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Background: Recent studies have shown that the patients with spinocerebellar ataxia

type 3 (SCA3) may not only have disease involvement in the cerebellum and brainstem

but also in the cerebral regions. However, the relations between the widespread

degenerated brain regions remains incompletely explored.

Methods: In the present study, we investigate the topological properties of the

brain networks of SCA3 patients (n = 40) constructed based on the correlation of

three-dimensional fractal dimension values. Random and targeted attacks were applied

to measure the network resilience of normal and SCA3 groups.

Results: The SCA3 networks had significantly smaller clustering coefficients (P < 0.05)

and global efficiency (P < 0.05) but larger characteristic path length (P < 0.05) than

the normal controls networks, implying loss of small-world features. Furthermore, the

SCA3 patients were associated with reduced nodal betweenness (P < 0.001) in the left

supplementary motor area, bilateral paracentral lobules, and right thalamus, indicating

that the motor control circuit might be compromised.

Conclusions: The SCA3 networks were more vulnerable to targeted attacks than

the normal controls networks because of the effects of pathological topological

organization. The SCA3 revealed a more sparsity and disrupted structural network with

decreased values in the largest component size, mean degree, mean density, clustering

coefficient, and global efficiency and increased value in characteristic path length. The

cortico-cerebral circuits in SCA3 were disrupted and segregated into occipital-parietal

(visual-spatial cognition) and frontal-pre-frontal (motor control) clusters. The cerebellum

of SCA3 were segregated from cerebellum-temporal-frontal circuits and clustered into

a frontal-temporal cluster (cognitive control). Therefore, the disrupted structural network

presented in this study might reflect the clinical characteristics of SCA3.
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INTRODUCTION

SCA3 is a hereditary neurodegenerative disorder caused by
an aberrant gene mutation (CAG expansion) in chromosome
14q32 (do Carmo Costa and Paulson, 2012). Progressive
ataxia, external ophthalmoplegia, dysarthria, dysphagia,
pyramidal signs, dystonia, rigidity, and peripheral neuropathy
are characteristic symptoms of SCA3 (do Carmo Costa and
Paulson, 2012). Many neuropathology (Durr et al., 1996;
Koeppen, 2005; Rüb et al., 2008; Scherzed et al., 2012; Takiyama
et al., 2012) and neuroimaging studies (Klockgether et al.,
1998; Wang et al., 2007, 2012a; Schulz et al., 2010; Eichler
et al., 2011; D’Abreu et al., 2012; Guimaraes et al., 2013;
Reetz et al., 2013; Adanyeguh et al., 2015; Stefanescu et al.,
2015) have reported structural and functional degeneration
in the brainstem and cerebellum (cortex, vermis, peduncles,
and deep nuclei), which can explain the occurrence of most
ataxia symptoms in SCA3 patients. Moreover, many related
studies have demonstrated that SCA3 patients may exhibit
varieties of non-cerebellum-related symptoms (Pedroso et al.,
2013). These results have revealed that cerebral disease also
influences the clinical characteristics of SCA3. Therefore, a better
understanding of the effects of cerebral degeneration on the
brains of SCA3 patients is crucial. Thus far, most studies have
only reported degeneration in separate cerebral regions, and
global investigation studies, such as brain network analyses, are
scant.

In contemporary neuroscience, the materialization of many
brain functions relies on dynamical connections between various
brain regions (Catani et al., 2012). The functional and structural
brain connections can be considered a brain network-“the
connectome” (Sporns et al., 2005). Graph theoretical analysis
provides a powerful framework for describing the topology of
structural or functional brain networks (Rubinov and Sporns,
2010). Several network properties, including the characteristic
path length, clustering coefficient, global efficiency, and
betweenness centrality, can indicate the integration, segregation,
and centrality of a brain network (Aerts et al., 2016). Changes
in the properties of structural or functional brain networks
have been observed in several neurological, developmental,
and psychiatric disorders through graph theoretical analysis
(Braun et al., 2009; Damien et al., 2009; Griffa et al., 2013; van
Straaten and Stam, 2013; Cao et al., 2015). The maturing of
human brain revealed a trend toward segregation (decrease
in correlation strength) between regions close in anatomical
space and integration (increase in correlation strength) between
selected regions distant in space. The organization of multiple
functional networks shifts from a local anatomical emphasis
in children to a more distributed architecture in young adults
(Damien et al., 2009). Moreover, network resilience, a property
employed to estimate the ability of a network to withstand
damage, can be used to evaluate network organization in
addition to the aforementioned general network properties
(Aerts et al., 2016). Random attacks and targeted attacks are
two common approaches for evaluating network resilience
(Albert et al., 2000). Some studies have demonstrated alterations
in network resilience in some neurological and psychiatric

disorders (He et al., 2008; Arzouan et al., 2014; Jiang et al., 2016;
Mak et al., 2016).

