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Abstract
To establish and exploit novel biomarkers of demyelinating diseases requires a
mechanistic understanding of axonal propagation. Here, we present a novel
computational framework called the stochastic spike-diffuse-spike (SSDS) model for
assessing the effects of demyelination on axonal transmission. It models transmission
through nodal and internodal compartments with two types of operations: a
stochastic integrate-and-fire operation captures nodal excitability and a linear filtering
operation describes internodal propagation. The effects of demyelinated segments
on the probability of transmission, transmission delay and spike time jitter are
explored. We argue that demyelination-induced impedance mismatch prevents
propagation mostly when the action potential leaves a demyelinated region, not
when it enters a demyelinated region. In addition, we model sodium channel
remodeling as a homeostatic control of nodal excitability. We find that the effects of
mild demyelination on transmission probability and delay can be largely
counterbalanced by an increase in excitability at the nodes surrounding the
demyelination. The spike timing jitter, however, reflects the level of demyelination
whether excitability is fixed or is allowed to change in compensation. This jitter can
accumulate over long axons and leads to a broadening of the compound action
potential, linking microscopic defects to a mesoscopic observable. Our findings
articulate why action potential jitter and compound action potential dispersion can
serve as potential markers of weak and sporadic demyelination.
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1 Introduction
Axons are the only link between our brains and the external world. Whether through
touch, smell or vision, all the information we have about the external world is channeled
through bundles of axons. Similarly, our only mean to interact with the external world is to
send muscle commands along another set of axons. Clearly, this link must be made as fast
as possible and myelination has evolved to regulate axonal propagation, minimizing the
‘temps perdu’ as coined by von Helmholtz [1]. Given its essential role in brain function, it
is perhaps not surprising that disorders of axonal myelination are linked to dramatic loss
of function. It is not clear, however, how mild demyelination affects propagation along
nerve bundles, since its effect on internodal transmission is subtle. To better understand
how mild demyelination gives rise to the early symptoms of demyelinating diseases, one
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approach is to build mathematical models of the axon and study the link between demyeli-
nation patterns and axonal conduction properties [2–5].

Mathematical modeling of myelinated axons can be separated into two approaches. The
first approach, pioneered by Fitzhugh (1961) [6], aims to determine the basic electrody-
namic properties regulating the flow of charges along a myelinated membrane. The prop-
agation dynamics between the nodes are encapsulated in a single equation called the cable
equation, which can be solved either analytically or with numerical methods to obtain at-
tenuation or filtering properties [7, 8]. This approach is restricted to uniform segments;
it cannot typically capture the inhomogeneous myelination, paranodes or the alternation
of myelinated segments and spiking nodes of Ranvier. To capture these inhomogeneities,
one uses a second approach called compartmental modeling, where the system is mod-
eled using a large number of small, locally uniform segments. Simulating numerically the
exchange of charges between segments with different dynamic properties has revealed the
important roles of myelin morphology and nodal dynamics for the propagation of action
potentials [4, 9–12]. This has been the main method to address the effects of demyelination
[2, 3, 5], ion-channel noise [13–16], and spike after-potential [4] on axonal propagation.

In the present article we consider a hybrid approach. We model sequentially the nodal
action potential generation in a small locally uniform spiking compartment and the intern-
odal propagation resulting from a cable equation. Inspired from recent work on stochas-
tic integrate-and-fire models [17–24] and the spike-diffuse-spike model of dendritic spine
activation [25], we develop here the stochastic spike-diffuse-spike model (SSDS). We use
this framework to investigate the propagation along axons where the excitability of a node
can be enhanced to compensate for demyelination. We will start by describing the model-
ing framework and how it incorporates demyelination as well as homeostatic ion-channel
re-insertion. The framework will then be simulated to estimate the effect of mild and spo-
radic demyelination on features of propagation. We will compute delay and jitter of action
potential propagation first across a single node and then along a long axon. In addition, we
will compute these metrics in the presence of homeostatic regulation of nodal excitability.
Finally, we will use these estimates to compute the width of a compound action potential
in various demyelination conditions. Potentially an early marker of demyelinating diseases
[26–28], our results articulate how weak and sporadic axonal damage affect the delay and
dispersion of the compound action potential.

