trained neurologist. Moreover, post-gadolinium T1 (gradient-echo) axial 
images (voxel size 0.7 × 0.6 × 3.0 mm3) were used to quantify the 
gadolinium-enhancing lesions (Gad+). Apart from the quantitative im
aging, a trained neuroradiologist and a trained neurologist assessed the 
brain MRI, comparing with the previous images to define the presence of 
new T2 and Gad+ lesions (Andorra et al., 2018). The T2 lesion volume 
and volumetric analysis of the same cohort are described in detail 
elsewhere (Andorra et al., 2018). 

2.4. Fractal geometry analysis of brain MRI 

The fractal dimension and lacunarity were calculated on the T1 
images segmented in the standard space with the box-counting method 
(Fig. 1) (Zhang et al., 2006), as explained in detail elsewhere (Marzi 
et al., 2018; Goni et al., 2013). We calculated the tertile distributions of 
fractal geometry variables (Table S1). We previously showed the sta
bility of the fractal dimension estimated from repeated-acquisition T1 
images both at cross-sectional and longitudinal level (Krohn et al., 
2019). Because in this study, we have used 3D T1 images, the value of 
the fractal dimension of these images always lies between 2 (2D) and 3 
(3D), the most significant differences falling between the second and 
third decimal within the same region of interest. 

2.5. Statistical analysis 

All the statistical analyses were carried out using the R software. The 
normal distribution of the variables was tested with the Shapiro-Wilks 
test. We described the baseline features of the study population and 
the distribution of events (CDA) using absolute and relative frequencies 
for the categorical variables. For quantitative variables, we used the 
medians and P25 and P75 to describe the baseline features of the study 
population. T-tests, ANOVA, and pairwise comparisons were performed 
to compare the groups as required. 

We used a mixed-effects regression model to assess the rate of change 
in the brain fractal geometry, accounting for the intraparticipant cor
relation with age as the main fixed effect and the individual as the 
random effect. The threshold for statistical significance was fixed at p <
0.05. No imputation strategies were employed, and missing data was 
omitted, assuming it to be missing at random. The percentage of missing 
data for independent variables did not exceed 7% in any of the datasets 
at each visit. 

Survival analysis was performed using the Cox Proportional Hazard 
regression analysis. Survival events were defined as the time to the first 
event, as defined by the disability scales, and confirmed in two 
consecutive visits 6 months apart (6-month CDA). The dependent vari
ables were the fractal dimension and lacunarity of the whole brain (WB), 
cortex, GM, DGM, and WM. Independent variables were tested in the 
univariate analysis (sex, age, disease duration, MRI variables (T2 lesion 
volume, number of T2 lesions, cortical, GM, DGM, and WM volume) and 
the significant ones were included in the multivariate analysis. T2LV and 
number of T2 lesions were excluded for NEDA analysis because this 
outcome is based on the presence of new T2 lesions. We used propor
tional hazards models to assess the univariate effect of each of the 
baseline features on the risk of disability worsening. Considering that 
fractal dimension changes happen after the fourth decimal, hazard ratios 
were calculated as the rate of CDA per 10,000 unit change of fractal 
dimension. We evaluated time to first disability worsening event. 
Therefore, patients with disability worsening over the study were 
censored. We used the likelihood ratio test and Harrell’s C statistic to 
evaluate the goodness of fit of the proportional hazard models. Kaplan- 
Meier plots were used to show the survival curves as cumulative events. 
The significance of CDA events in each scale was calculated using the 
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Wald test for a Cox analysis. Two-tailed p values of less than 0.05 were 
deemed significant. 

2.6. Data availability 

that anonymized data will be shared by request from any qualified 
investigator. 