In our previous study, we reported that SCA3 patients
exhibited disruption of the structural correlation between the
parietal-occipital lobes and cerebellar regions (Huang et al.,
2017). In that study, the structural correlation of paired brain
regions was measured using three-dimensional fractal dimension
(3D-FD) values (Huang et al., 2017). The results indicated
that cerebral neurodegeneration may disorganise the structural
networks of SCA3 patients (Alexander-Bloch et al., 2013;
Evans, 2013). Therefore, in the present study, we hypothesized
that SCA3 patients would exhibit alterations in the brain
structural networks, and we investigated the alterations using
graph theoretical analysis. We expected that SCA3 patients
would present abnormalities in network parameters, such as
characteristic path length, clustering coefficient, and global
efficiency, and have altered betweenness centrality of some
essential nodes. In addition, the networks of SCA3 patients are
anticipated to be more vulnerable to random attacks and targeted
attacks.

MATERIALS AND METHODS

Patients and Controls
The study procedures were in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of
Taipei Veterans General Hospital. Forty-seven normal subjects
(23 males and 24 females) and forty-five SCA3 patients (23 males
and 22 females) were recruited in the beginning of this study.
Participants of age over 70 or below 30 years old in each group
were excluded so that the numbers of male and female in each
group and between two groups were the same tominimize the age
and gender effects. Additionally, the T1-weighted images of each
participant were examined by an experienced neuroradiologist
to verify the quality of image. Subjects with blur boundary of
atrophied cerebellum or cerebral T1 images were also excluded.
Forty SCA3 patients and 40 age- and sex-matched healthy
controls participated in this study after exclusion. All participants
provided written informed consent that was approved by the
Ethics Committee of Taipei Veterans General Hospital. All SCA3
patients were evaluated using the Scale for the Assessment and
Rating of Ataxia (Schmitz-Hübsch et al., 2006). A self-reported
age at onset was obtained from each patient. The age at onset
was defined as the age at which a patient showed the first sign
of any ataxic symptom (Jardim et al., 2001). None of the healthy
controls exhibited any neurological symptoms before or during
the study period. The demographic data of the participants are
listed in Table 1. There was no significant difference of age or
gender between control and SCA3 groups. The SARA scores for
the SCA3 patients revealed that they were in status of walker gait.
The mean CAG repeat length for the SCA3 group was 73.2± 4.0.

Image Acquisition
A 1.5-T MRI system was used to obtain the brain images of
each participant. The MRI pulse sequence included an axial,
T1-weighted, three-dimensional, fast-spoiled, gradient-recalled
acquisition of steady state images [repetition time [TR] =
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TABLE 1 | Demographic data of normal and SCA3 groups.

Variables Control (n = 40) SCA3 (n = 40)

Age (y) 51.20 ± 17.58 45.9 ± 11.9

M/F 20/20 20/20

Age at onset (y) ND 38.1 ± 10.9

Disease duration (y) ND 7.7 ± 5.0

SARA score ND 14.2 ± 8.6

CAG repeat length ND 73.2 ±4.0

SARA, Scale for the Assessment and Rating of Ataxia.

8.58ms, echo time [TE] = 3.62ms, inversion time = 400ms,
slice thickness = 1.5mm, matrix size = 256 × 256, and in-plane
resolution of 1mm × 1mm], and an axial, T2-weighted, fast
spin-echo sequence (TR = 4,000ms, TE = 256.5ms, slice
thickness= 5mm).

Image Pre-processing and 3D-FD Value
Computation
Fractal dimension was originally proposed to quantify the
complexity of objects with self-similarity (Mandelbrot and
Pignoni, 1983). Since Kiselev et al. (2003) reported that
the cerebral cortex is self-similar within a certain range of
spatial resolutions many studies have used fractal dimension to
investigate morphological changes in the cerebral cortex caused
by neurological diseases (Ha et al., 2005; Thompson et al.,
2005; Sandu et al., 2008; King et al., 2010). Our previous study
demonstrated that 3D-FD values exhibited fewer age and gender
effects than cortical volume when used for evaluating cortical
atrophy in patients with multiple system atrophy-cerebellar type
(Wu et al., 2010). In this study, a box-counting algorithm was
employed to compute the 3D-FD values of the participants’
cerebral and cerebellar cortices on the basis of their T1-weighted
images (Zhang et al., 2006).