2 Methods
The goal of this section is to expose the computational framework. First, we describe SSDS
and use it to calculate analytically multiple quantities of interest: conduction speed, con-
duction probability and spike timing jitter. Once the basic propagation model is outlined, a
model of demyelinating damage articulates how this damage influences conduction speed,
probability and jitter. Subsequently, the properties derived herein form the basis of the
propagation along an axon bundle. We relate the single axon model to the characteristics
of the compound action potential last.

2.1 Single axon model: stochastic spike-diffuse-spike.
We consider axons as an alternation of Ranvier nodes and myelinated segments. The Ran-
vier node is strongly excitable but very small. In contrast, the internodal region is not ex-
citable but extends spatially. For that reason, Ranvier nodes are modeled by an excitable
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Figure 1 The Stochastic Spike-Diffuse-Spike Model. (a) The action potential shape as it leaves the Ranvier
node, schematically indicated in (d). (b) Propagation through the next internode alters the action potential
shape as it reaches the next node (black, almost confounded with red). Damage to the internodes will affect
this propagation following one of three possibilities. We consider whether demyelination affects the
orthodromic internode only (purple), the antidromic internode only (blue) or both internodes equally (red). (c)
Probability of transmission as a function of time for the intact and the three cases of damage. (d) Schematic
illustration of two Ranvier nodes separated by a distance d for the three damage configurations. For a
propagation from left to right, we consider three possibilities for an action potential starting at node (a). Top:
demyelination of orthodromic internode. Middle: demyelination of antidromic internode. Bottom: equal
demyelination of both anti- and orthodromic internodes

compartment with no spatial extent and the internodal segment is modeled by a passive
compartment with spatial extent. This modeling framework has been introduced previ-
ously for active dendritic spines scattered along a dendrite [25]. Here we extend this mod-
eling framework to capture axonal properties with the use of kernel-based methods. The
two steps are described mathematically as

1. Internodal Drift Diffusion. Given an action potential leaving a node (Fig. 1(a)), the
charges entering and leaving the axon at the node will propagate along the
myelinated internodal region to the next Ranvier node. This operation is called drift
diffusion because a large and succinct current in one node will be felt as a weaker
and longer-lasting depolarization at the next Ranvier node, similar to the time
evolution of molecules in water in the presence of a drift. At the location of the next
Ranvier node, the result of this operation is depolarization of the membrane
potential (Fig. 1(b)).

2. Nodal Spiking. Given the membrane potential depolarization, the next Ranvier
node will fire an action potential with probability proportional to the distance
between this depolarization and a membrane potential threshold (Fig. 1(c)).
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We alternate steps (1) and (2) to reproduce the process of saltatory conduction. In the fol-
lowing, we describe each of these steps in detail, along with the rationale for our modeling
choices. For clarity of exposition, our simplifying assumptions are summarized here:

1. Action potential shape is invariant. Widening and shortening of action potentials
produced at high frequency is therefore not captured by our present model.

2. Axons are modeled as a single thread. Reflection and impedance mismatch at
bifurcations would require extensions to the present model.

3. The electric coupling between nodes is restricted to pairs. For real axons, however,
nodal spiking has a small but systematic effect multiple internodes away.

4. Propagation of current along an internode follows an idealized, semi-infinite,
uniform cable. Taking into account the impact of peri-nodal structure and other
types of inhomogeneous myelination would require a modification of the model.
We have assumed a lumped compartment at the origin, composed of a Ranvier
node and the antidromic compartment assumed to remain isopotential.

5. Demyelination can be modeled by changes in the electrotonic length constant. The
electrotonic length constant is the distance over which a depolarization has decayed
by a factor of e–1, at steady state. Myelin greatly increases this length constant. The
effects of demyelination on other parameters—such as the membrane time
constant—are assumed to play a much weaker role [29].