3. Results 

3.1. Clinical characteristics of the cohort 

The cohort was composed of 146 MS patients of the relapsing- 
remitting subtype with a disease duration < 10 years and mild to 
moderate disability (median EDSS 1.5) (Table 1). The control group was 
composed of 34 healthy volunteers matched to the MS cohort by sex (18 

Fig. 1. Fractal geometry of the brain. A) Brain MRI 
images from T1 3D scans are segmented into the 
different structures (cortex, grey, and white matter), 
and the lesions are masked. The fractal dimension 
(FD) and lacunarity (LAC) is calculated using the 
box-counting method, applying boxes of different 
size (by counting how many voxels the brain shape 
is filled at each size); B) Fractal dimension of the 
various brain structures decreases as tissue damage 
augments (figure shows the comparison between 
patients below and above EDSS 2.0), representing 
an indicator of tissue damage and roughness. Simi
larly, lacunarity increases along with disability as an 
indicator of higher empty spaces in the CNS tissue: 
upper graphs show the comparison of either the 
fractal dimension or lacunarity of the cortex with 
brain damage (healthy controls, and MS cases with 
EDSS below or above EDSS 2.0); the lower figures 
show representative segmented cortical or white 
matter regions for each subgroup (controls, MS with 
EDSS ≤ 2.0 and MS with EDSS > 2.0).   
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women, 53%) and age (median age 33.5, IQR 26.2–42.5 years). After a 5 
year follow-up (median follow-up 4.76 years, range 2.84–5.02), and 
with a follow-up of 364 [351–379] days for annual visits, 2 relapsing- 
remitting cases converted to a secondary progressive disease, 36 pa
tients fulfill NEDA, 25 (17%) patients had confirmed disability accu
mulation (CDA) for the EDSS, 17 (11%) had CDA based on the 9HPT for 
the dominant hand, and 7 patients for the non-dominant hand, 30 (20%) 
had CDA based on the T25WT, 61 (42%) had CDA based on SL25, 55 
(38%) had CDA based on SDMT and 104 (71%) had CDA based in the 
MSFC-4. By the end of the 5 years follow-up, patients had a mean in
crease in the EDSS of 0.384 (Table S2). T2 lesion volume and the volume 
of the cortex, grey matter and white matter, values at baseline for MS 
cases are shown in Table 1, whereas the comparison between patients 
and controls at baseline and at each visit is shown in Tables S3 and S4. 

3.2. Fractal geometry analysis of brain MRIs 

We computed the fractal geometry of the brain structures to assess 
whether it differed significantly between MS patients and controls. As a 
result, the whole brain (WB), cortical and deep grey matter (DGM) 
fractal dimension, and the whole brain (WB), cortical and white matter 
(WM) lacunarity were seen to differ significantly between the patients 
and controls at baseline (Table 2). Moreover, the longitudinal assess
ment over the 5-year follow-up showed a significant decrease in the 

fractal brain dimension and an increase in lacunarity (Fig. 2 and 
Table S4). 

To assess the changes in brain fractal geometry along with disease 
duration, we performed linear mixed models that fitted the distribution 
of the annual changes in the fractal dimension and lacunarity of the 
brain regions studied. The models showed significant changes in the 
cortical and WM fractal dimension and for cortical, GM, and WM lacu
narity in association with the disease duration (Fig. 3 and Table S5). We 
found a decline in the cortical fractal dimension of 6.546 × 10− 4 units/ 
year (p < 0.001), a decline of WM fractal dimension of 8.078 × 10− 4 

units/year (p < 0.0001), and a decline in the model for the GM fractal 
dimension of 1.601 × 10− 4 units/year (p < 0.001). Regarding brain 
lacunarity, we found a significant increase in cortical lacunarity at a rate 
of 7.356 × 10− 3 units/year (p < 0.001), an increase of GM lacunarity of 
5.328 × 10− 4 units/year (p < 0.001) and an increase of WM lacunarity 
of 6.564 × 10− 4 units/year (p < 0.001). 