Pre-processing was performed before the calculation of 3D-
FD values. Figure 1 depicts the flowchart of pre-processing
procedures. The spatial resolution of the acquired T1-weighted
images was first resampled to 1 × 1 × 1mm by using
ImageJ (Rasband and Image, 1997) (Figure 1A). Before the
brain tissue was segmented, skull stripping was performed using
the brain extraction tool in MRIcro (Rorden C, University
of Nottingham, UK1) (Figure 1B). The skull-stripped images
were further smoothed by a 2-D median filter with a 3 ×

3 kernel on each slice to improve the signal-to-noise ratio
(SNR) while preserving the sharpness of the tissue boundary.
The skull-stripped and filtered images were then coregistered
to the JHU_MNI_SS_T_ss T1 template by a 12-parameter
affine transformation in the DiffeoMap toolbox (Li X, Jiang
H, and Mori S, Johns Hopkins University, www.mristudio.
org) (Figure 1C). Brain segmentation was performed using the
SPM8 toolbox 2 (Figure 1D). Brain parcellation was performed

1Available online at: www.sph.sc.edu/comd/rorden/mricro.html
2Welcome Department of Cognitive Neurology. Institute of Neurology, University

College London, London. Available online at: http://www.fil.ion.ucl.ac.uk/spm/

according to the IBASPM3 toolbox in MATLAB R2013b
software (Mathworks, Natick, MA, USA). The brain cortex was
subsequently parcellated into 116 regions (cerebrum: 90 regions,
cerebellum: 26 regions) and labeled using the AAL (Automated
Anatomical Labeling) atlas based on IBASPM (Figure 1E). The
26 regions of the cerebellum were then merged into the seven
regions, which were the left anterior lobe, right anterior lobe, left
posterior upper lobe, right posterior upper lobe, left posterior
lower lobe, right posterior lower lobe, and vermis, according to
their anatomical structures. Hence, 97 labeled brain regions were
obtained for each participant (Figure 1F).

Graph Theoretical Analysis
In graph theoretical analysis, a brain network is defined by a
collection of n nodes and l links, where the nodes represent the
brain regions and the links represent structural, functional, or
effective connections between pairs of brain regions (Friston,
1994). The linear regression was applied to remove the age and
gender effects. The Pearson’s correlation coefficients of 3D-FD
of the paired cortical regions across participants were computed
to produce an interregional correlation matrix for each group.
Only positive correlation coefficients were retained to construct
the brain networks (Figure 2A) and the negative correlation
coefficients were set to zero, as suggested in a previous study
(Rubinov and Sporns, 2010). Notably, each retained positive
correlation coefficient had a P-value representing the significance
of the correlation between paired regions.

In this study, we first set a p-value of 0.05 as a threshold to
filter the connection matrix followed by selecting 20% of the
largest correlation coefficients. After the process, the retained
correlations were set to ones. In addition, all entries on the main
diagonal (self-to-self connections) and negative coefficients were
set to zeros. The binarized matrix was called a connection matrix,
in which the value of 1 represented an existent link between a pair
of regions and the value of 0 otherwise. Figure 2B demonstrates
the final binary matrix (size: 97 × 97) in which 1 (white in
Figure 2B) represents an existent link and 0 (black in Figure 2B)
represents no link between a pair of regions. Figure 2C presents
the visualized glass brain of network of connection matrix.

The size of the connection matrix was 97 × 97 in this study,
which consisted of a maximum possible 4,656 (97 × 96/2) links
between pairs of regions in the network. Let us define the set of
all nodes as N and the number of nodes as n. A link between
nodes i and j can be written as (i, j), where i, j ∈ N and the
entry aij in the connection matrix represented the connection
status (if the link between nodes i and j existed, aij = 1; aij
= 0 otherwise). Subsequently, some network properties can be
computed accordingly.

Graph topology such as largest component size, clustering
coefficient, path length, and efficiency are often used to
characterize network properties. In particular, degree and
betweenness are employed to determine the critical areas within
a network. Largest component size of a network is referred to the
number of nodes in the largest connected component. Density of

3Individual Brain Atlases using the Statistical Parametric Mapping. Available

online at: http://www.thomaskoenig.ch/Lester/ibaspm.htm
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FIGURE 1 | Flowchart of image pre-processing procedure.

a network represents the fraction of links retained from the full
network. Degree of a node i is defined as

ki =
∑

j∈N
aij (1)

Mean degree of the network is defined as

k =

∑
i∈N ki

n
(2)

Shortest path length between nodes i and j is defined as

dij =
∑

auv∈gi↔j
auv (3)

where gi↔j is the shortest path (geodesic distance) between i and
j. If the nodes i and j are not connected, dij = ∞. Number of
triangles is defined as

ti =
1

2

∑
j,h∈N

aijaihajh (4)

Betweenness centrality of node i (Freeman, 1978) is defined as

bi =
1

(n− 1)(n− 2)

∑

h, j ∈ N
h 6= j, h 6= i, j 6= i

ρhj(i)

ρhj
(5)

where ρhj is the number of shortest paths between h and j, and
ρhj(i) is the number of shortest paths between h and j that pass
through i. In this study, the difference in nodal betweenness
between SCA3 and normal control networks was investigated.
In addition to largest component size, mean degree, density,
we computed, and compared three important global network

topological properties, namely, characteristic path length (Lp)
(Watts and Strogatz, 1998), clustering coefficient (Cp) (Watts
and Strogatz, 1998), and global efficiency (Eglob) (Latora and
Marchiori, 2001). Because the largest component size of the
network was not always 97, which means that some distances
between two nodes may be infinite, we used harmonic mean
(Newman, 2003) to calculate Lp as follows