2.1.1 Internodal drift diffusion
We want to relate the current associated with a spike leaving a node IAP(t) (Fig. 1(a)) to the
membrane potential that this action potential causes in the next Ranvier node (Fig. 1(b)).
The effect of charged molecules drift-diffusing along the cable with potential leak across
the membrane is captured by a convolution of IAP(t) with the Green’s function, or impulse-
response function of the internodal region. The Green’s function takes into account the dy-
namics of the cable as well as possible impedance mismatch of the paranodal regions. Al-
though the Green’s function is typically defined for all points in space, we are interested in
the membrane potential at the location of the next node. Assuming that the orthodromic
position from node i can be parameterized by a single coordinate X, we let Gi(T , X) be the
Green’s function of the ith internodal region. Accordingly, we can compute the membrane
potential along the ith internode Vi(T , X) with origin at the ith Ranvier node as

Vi(T , X) =
∫ ∞

0
Gi

(
T – T ′, X

)
IAP

(
T ′)dT ′, (1)

where X = x/λi is a unitless variable for the distance x along the axon in units of the elec-
trotonic length of the orthodromic internode λi. T = t/τ a unitless variable for time in
units of the membrane time constant τ . We also note that Vi corresponds to distance
from resting potential, such that resting potential is V = 0 mV and the action potential
threshold is V = 20 mV.

Analytical expressions of G have been derived for a cable that is either uniform passive
[21], non-uniform [30] or quasi-active [31]. Otherwise, the detailed geometry of the para-
nodes can be taken into account by computing the impulse-response function numerically
[32]. Alternatively, one could use an empirical estimate of the impulse response function.
For clarity of the exposition, we will limit the present analysis to an analytical expression
of the Green’s function corresponding to a uniform, semi-infinite and passive cable with
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Figure 2 Impulse Response function for internodal current propagation. (a) The impulse-response function
of a semi-infinite cable with lumped soma is shown for increasing effective distances X = 0.1, 0.5, 1 (from top
to bottom) for γ = 1. (b) A typical action potential current filtered with the Impulse-response function shown
in (a). (c) Impulse-response function of a semi-infinite cable with lumped soma for increasing electrotonic
ratios γ = 2, 1, 0.5 (from top to bottom) and X = 0.1. (d) Membrane potential obtained by filtering the action
potential current with the Green’s functions shown in (c)

a compartment lumped at the origin of the cable. This expression was derived for propa-
gation of charges in a uniform semi-infinite and passive dendrite with a somatic compart-
ment lumped at its base [33]. The assumptions underlying this derivation are also satisfied
by the axon leaving a leakier Ranvier node. The Green’s function is thus parameterized by
a single parameter γi,i–1 > 0 (see below) relating the impedance mismatch between the
lumped compartment and the cable [33]

Gi(T , X) = γi,i–1eγi,i–1X+(γ 2
i,i–1–1)T erfc

(
γi,i–1

√
T +

X√
4T

)
(2)

valid for T > 0, X > 0. The lumped compartment encapsulates a dependency on the state of
the antidromic internode (Fig. 1(d)). Figure 2 illustrates how this Green’s function depends
on X, T and γ .

In Eq. (2), we have used X, the internodal distance, in units of the electrotonic length
constant λ. The location of the next node is therefore the unscaled internodal distance d
divided by the distance λ over which a steady state depolarization has fallen by a factor e–1

in the orthodromic compartment, such that

D =
d
λi

. (3)

In what follows we will focus on the position of node i + 1 using the node i as reference,
X = D and the position of node i in the same reference system X = 0.

The parameter γ is the ratio between the total transmembrane resistance of the lumped
compartment at X = 0 and the axial resistance ra over one electrotonic length of the or-
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thodromic compartment raλi [33, 34]. If the lumped compartment has a total resistance
corresponding to the sum of the axial resistance over one electrotonic length of the an-
tidromic axon raλi–1 and the much smaller transmembrane resistance of the Ranvier node,
RN , then we obtain the simple relation

γi,i–1 =
raλi–1 + RN

raλi
≈ λi–1

λi
. (4)

For the Green’s function of the ith internode, the parameter γ is the electrotonic length of
the antidromic compartment λi–1 divided by that of the orthodromic compartment λi.
For an intact axon the electronic constant of successive internodes is uniform λi–1 =
λi ≡ λM and γ = 1, where λM is the electrotonic constant of a fully myelinated in-
ternode. Similarly, for a fully demyelinated axon, the electrotonic constant is uniform
and γ = 1. Uneven myelination will affect γ such that orthodromic demyelination im-
plies γ > 1 (top in Fig. 1(d)) and antidromic demyelination implies γ < 1 (middle in
Fig. 1(d)).