3.3. Risk of disability accumulation based on the analysis of the fractal 
dimension 

The dataset was composed of 558 observations over time obtained 
from 146 MS patients (range: 217 to 2,197 days; 5 visits and up to 5 
years follow-up). We found that the significant variables in the univar
iate analysis were fractal geometry variables and age, and consequently 
the multivariate analysis was adjusted by age. Regarding the primary 
outcome, the CDA based on the EDSS, the Cox analysis showed a lower 
risk of EDSS worsening with higher cortical fractal dimension [HR 
0.9734, CI 0.8420–0.9125; Harrell C 0.59; Wald p 0.038] (Fig. 4). 

Concerning the secondary outcomes, we found significant Cox 
models for the 9HPT, SL25, SDMT and MSFC-4 (Fig. 4). The Cox model 
for CDA of the 9HPT was significant for cortical fractal dimension [HR 
0.9734, CI 0.8420–0.9125; Harrell C 0.59; Wald p 0.0083]. The Cox 
model of CDA for SL25 was significant for cortical fractal dimension [HR 
0.4311, CI 0.2035–0.9133; Harrell C 0.58; Wald p 0.0403] cortical 
lacunarity [HR 0.497, CI 0.2554–0.9697; Harrell C 0.58; Wald p 0.028] 
and grey matter lacunarity [HR 0.4445, CI 0.2177–0.9075; Harrell C 
0.61; Wald p 0.0260]. Indeed, Cox model for SDMT were significant for 
cortex lacunarity [HR 2.215, CI 1.043–4.705; Harrell C 0.65; Wald p 
0.0384]. Finally, the Cox model for CDA of the MSFC-4 was significant 
for cortical fractal dimension [HR 0.55, CI 0.317–0.955; Harrell C 0.59; 
Wald p 0.0029], and grey matter fractal dimension [HR 0.532, CI 
0.326–0.868; Harrell C 0.57; Wald p 0.026]. Finally, we found no sig
nificant models for CDA based on remaining as NEDA by year 5. 

3.4. Sensitivity analysis 

Considering the relationship between brain volume or presence of 
lesions with disability worsening, we conducted the multivariate anal
ysis by adjusting by T2 lesion volume and the volume of the cortex and 
grey matter (even if they were not significant in the univariate analysis). 
The Cox analysis showed for higher risk of EDSS worsening for cortical 
fractal dimension when adjusting for T2LV [HR 0.9978, CI 
0.9956–0.9999; Harrell C 0.59; Wald p 0.0411] and a trend for higher 
risk of EDSS worsening when adjusting for GM volume [HR 0.9975, CI 
0.9948–1.000; Harrell C 0.60; Wald p 0.0651]. 

4. Discussion 

In this study, we have shown that the cortical fractal dimension 
identifies a subset of patients with brain damage at a higher risk of 
disability progression in short to mid-term. By comparing the risk based 
on the cortical and GM fractal geometry, we found cut-offs that are 
associated with a higher risk of disability accumulation on several 
disability scales. 

Prognostic biomarkers can help to assess the risk of increasing 
disability in the short or long-term, and whether an individual would 

Table 1 
Clinical characteristics of the MS cohort at baseline. The data are shown as the 
mean and standard deviation (SD), except for the EDSS, which is also shown as 
the median and interquartile range (IQR).  

Clinical Characteristics MS 
(n = 146) 

Sex (female/male) 103 / 43 
Age (years) 40.1 (9.19) 
Disease duration (years) 8.12 (6.89) 
Subtype  

RRMS 140 
CIS 6 

Disease modifying therapies1 (Y/N) 117/29 
ARMSS 3.03 (1.58) 
MSSS 2.87 (1.62) 
EDSS (median (IQR)) (mean (SD)) 1.5 (1–2) 1.63 (0.87) 
MSFC (z score) 0.25 (0.45) 
9HPT dominant hand (sec) 20.3 (3.13) 
9HPT non-dominant hand (sec) 21.8 (3.13) 
T25WT (sec) 4.58 (1.72) 
SDMT (# symbols) 54.2 (13.6) 
SL25 (# letters) 24.1 (11.5) 
Cortex volume (mm3) 613.56 (51.02) 
GM volume (mm3) 691.27 (56.21) 
WM volume (mm3) 576.74 (41.24) 
T2LV (mm3) 8.74 (9.56)  

1 Disease modifying drugs usage: fingolimod: 3; glatiramer acetate: 28; 
interferon beta: 68; natalizumab: 10; teriflunomide: 3; dimethyl-fumarate: 5. 