Lp =
1

n

∑
i∈N

∑
j∈N,j 6=i dij

n− 1
(6)

which was a basis for measuring network
Cp is defined as

Cp =
1

n

∑
i∈N

2ti

ki(ki−1)
(7)

which is a measure of network segregation. Eglob is defined as

Eglob =
1

n

∑
i∈N

∑
j∈N,j 6=i dij

(n− 1)
(8)

Besides, the characteristic path length, clustering coefficient, and
global efficiency of the SCA3, and normal networks were also
compared by the ones derived from random networks, which
were created based on the rewiring procedure described by
Maslov and Sneppen (2002). Network analysis was conducted by
using brain connectivity toolbox (Rubinov and Sporns, 2010) on
the MATLAB software.
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FIGURE 2 | Construction of an unweighted, undirected structural network. (A) Correlation matrix of the SCA3 group (left) and control group (right). (B) Connection

matrix of the SCA3 group (left) and control group (right). (C) A SCA3 network (left) and a normal control network (right) constructed at the original P-value of 0.042.

Analysis of Network Resilience: Random
and Targeted Attacks
Network resilience represents the degree of tolerance of a

network against random and targeted attacks (Albert et al.,

2000; Achard et al., 2006; He et al., 2008). In this study, we

measured the network resilience by removing nodes from the

networks. For random attacks, we randomly removed one node
after another from each network and calculated the changes
in the characteristic path length, clustering coefficient, and
global efficiency values, and largest component size. For targeted
attacks, we repeated the aforementioned process but removed
nodes in the descending order of their nodal betweenness. The
difference in the network resilience against random and targeted

attacks between the SCA3 and normal control networks was then
investigated.

Statistical Analysis
Note that we only obtained one 3D-FD value for each parcellated
region. For each group with 40 subjects, there are 40 3D-FD
values for each region. We computed the 3D-FD value based
Pearson correlation between any two regions. As a result, a
97 by 97 correlation map was obtained for each group to
build a structural network, resulting in one set of small-world
properties for each structural network. Accordingly, we cannot
directly perform any statistical comparison on the corresponding
small-world properties between these two structural networks.
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To statistically compare the differences of network properties
between the SCA3 and control groups, a permutation test was
conducted (Bullmore et al., 1999). In the process, we set P-
value range from 0.05 to 0.001 and the network properties at
each P-value were computed for the SCA3 and control groups.
To test the null hypothesis that network property differences
between the groups occurred by chance, we randomly reassigned
the SCA3 patients and healthy controls into two groups and
recomputed the correlation matrix for each randomized group.
This randomized simulation and recalculation of the network
properties was repeated 1,000 times. The 95th percentile points
of each distribution of the 1,000 simulations were used as
critical values in a two-sample one-tailed t-test to reject the null
hypothesis with a type I error probability of 0.05.

RESULTS

Distributions of Pearson’s correlation coefficients derived from
the 3D-FD values of paired brain regions across the groups of
SCA3 patients and normal controls are displayed in Figure 3.
The distribution from normal controls (red bars in Figure 3)
was close to a normal distribution, which had a kurtosis
(Kim, 2013) of 3.263, skewness (Kim, 2013) of 0.992, and
mean of 0.158. However, the distribution from SCA3 patients
(blue bars in Figure 3) had a kurtosis of 5.439, skewness of
1.642 and mean of 0.105. The distribution from SCA3 patients
demonstrates a left shift (smaller mean) compared to the one
from normal controls. Moreover, normal controls had more
significant positive correlations than SCA3 patients (red bars
are much higher than corresponding blue bars in the right side
beyond the dash line of p-value of 0.05 in Figure 3); whereas,
SCA3 patients had more significant negative correlations in
comparison with normal controls (blue bars are much higher
than corresponding red bars in the left side beyond the dash line
of p-value of 0.05 in Figure 3).

Largest Component Size, Mean Degree,
and Density of SCA3 and Normal Control
Networks
Table 2 summarizes the network parameters, including the
largest component size (LCS), mean degree (MDeg), mean
density (MDen), characteristic path length (Lp), clustering
coefficient (Cp), and global efficiency (Eglob), between SCA3 and
normal control groups at FDR-p value = 0.05. The SCA3 group
presented decreased values in the LCS, mean degree, MDen,
clustering coefficient, and global efficiency, and increased value
in characteristic path length. These results revealed SCA3 group
had a more sparsity and disrupted properties in their network.
The graphs of the LCS, mean degree, density, characteristic path
length, clustering coefficient, and global efficiency of the SCA3
and normal networks are displayed in Figures 4, 5. The LCSs of
SCA3 and normal control networks of different P-values (0.05–
0.001, permutation test) and FDR-corrected P-values (0.05–
0.001, permutation test) are displayed in Figure 4A. The results
of the mean degree and density of the SCA3 and normal control
networks are displayed in the graph (Figure 4B), where the

FIGURE 3 | Bar chart of Pearson’s correlation coefficients of the paired brain

regions of SCA3 patients (blue) and normal controls (red). The black solid line

represents a correlation coefficient of 0. Black dashed lines represent a

significance level equivalent to P = 0.05.