The only parameters regulating internodal filtering are, therefore, the membrane time
constant τ , the internodal distance d and the orthodromic and antidromic electrotonic
constants, λi and λi–1, respectively. In the following, the membrane time constant is set
to a typical value τ = 15 ms. In addition, we used an internodal distance d = 1 mm con-
sistent with experimental recordings [35]. The myelinated electrotonic constant is cho-
sen to be much larger than the internodal distance to ensure rapid propagation. We
used λM = 200 mm as a baseline electrotonic constant for a fully myelinated intern-
ode.

2.1.2 Nodal spiking
Given a membrane potential time course from the drift-diffusion step, Vi, we now calculate
a probability of firing associated with this depolarizing drive. Nodal spiking is considered
to be probabilistic since it results from the stochastic activation of a finite number of ion
channels [13, 36, 37] amid disturbances from ephaptic coupling with neighboring axons
[38–42]. To capture this stochasticity, we use a common approximation where all noise
sources can be encapsulated in a simple mapping between a deterministic membrane po-
tential drive Vi(T , X) and a probability intensity, or hazard, ρi+1(T) [21, 43, 44]. Following
previous theoretical and experimental estimates of this hazard [45, 46], we assume that
ρ is determined by an exponential function of the membrane potential. How the firing
probability depends on the rate of change of the membrane potential can be included in
the formalism at a later time [45]. In our model, the probability intensity is high when
the membrane potential is above a fixed threshold θ and goes smoothly to zero when it is
below. Using a scaling factor β we can write the probability intensity time course for the
membrane potential time course Vi(T , X) as

ρi+1
[
Vi(T , X)

]
= ρ0 exp

(
β
(
Vi(T , X) – θ

))
, (5)

where the factor ρ0 is an arbitrary scaling constant with units of firing rate. Note that we
used V to be the membrane potential with respect to baseline. Accordingly, the threshold
θ is defined with respect to the same baseline. The threshold corresponds approximately
to the membrane potential at which the sodium ion channels start to activate. Thus, the
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nonlinear relationship between membrane potential and probability of firing is thought
to reflect the fact that noise may cause the neuron to fire as a function of the separation
between the instantaneous voltage and the voltage threshold. This model is known as the
spike-response model with escape noise [21, 44]. It has been successfully applied to exper-
iments on cortical neurons. Given the relatively similar kinetics between action potential
generation in the axon hillock and action potential generation in the Ranvier nodes, we
believe that the accuracy previously shown for the soma-hillock [20] will apply also to the
Ranvier Nodes. In sum, the hazard function in Eq. (5) specifies the firing intensity of an
inhomogeneous Poisson process.

This probability intensity is used to define the probability of transmission (Fig. 1(c)).
Using the hazard-function formalism [21], we consider the probability that a spike will
have been transmitted between time zero and time T :

pi+1(T) = 1 – e–
∫ T

0 ρ(Vi(s,X)) ds, (6)

where we have omitted the dependency on X for simplicity of notation. We note that this
expression implies a nonlinear transformation from the membrane potential time course
to the probability of firing.

The probability of transmission P(i+1)
T (λi,γi,i–1) follows as might be expected from this

quantity: it is the probability that a spike will have been transmitted after a sufficiently
long time, P(i+1)

T = pi+1(t∗/τ ). We used t∗ = 10 ms throughout our work, which is much
larger than the time taken to travel between two nodes.

To ensure realistic dynamics, we calibrated the parameters of the model, β , θ and IAP,
on publicly available data as follows. For the action potential time course IAP, we used
membrane potential recordings from deep cortical neurons of young rats [47] stimulated
with time-dependent current-clamp input. To extract the current time course from the
membrane potential time course, we computed the first derivative of the spike-triggered
average. This current time course is used as a template current leaving any given internode
(Fig. 1(a)). We have chosen β = (5 mV)–1 to obtain a threshold variability as previously
reported for human axons [13]. We chose the action potential threshold θ in order to
obtain a physiological propagation delay given our choice of electrotonic constants, as
described in the next section.