Table 2 
Comparison of fractal geometry between MS patients and controls at baseline. 
The class comparison was achieved with a T-test for independent samples. 
Fractal geometry measurements are unitless.   

MS Healthy p-value 

Measurement Mean SD Mean SD  

Fractal dimension whole brain  2.670  0.006  2.675  0.005  0.000769 
Fractal dimension cortex  2.568  0.017  2.573  0.020  0.014 
Fractal dimension grey matter  2.617  0.009  2.617  0.011  0.948 
Fractal dimension white 

matter  
2.560  0.015  2.564  0.014  <0.0001 

Lacunarity whole brain  0.298  0.012  0.287  0.009  <0.0001 
Lacunarity cortex  0.442  0.020  0.428  0.022  <0.0001 
Lacunarity grey matter  0.448  0.014  0.443  0.016  0.003 
Lacunarity white matter  0.504  0.018  0.494  0.016  <0.0001  
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benefit from a higher efficacy therapy and, consequently, accept the 
associated risks (Pulido-Valdeolivas et al., 2017). These fractal dimen
sion based biomarkers are intended to complement currently validated 
biomarkers of MS prognosis, such as T2 lesion volume or grey matter, 
white matter, spinal cord, or thalamic volumes (Sastre-Garriga et al., 
2020). To achieve greater accuracy and power in predicting future 
disability, a combination of multimodal biomarkers can be pursued 
using composite scores (Uher et al., 2017; von Gumberz et al., 2016) or 
machine-learning approaches (Bejarano et al., 2011). Future studies 
combining fractal geometry analysis with other validated MRI markers 
would probably reveal better prognostic biomarkers for MS. 

The fractal dimension is a measure of the topological complexity of 
objects, which describes their “roughness” based on the self-similarity 
principle (Mandelbrot, 1982). The more irregular an object is, the 
higher its fractal dimension value, providing a quantitative index of the 
coarseness of natural objects. Due to the logarithmic calculation of 
fractal dimension, small changes (second to third decimal) in the fractal 
dimension correspond to substantial differences in the shape of the ob
ject. Another fractal parameter is lacunarity, a measure of “gappiness” of 
an object. While the fractal dimension measures how much space is 
filled, lacunarity complements the fractal dimension value by measuring 
how the object fills the space (Di Ieva et al., 2014). Although the brain 
(either the cortex or the grey-white matter interface) is not a perfect 
mathematically fractal structure, principally because it is not strictly 
self-similar, analyzing the fractal dimension of the brain can still be 
useful to quantify cortical and subcortical morphological complexity, i. 
e.: ‘the roughness and gappiness of the brain’ (Di Ieva et al., 2015). The 
fractal dimension of brain MRI images can highlight changes in several 
neurological diseases, such as Alzheimer’s disease, amyotrophic lateral 
sclerosis, or epilepsy (King et al., 2010; Rajagopalan et al., 2013; Lin 
et al., 2007). We attribute this sensitivity to the nature of the fractal 
geometry, where the site and shape of tissue damage has an essential 
influence on the final measurement. Therefore, adding this extra infor
mation to the proposed descriptor allows subtle changes in the brain to 
be captured, which would otherwise remain invisible to the human eye. 
Indeed, the brain’s fractal dimension is less influenced by scanner and 
sequence variability (Di Ieva et al., 2015; Krohn et al., 2019), and for this 
reason, it can complement other imaging markers, such as thalamic or 

spinal cord volume. 
Fractal geometry provides a different information than texture 