TABLE 2 | Results of network properties between SCA3 and normal control

groups at FDR-p-value = 0.05.

Groups LCS MDeg MDen% Lp Cp Eglob

NC 86 8.1 8.6% 4.3 0.36 0.32

SCA3 67 4.2 4.7% 7.2 0.27 0.17

LCS, largest component size; MDeg, mean degree; MDen, mean density;

Lp, Characteristic Path length; Cp, Clustering coefficient; Eglob, Global efficiency.

left and right y-axes represent the mean degree and density,
respectively.

Characteristic Path Length, Clustering
Coefficient Values, and Global Efficiency
Values
Characteristic path length, clustering coefficient, and global
efficiency values of the SCA3 network, normal control network,
and simulated random networks at P-values in the range 0.05–
0.001 are displayed in Figures 5A–C, respectively.

In Figure 5A, the characteristic path length of the SCA3
networks (blue diamonds) show consistently higher values than
those of normal control (red stars) and random networks (green
squares). Furthermore, the normal control networks (red stars)
consistently exhibit higher characteristic path length values than
the random networks (green squares); however, their values are
similar at each P-value. In Figure 5D, the differences (cross
marks) in the characteristic path length values between the SCA3
and normal control networks are consistently located outside the
95th percentile (dashed line) in the simulated distribution created
using the permutation test, thus indicating that the differences are
significant at P-values in the range between 0.001 and 0.05.
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FIGURE 4 | (A) Largest component size and (B) mean degree (left y-axis) and density (right y-axis) of the SCA3 and normal control networks at different P-values and

FDR-corrected P-values. Blue diamonds (SCA3) indicate the parameters of the SCA3 networks at different P-values, and red stars (Control) indicate the parameters of

the normal control networks at different P-values. Green squares (SCA3-FDR) indicate the parameters of the SCA3 networks at different FDR-corrected P-values.

Black crosses (Control-FDR) indicate the parameters of the normal control networks at different FDR-corrected P-values.

In Figure 5B, the clustering coefficient values of the normal
control networks (red stars) are considerably higher than those
of the random networks (green squares) over the entire range of
P-values. The clustering coefficient values of the SCA3 networks
(blue diamonds) are very similar to those of the random
networks (green squares), but they are smaller than the clustering
coefficient values of the normal control networks at P-values
in the range between 0.03 and 0.05. However, as the p-values
become more significantly different (from 0.03 down to 0.001),
the clustering coefficient values of the SCA3 networks (blue
diamonds) remain relatively stable, starting to diverge from
those of the random networks (green squares), and approaching
those of the normal control networks (red stars). In Figure 5E,
most differences in the clustering coefficient values between the
SCA3 and normal networks are significant (most cross marks
are outside the dashed curve representing the 95% confidence
intervals).

Because global efficiency correlated inversely with the
characteristic path length, the results of the global efficiency
analysis of the SCA3, normal control, and random networks
exhibited an inverse relationship with those of characteristic
path length. The normal control networks (Figure 5C, red
stars) and random networks (Figure 5C, green squares) had
higher global efficiency values than the SCA3 networks did
(Figure 5C, blue diamonds), and the global efficiency values of
the normal control and random networks were similar to each
other. The results of the permutation test also revealed that
the differences in the global efficiency values between the SCA3
and normal control networks were significant at P-values in the
range between 0.001 and 0.05 (all cross marks are outside the
dashed line in Figure 5F). Figure 6 illustrates the differences in
the characteristic path length, clustering coefficient, and global
efficiency values between the SCA3 and normal control networks
remained significant at most thresholds of FDR-corrected P-
values.

Figure 7 displays the top five nodes of largest reduced
nodal betweenness in the SCA3 network compared to the
corresponding nodes of the normal control network. The

statistical significance of these five nodes (p < 0.001) was
obtained from 1,000 permutation tests. The top five nodes in
descending order were left supplementary motor area (Supp
Motor Area L), right thalamus (Thalamus R), left frontal
inferior operculum (Frontal Inf Oper L), right paracentral lobule
(Paracentral Lobule R), and left paracentral lobule (Paracentral
Lobule L).