2.1.3 Internodal delay and speed
To determine the propagation speed, we consider a spike leaving node i and traveling
toward the next node, i + 1, through internode i. The propagation speed will then be ex-
pressed as a function of the internodal delay and the internodal distance. Inhomogeneities
in internodes j > i can in principle affect the delay involved in crossing internode i. These
effects are neglected here, but they could be incorporated by using compartmental mod-
eling to calibrate the impulse-response function for all possible states of the downstream
internodes.

The membrane potential at internode i + 1, which in our notation is the voltage at the
previous node propagated over a distance d, i.e. Vi(T , D(λi)), is obtained from Eq. (1) with
λi being the electrotonic length constant of internode i and γi,i–1 = λi–1/λi characterizes
the impedance mismatch between internode i and the lumped compartment at node i
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(Eq. (4)). Using the firing intensity defined in Eq. (5), we can obtain the probability that
the first spike occurs at time T [21]:

Pi+1(T , X) = ρi+1
[
Vi(T , X)

]
e–

∫ T
0 ρi+1[Vi(s,X)] ds, (7)

where we make explicit the dependence on Vi(T , X) through Eq. (5).
The internodal delay is the difference between the time at which the spike is produced

at node i, T∗
i and the time at which the spike is produced at node i + 1, T∗

i+1, namely

δTi = T∗
i+1 – T∗

i . (8)

The timing of a spike at internode i + 1 is taken to be the maximum likelihood timing

T∗
i+1 = argmax Pi+1

(
T , D(λi)

)
= argmaxρi+1

[
Vi(T , D(λi)

]
e–

∫ T
0 ρi+1[Vi(s,D(λi)] ds. (9)

To compute the reference spike time T∗
i , we use the membrane potential Vi–1 calculated

with γ = 1 in Eq. (1) and λM :

T∗
i = argmax Pi+1(T , 0) = argmaxρ

[
Vi(T , 0)

]
e–

∫ T
0 ρ[Vi(s,0)] ds. (10)

Together, these quantities are used to calculate the propagation speed vi across internode
i, that is, the internodal distance d divided by the internodal propagation delay

vi =
d

τδTi
. (11)

Figure 3 shows how the membrane potentials at i and i+1 (Fig. 3(a)) lead to a propagation
speed (Fig. 3(b)). This speed depends on the length constants λi and λi–1 as well as on the
threshold θ . Increasing the threshold in Eq. (5) broadens the first-spike time distribution
and increases the delay (Fig. 3(c) and (d)). For a uniform myelination with λi = λi–1 = λM =
20 mm, we have γi,i–1 = 1 and X = 0.005. The small effective distance leads to a small shift
of the membrane potential at X = 0 to the membrane potential at X = 0.005 (Fig. 3(a)).
We can compute the speed for a given value of the threshold θ . The propagation speed v
decreases as the threshold is increased (Fig. 3(b)).

We use this relationship to determine a threshold that gives realistic propagation speeds.
Specifically, we numerically calculate the speed v(θ ) for every value of the threshold θ and
find the threshold θ∗ for which v(θ∗) is close to 80 m/s. This is obtained for a threshold at
θ = 20 mV, corresponding to the typical separation between resting and threshold poten-
tial.

2.1.4 Homeostatic threshold compensation
In some simulations, we model a homeostatic regulation of propagation velocity by ad-
justing the firing threshold at every node. To do so, we numerically calculated the highest
value of the threshold that would preserve the conduction velocity of v(θ∗) = 80 m/s within
the bounds θ ∈ [5, 30] mV.
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Figure 3 Propagation Speed. Notice that the time scales are in milliseconds. (a) Filtered action potentials at
distance X = 0 (red) and X = 0.005 (black), corresponding to d = 1 mm and λM = 200 mm. The threshold is
shown in blue. Inset expands area in the gray rectangle. (b) The resulting speed of propagation (Eq. (11)) as a
function of threshold θ . The blue dashed line indicates θ∗ , the parameter value used in the simulations. An
average transmission delay of 0.0125 ms over d = 1 mm yields a speed of 80 m/s. (c) Difference between
latency distributions calculated from the action potential at X = 0 and X = 0.005 (shown in (a)) for θ = 20 mV.
Inset expands area in the gray rectangle. (d) Same as (c) but θ = 50 mV