analysis. Texture analysis of objects are used to describe complex pat
terns that describes uniformity, density, linearity, roughness among 
other properties in tissues like the brain (Maani et al., 2015; Nedelec 
et al., 2004). In a way, this could be confused by the shape complexity 
measured by the fractal geometry such as fractal dimension or lacu
narity. Texture could be used to segment specific tissues with a given 
pattern and characteristics whereas fractal geometry would give a sta
tistical metric over the desired tissue. Generally speaking, the features of 
certain entities are sometimes better defined by its content than by its 
shape and vice versa. Quantification of image texture has been suc
cessfully used in many fields, including in brain damage. In medical 
imaging, dissemination of healthy brain tissues from tumors and edema 
has been tackled by texture analysis approaches. However, the 
complexity of a tumor’s shape is rather weak to be unique by its own, i. 
e., the same shape could be drawn within a healthy tissue if one neglect 
the intensity or contrast of the region of interest. Instead, it has been 
demonstrated that tumors and brain lesions exhibit particular intensity 
patterns (Zhang et al., 2019). The fractal geometry is a complementary 
measure that can add extra information to a predefined region of interest 
that has been previously delineated. Ultimately, this sort of metrics 
could be used to improve the accuracy of segmentation approaches, 
adding extra features to the texture. 

Our study has some limitations, not least that the cohort consisted of 
patients with RRMS, with little disability and intermediate disease 
duration. Although this dataset would not be representative of the more 
advanced disease and PMS, the results may be useful to patients and 
physicians as support to therapeutic decision-making in such an early 
population. Future prospective multicenter studies that include more 
advanced and progressive patients will be necessary to fully define the 
fractal geometry of the brain as a prognostic biomarker for MS. Second, 
the control group was only assessed at baseline. For this reason, longi
tudinal data is not available for these cases that might be useful to clarify 
the role of age-independent brain damage on fractal geometry changes. 
Patients were allowed to change their DMDs during the follow-up for 
ethical reasons, which may have also introduced variability in the 
follow-up. However, the effect of each immunotherapies on brain fractal 

Fig. 2. Longitudinal changes in the fractal geometry of the brain in patients with MS. The longitudinal changes during the 5-year follow-up are shown as the mean 
and standard error. A time-series analysis was done with a repeated ANOVA test. WB, whole-brain; GM, grey matter; WM, white matter; DGM, deep grey matter: *p 
< 0.01; **p < 0.001; ***p < 0.0001. 
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geometry is unknown. In our study, the univariate analysis did not find a 
significant role of T2LV and brain volumes, which has been previously 
described as predictors of future disability. This can be due to the fact 
that our cohort was composed of RRMS with low to moderate severity 
and disease duration that displayed low changes in the volumetry and 
T2LV during the follow-up. For this reason, we think that such lack of 

significance was related with lack of events in our cohort. 
In summary, the fractal dimension of brain MRIs may represent a 

biomarker for disease monitoring, and prognosis in patients with MS. 
Validation in multi-centric prospective cohorts is foreseen. 

Fig. 3. Dynamics of brain fractal geometry in Multiple Sclerosis patients during disease progression. The effect of disease duration on the fractal geometry of several 
brain structures was modeled using linear mixed-effects models, with age as fixed effects and individuals as the random effect. Colored points joined by a line 
represent the individual trajectories of FD changes, the thicker curves represent the individual fit of the model, and the dark red line represents the population model. 
A) cortical fractal dimension (FD); B) White matter (WM) fractal dimension; C) cortical lacunarity (LAC); D) Grey matter (GM) lacunarity; E) white matter lacunarity. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. The risk (cumulative probability) of confirmed disability progression based on cortical or grey matter fractal geometry cut-offs. Survival analyses were done 
using Kaplan Meyer curves, and the significance is reported as the p-value of the log-rank test. Fractal dimension variables were divided in three groups using the 
tertiles of cortical fractal dimension – high > 2.58, medium 2.58–2.56, low < 2.56; and Grey matter (GM) fractal dimension – high > 2.622, medium 2.622–2.616, 
low < 2.616. 
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