Resilience of SCA3 and Normal Control
Networks
Figure 8 displays the resilience of the normal control and
SCA3 networks in response to random and targeted attacks.
Although the SCA3 and normal control networks had similar
resilience against random attacks, the SCA3 networks were
more vulnerable to targeted attacks. The global efficiency values
of the SCA3 networks were consistently lower than those of
the normal control networks (Figure 8A) under random and
targeted attacks, and most of the differences between the SCA3
and normal control networks in the global efficiency values
were larger under targeted attacks than under random attacks
(Figure 8A). In the relative size of the largest component, the
SCA3 and normal control networks displayed similar responses
to random attacks only until at least ∼52% of nodes and their
links were removed (Figure 8B, down arrows); subsequently,
the SCA3 networks started exhibiting a greater reduction in the
size of the largest component than the normal control networks
did. Furthermore, when 48–61% of the most central nodes were
attacked in the SCA3 and normal control networks (Figure 8B,
up arrows), the relative sizes of largest component approached
the largest difference,∼12–16%, between the two networks.

DISCUSSION

Since the introduction of the human connectome (Sporns
et al., 2005), many studies have related neurodegenerative
diseases to the human brain networks (Bassett and Bullmore,
2009). Alterations in structural networks have been reported
in the patients with Alzheimer’s disease (He et al., 2008;
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FIGURE 5 | (A) Characteristic path length (Lp), (B) clustering coefficient (Cp), and (C) global efficiency (Eglob) of the SCA3, normal control, and random networks at

different P-values. Between-group difference (SCA3 vs. normal control) in the (D) characteristic path length values, (E) clustering coefficient values, and (F) global

efficiency values. In the left column, blue diamonds (SCA3) indicate the properties of the SCA3 networks at different P-values, red stars (Control) indicate the

properties of the normal control networks at different P-values, and green squares (Random Network) indicate the mean of the properties of simulated random

networks at different P-values. The green shadows around the green lines indicate the standard deviation of the properties of the simulated random networks. In the

right column, the crosses indicate the differences between the SCA3 and normal networks in the (D) characteristic path length (1Lp) values, (E) clustering coefficient

(1Cp) values, and (F) global efficiency (1Eglob) values at different P-values. Solid lines indicate the mean value of the 1,000 permutation results. Dashed lines indicate

the 95% confidence intervals of the 1,000 permutation results, and ↑ and ↓indicate a significant difference.

Kim et al., 2016), Parkinson’s disease (Xu et al., 2017), and
Huntington’s disease (Coppen et al., 2016). He et al. (2007)
used cortical thickness from MRI to build structural network
of brain, and demonstrated the basic organizational principles
for the anatomical network in the human brain compatible with
previous functional networks studies, which provides important
implications of how functional brain states originate from
their structural underpinnings. They also showed the human
brain anatomical network has robust small-world properties
with cohesive neighborhoods and short mean distances between
regions. The present study is the first to show that structural
networks are affected by SCA3. Because the structural brain
network correlates with the functional network (Fjell et al., 2017),

the altered structural networks presented in this studymight have
underlying effects on the ataxia symptoms of SCA3 patients.

Loss of Small-World Topology in SCA3
Networks
The brain structural network has been shown to have similar
properties to those of a small-world network (He et al., 2007).
The small-world, characterized by a high degree of clustering
and short path length, is an attractive model for the description
of complex brain networks because it not only supports both
specialized and integrated information processing (Sporns and
Zwi, 2004) but also minimizes wiring costs while maximizing
the efficiency of information propagation (Kaiser and Hilgetag,
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FIGURE 6 | (A) Characteristic path length (Lp), (B) clustering coefficient (Cp), and (C) global efficiency (Eglob) of the SCA3, normal control, and random networks at

different FDR-corrected P-values. Between-group difference (SCA3 vs. normal control) in the (D) characteristic path length values, (E) clustering coefficient values,

and (F) global efficiency values. In the left column, blue diamonds (SCA3) indicate the properties of the SCA3 networks at different FDR-corrected P-values, red stars

(Control) indicate the properties of the normal control networks at different FDR-corrected P-values, and green squares (Random Network) indicate the mean of the

properties of simulated random networks at different FDR-corrected P-values. The green shadows around the green lines indicate the standard deviation of the

properties of the simulated random networks. In the right column, the crosses indicate the differences between the SCA3 and normal networks in the (D)

characteristic path length (1Lp) values, (E) clustering coefficient (1Cp) values, and (F) global efficiency (1Eglob) values at different FDR-corrected P-values. Solid lines

indicate the mean value of the 1,000 permutation results. Dashed lines indicate the 95% confidence intervals of the 1,000 permutation results, and ↑ and ↓indicate a

significant difference.