2.1.5 Jitter
The variability of propagation delay is quantified by the standard deviation of δTi. Ac-
cordingly, we want to estimate σi+1 and σi, the standard deviation characterizing the de-
lay distribution Pi+1(T) and Pi(T), respectively. These standard deviations are estimated
numerically from the full width at half maximum (FWHM) of Pi+1(T) and Pi(T), using
σi+1 = FWHM[Pi+1]/2.35, and similarly for σ0. A Gaussian approximation on the latency
distributions Pi+1(T) and Pi(T) means that the jitter associated with an interval i can be
computed from

σi =
√

σ 2
i+1 + σ 2

i . (12)

2.2 Modeling axonal damage
We consider demyelinating damage. Demyelination is modeled in SSDS as an alteration
to the drift-diffusion step.

2.2.1 Altered propagation
Demyelination will affect the three principal passive cable properties differently: the relax-
ation time constant τ , the electronic length λ and the resistance ratio γ in Eq. (1). Firstly,
the time constant is a product of transverse resistance in an internodal region RT and
compartment capacitance C, τ = RT C. When an internode undergoes demyelination, its
transverse resistance is assumed to increase while its capacitance decreases [29]. There-
fore, the time constant may remain approximately constant under demyelination.

On the other hand, the electronic length is given by λ2 = RT /Ra where Ra is the axial
resistance [21]. Since only the transverse resistance is affected by demyelination and not
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the axial resistance, the electrotonic length will decrease. Therefore, we argue that the
effect of internode demyelination is to increase the effective internodal distance through
a reduction of the electrotonic length.

The resistance ratio γ parameterizes the effect of a mismatch between resistance of an-
tidromic and orthodromic internodal regions. We will denote the different configurations
with four cases for the value of γi,i–1. γ11 corresponds to the intact axon (λi = λi–1 = λM), γ10

to antidromic damage (λi–1 = λD), γ01 to orthodromic damage (λi = λD) and γ00 to damage
on both internodes (λi = λi–1 = λD). Thus, when both internodal regions are intact or when
both internodal regions are equally demyelinated, we have γ11 = γ00 = 1. When only one of
the internodal regions is intact, we expect γ10 < 1 for antidromic demyelination and, con-
versely, γ01 > 1 for orthodromic damage. Since γ modifies multiplicatively the current in
Eq. (1), this is consistent with a greater net axial current flowing orthodromically from the
Ranvier node for γ01, and conversely for γ10. Our computational work reveals in fact that
the current flowing orthodromically from the spiking node will leak out of the reduced
membrane resistance there, potentially making it weaker at the next node (Eq. (2)). How-
ever, the current flowing antidromically will also be relatively smaller, due to the higher
resistance added by the intact myelin. The result is an extra orthodromic contribution that
more than compensates the first effect.

To model the effect of demyelination on the electronic length and the resistance ratio si-
multaneously, we suppose that the unmyelinated, or maximally demyelinated, fiber has an
electronic length λL. This will serve as a lower bound. Similarly, the intact internode has
an electrotonic length λM . A demyelinated internodal region is associated with an elec-
trotonic length λD between λL and λM . Demyelination will reduce the effective internodal
distance X from d/λM to d/λD. Concurrently, it will modify the resistance ratio according
to γ10 = γ –1

01 = λD/λM , with γ00 and γ11 unchanged.
Given this parameterization of damage in terms of the electrotonic length, we quantify

the intensity of damage by its relative change in X:

Damage = 1 –
λD – λL

λM – λL
. (13)

This metric, reported in percent, takes a value between 0% and 100%. We say that dam-
age is maximal when the intensity of damage reaches 100%. We use a typical value of
λL = 1 mm for the fixed unmyelinated length constant [48]. Although modern estimates
of this length constant in the cortex are about half this value [49], the results presented
here do not critically depend on this lower bound. For the fully myelinated space constant
we choose λM =200 mm.