2006; Achard and Bullmore, 2007). The average of clustering
coefficients over all nodes is the clustering coefficient of the
network, often used as a global metric of the network level of
segregation (Sporns, 2013). Small-world properties can only be
estimated if the mean degree of a network is larger than the
value of log (N) (N is the number of nodes in the network).
In present study, most of the mean degrees of the SCA3 and
normal control networks were higher than the value of log
(97), that is 4.574, at P-values in the range between 0.001 and
0.05 (Figure 4B). This suggests that the constructed structural
networks in the range of P-values should present a small-world
architecture.

In this study, the characteristic path length values of
the normal control networks were similar to those of the
random networks; however, the normal control networks had
considerably higher clustering coefficient values than did the
random networks. This implies that the structural networks of
the normal control networks based on cerebral 3D-FD values
are likely to have small-world architecture. However, the SCA3
networks had considerably smaller characteristic path length
values compared with the random networks. In addition, the
clustering coefficient values of the SCA3 networks were highly
similar to those of the random networks in the P-value range
between 0.03 and 0.05, although the gaps between them became
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notable at P-values below 0.03 (Figure 5B). These results indicate
that the SCA3 networks might have lost their small-world
topology.

Loss of small-world topology in brain networks has also
been associated with neurological andmental disorders including
Alzheimer’s disease (Stam et al., 2007; He et al., 2008), autism
(Barttfeld et al., 2011), and schizophrenia (Liu et al., 2008; Yu
et al., 2011; Wang et al., 2012b). The disorganization of small-
world topology in SCA3 patients reflects the pathological state of
the brain networks.

FIGURE 7 | Top 5 nodes that had the largest significant decrease (p < 0.001)

in nodal betweenness between the SCA3 and normal control networks. The

statistical significance was obtained from 1,000 permutation tests. R, right;

L, left; Supp, supplementary; Inf, inferior; Oper, operculum.

Disrupted Structural Networks in SCA3
Apart from the loss of the small-world attribute, the SCA3
structural networks exhibited significantly higher values in the
characteristic path lengths (Figures 5A,D), and significantly
lower values in the clustering coefficients (Figures 5B,E), and
global efficiency (Figures 5C,F) compared with the normal
control networks. The SCA3 revealed a more sparsity and
disrupted structural network with decreased values in the LCS,
mean degree, MDen, clustering coefficient, and global efficiency
and increased value in characteristic path length.

Deterioration of the topological parameters of the structural
network has also been reported in Alzheimer’s disease (He et al.,
2008; Kim et al., 2016), Parkinson’s disease (Xu et al., 2017), and
Huntington’s disease (Coppen et al., 2016). The reduced LCS
in network of SCA3 may indicate the organization of structural
networks shifts from a more distributed architecture in control
group to a local anatomical emphasis in SCA3 patients. The
cortico-cerebral circuits in SCA3 were disrupted and segregated
into occipital-parietal (visual-spatial cognition) and frontal-
pre-drontal (motor control) clusters. The cerebellum of SCA3
were segregated from cerebellum-temporal-frontal circuits and
clustered into a frontal-temporal cluster (cognitive control).
Therefore, the disrupted structural network presented in this
study might reflect the clinical characteristics of SCA3.

Moreover, short paths in brain networks derived from
cortical thickness assure effective integrity or rapid transfers
of information between and across remotely regions that are
believed to constitute the basis of cognitive processes (Sporns
and Zwi, 2004). In Table 2, SCA3 showed increased path length,
decreased degree of clustering, and global efficiency, suggesting
their structural networks are from integration to segregation with
loss of small-world properties.

The deteriorated network parameters in the SCA3 networks
could be attributed to the left shift of the distribution of

FIGURE 8 | Evaluation of the resilience of the SCA3 networks (blue) and normal control networks (red) to random attacks (solid line) and targeted attacks (dashed line)

based on (A) global efficiency value and (B) largest component size. The graphs indicate the ratio of global efficiency and the relative size of largest component as

functions of the ratio of removed nodes in the random attack and targeted attack analyses. TA and RA indicate targeted attacks and random attacks, respectively.
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correlation coefficients, which reduced the values of several
positive correlation coefficients to less than the P-value
thresholds (Figure 3). It implies a general structural disruption
between paired brain regions. The exact reason for the
dissociation of structural networks in SCA3 patients is not
known. However, several possible mechanisms, including
diaschisis, transneuronal degeneration, and dedifferentiation,
were reviewed in a recent study (Fornito et al., 2015).

The aforementioned left shift of the distribution not only
reduced the number of significantly positive links but also slightly
increased the number of significantly negative links in the SCA3
networks (Figure 3). The role of negative links in the functional
brain networks was discussed in a recent study (Parente and
Colosimo, 2016). However, to the best of our knowledge;
research on the negative correlations of the structural attributes
between paired brain regions has not been conducted. Neural
compensation may partially explain the negative correlations
(Fornito et al., 2015; Jones, 2017). However, further effort should
be directed toward identifying the mechanisms underlying these
correlations. In the present study, we only analyzed the positive
links in the networks.

Decrease of Nodal Betweenness in Motor
Control-Related Regions in SCA3
The measure of betweenness centrality is related to
communication processes, but is also often found to be highly
correlated with the related measure of closeness, quantifying
the proximity of each node to the rest of the network (Sporns,
2013). According to our results, the left supplementary motor
area, bilateral paracentral lobules (encompassing parts of the
motor and sensory cortices), and right thalamus of SCA3
patients exhibited a considerable reduction (P < 0.001) in

nodal betweenness compared with the normal controls. Because
the left supplementary motor area and bilateral paracentral
lobules had significantly lower 3D-FD values, the atrophy in
these regions is implied to be associated with the change in
their roles in the structural network (Wang et al., 2015). We
did not observe a significant decrease in the 3D-FD values of
the right thalamus in our previous study (Wang et al., 2015).
Therefore, the significant decrease in the betweenness of the
right thalamus may have resulted from the altered neighboring
network organization. In a previous study, the paracentral
lobules in healthy individuals were classified as connector hubs
(high degree and high betweenness) in the structural network
derived from tractography on diffusion tensor images (Hagmann
et al., 2008). Hence, the decline of nodal betweenness in bilateral
paracentral lobules of SCA3 patients might have functional
implications.

Rüb et al. (2008) first demonstrated that the

neurodegeneration in localized brain regions of SCA3 patients
could implicate dysfunction of several central nervous circuits

and further lead to clinical symptoms. Tada et al. (2015)
suggested that degenerative ataxias might be caused by damage
to key nodes in the functional system of motor control, in which
only the dentate nuclei, pontine nuclei, and Clarke’s column
were shown to be majorly involved in SCA3 (Farrar et al.,
2016). However, a recent study based on transcranial magnetic
stimulation reported that dysfunction of the motor cortex is an
early feature of SCA3 and is associated with motor symptoms
and ataxia (Seidel et al., 2012). Furthermore, the degeneration
of the primary motor cortex (Rüb et al., 2008; Seidel et al.,
2012; Wang et al., 2015), supplementary motor area (Wang
et al., 2015), and thalamic ventral lateral nuclei (Seidel et al.,
2012; Kang et al., 2014) are comprehensively reported in the

FIGURE 9 | (A) Disease involvements in SCA3. (B) The nodes with reduced nodal betweenness in this study. Diagram (A) is modified from the one provided by Tada

et al. (2015). VL, ventral lateral thalamus; PN, pontine nucleus; DN, dentate nucleus; IO, inferior olive; CC, Clarke’s column; PC, Purkinje fibers; and GC, granule cell.

Intensity of red color stands for the prominence of reported degeneration. R, right; L, left; Supp, supplementary; Inf, inferior; Oper, operculum.
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literature. Reports from previous studies and the results of the
present study suggest that the degeneration of pivotal regions in
the corticopontocerebellar and dentatothalamic circuits might
collectively contribute to the onset of SCA3 ataxia symptoms.

A diagram (Figure 9A) is modified from a previous study by
Tada et al. (2015) to illustrate in what regions of themotor control
circuits the degeneration is involved. Compared Figure 9A

with Figure 7 (re-displays in Figure 9B), we can easily observe
that four of the top five nodes with the biggest reduction in
nodal betweenness (left supplementary area, bilateral paracentral
lobules, and right thalamus) in the SCA3 network are
closely matched the disease-involved regions reported in the
literature. It suggests that the degeneration of pivotal regions
in the corticopontocerebellar and dentatothalamic circuits might
collectively contribute to the onset of SCA3 ataxia symptoms.

Impaired Network Resilience in SCA3
Networks
In this study, our results demonstrate that both the SCA3 and
normal control networks are more vulnerable to targeted attacks
than random attacks. This finding is in agreement with previous
findings in human function based on functional network (Joyce
et al., 2013) and in brain disorder on structural brain networks
(He et al., 2008; Alstott et al., 2009; Crossley et al., 2014).
Furthermore, the SCA3 networks were more vulnerable to
targeted attacks than the normal control networks were. This
finding implies that compared with the normal networks, the
topology of SCA3 networks are disrupted and the disease inflicts
more damage on the SCA3 networks if the central nodes are
attacked. The reduced resilience of the SCA3 networks might
be ascribed to the left shift in the distribution of correlation

coefficients, loss of small-world architecture, and altered nodal
betweenness centrality as mentioned previously. In summary, the
SCA3 networks were found to be more vulnerable to targeted
attacks than was the normal control network. The structural
networks of the brains of SCA3 patients are disrupted by
the disease. These findings suggest that future studies should
consider the effects of global cerebral involvement in SCA3
patients.

However, the present study needs further investigation of
correlation between the results of structural network and clinical
data, such as clinical dementia rating scale (CDR) or functional
MRI data. This may allow us to infer the changes of functional
network from that of the structural network in patients with
SCA3.
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