2.2.2 Delay, failure and jitter along a complete axon
We will calculate the propagation statistics in terms of four numbers: 1) the number of
damaged internodes preceded by an intact internode N10, the number of damaged intern-
odes preceded by a damaged internode N00, the number of intact internodes preceded by
an intact internode N11, and the number of intact internodes preceded by a damaged in-
ternode N01. The total number of nodes is simply the sum of the number of each type of
internode:

N =
∑

i,j

Nij. (14)
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The total probability of transmission is the product of all internodal transmission prob-
abilities:

P(axon)
T =

1∏
i=0

1∏
j=0

P(i)
T (λi,γij)Nij . (15)

We wish to calculate the distribution of delays for a spike traveling along a complete
axon, given a pattern of demyelination determined by the number of nodes in each of the
four categories N00, N01, N10 and N11. Although it is possible to compute this distribution
with nested convolutions of the internodal delay distributions, we will assume that each
internodal delay distribution is well captured by a Gaussian. Then the delay for the whole
axon is the weighted sum of the delay associated with each type of internodes

δTN =
1∑

i=0

1∑
j=0

NijδT(λi,γij). (16)

Similarly, the jitter is obtained by the weighted sum of the single internode variances.

σ 2
N =

1∑
i=0

1∑
j=0

Nijσ (λi,γij)2. (17)

The Gaussian approximation holds well as long as the membrane potential crosses the
stochastic threshold. This gives delay distributions that are sharp and approximately sym-
metric.

2.2.3 Modeling damage distribution
Here we consider a simple model where lesion can occur with constant probability pL and
when a lesion occurs, it creates a damage in a fixed number, k = 1, 2, 3, . . . , of successive
internodes. When an internode is damaged its electrotonic length is reduced by a fixed
amount that is the same for all lesions. This model is an approximation of the complex
mechanisms giving rise to a correlation between the damages at subsequent internodes
[50].

The parameters kL and p determine how the Nij are randomly generated. First we gen-
erate the number of lesions using a binomial distribution, NL ∼ Binom(N , pL):

p(NL) =
(

N
NL

)
pNL

L (1 – pL)N–NL , (18)

where N is the mean total number of internodes.
It follows that the number of nodes situated at the leading edge of a lesion N01 will equal

the number of lesions, NL, unless a lesion is situated at the end of the whole axon. Similarly,
the number of nodes situated at the trailing edge of a lesion N10 will equal the number of
lesions NL unless a lesion is situated at the very beginning of the whole axon. For simplicity
we take, N01 = N10 = NL. The number of nodes surrounded by two damaged internodes,
N00, is zero if lesions consist of isolated internodes (k = 1). Otherwise, for k > 1, we have
N00 = NL(k – 1). The number of nodes surrounded by intact internodes is then given by
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Eq. (14): N11 = N – NL(k + 1) for k > 1 and N11 = N – 2NL for k = 1. Here the total number
of internodes N is not a fixed number but a function of the random number NL (Eq. (14)).
In the regime k 
 and pL 
 1, the fluctuations of N around 〈N〉 will be relatively small.
The average number of lesion that results from this scenario is 〈NL〉 = 〈N〉pL.

The overall temps perdu, 
TP, averaged over the lesion configuration thus becomes a
function of the average number of NL,


TP(NL) =
1∑

i=0

1∑
j=0

〈
Nij(NL)

〉
δT(λi,γij) (19)

and similarly for the variance,

σ 2
TP(NL) =

1∑
i=0

1∑
j=0

〈
Nij(NL)

〉
σ (λi,γij)2. (20)

Together Eqs. (19)–(20) describe a Gaussian approximation to the spike time distribution
at the end of an axon.

2.3 Compound action potential
Previous theoretical investigations [51, 52] have concluded that the local field potential
(LFP) can be well captured by monopole terms for the current sources. For myelinated
nerves, current sources consist mostly of the transmembrane currents underlying the ac-
tion potential generation at the nodes of Ranvier. The LFP is then obtained by summing the
contributions of each node of Ranvier in the proximity to the recording electrode. Given a
relatively large internodal distance, only the nodes closest to the recording electrode will
contribute to the LFP. We can therefore sum for each axon l only the contribution of the
nearest node. Let the electrode be closest to the nth node of each axon, and write the
current of the nearest node as Iln(t) and its location with respect to the recording elec-
trode as rln. We have the electric potential φ arising from transnodal currents scaled by a
Coulombic factor:

φ(t) =
1

4πσe

L∑
l=1

Iln(t)
rln

, (21)

where σe is the electric permittivity [51]. Equation (21) can be related to our framework
by considering that the current at time t in a given node is the action potential current
triggered with a delay δTln: Iln(t) = IAP(t – δTln).

According to the law of large numbers, the sum of the distance-scaled nodal currents
over a large number of independent and identically distributed currents should be close
to their expected value. Also, since we are only interested in the relative amplitude of the
compound action potential, we lump the scaling factors into a constant c and focus on the
time-dependence. This scaling constant captures geometrical factors which will scale the
LFP uniformly depending on the spatial distribution of the nearest nodes. We therefore
obtain

φ(t) = c
∫

IAP(t – δT)P(δT) dδT , (22)
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where we have dropped the subscript n for simplicity. The compound AP is proportional
to the convolution between the cross-membrane current during an action potential and
the latency distribution of the nearest internode.

We apply the central-limit theorem to obtain the following form for the compound ac-
tion potential:

φ(t) = c
∫

IAP(t – δT)
∫

PT (NL)F
(

TP(NL),σ 2

TP(NL)
)

dNL dδT , (23)

where F(μ,σ 2) is a normal distribution with mean μ and variance σ 2. The mean and the
variance are given by Eq. (19) and Eq. (20), respectively.

Following the Gaussian approximation of Eq. (16), the distribution of delays for propa-
gation between node 0 and node N can be written as

P0:N (δT) =
∫

PT (NL)F(μ,σ )p(NL) dNL (24)

and the number of lesions follows a binomial distribution (Eq. (18)). Taken together,
Eqs. (23)–(18) determine the compound action potential. The main quantities of interest
are listed in Table 1. A summary of the steps used to compute the probability of propa-

Table 1 Glossary of parameters and variables

Variable Name Units

β Stochastic scaling mV–1

δTi Internodal delay in units of membrane time constant –
δTN Internodal delay for whole axon –
δTTP Mean internodal delay for whole axon and averaged across lesion configurations –
φ Normaliozed extracellular potential –
θ Stochastic threshold mV
γ Ratio of length constants –
λi Electrotonic length constant of ith internode mm
λM Electrotonic length constant of a myelinated segment mm
λD Electotonic length constant of a damaged segment mm
λL Electrotonic length constant of a fully demyelinated segment mm
ρi Firing hazard of node i –
σ 2
TP Variance of transmission delay across lesion configurations –

σe Electric permittivity –
τ Membrane time constant ms
D Internodal distance in units of electrotonic length constant –
Gi(T ,X) Green’s function of internodal propagation mV / pA
IAP AP current influx pA
k Lesion size Number of

internodes
Nij Number of nodes in configration ij –
NL Total number of lesions –
N Mean number of lesions –
pL Frequency of lesions Lesions per

node
P(i)T Probability of transmission across internode i –

P(axon)
T Probability of transmission across whole axon –
pi(T ,X) Probability of firing first spike at node i –
Ti Time of action potential in node i and in units of membrane time constant –
t Time from action potential ms
Vi(T ,X) Membrane potential deflection along internode i mV
v Propagation speed m/s
X Distance along internode in units of electrotonic constant –
x Distance along internode mm
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gation, jitter distributions and compound action potential is given in the first part of the
Results section.

3 Results
In order to study how demyelination affects action potential transmission over long ax-
ons, we constructed a computational model that captures the essential features of salta-
tory propagation. The stochastic spike-diffuse-spike model (SSDS: see Methods) iterates
between a stochastic firing step and a cable-filtering step. In the drift-diffusion step, fir-
ing in node i causes a membrane potential change in node i + 1 as determined by the
cable impulse-response function. This step modifies the width and the amplitude of the
action potential in a manner phenomenologically equivalent to drift diffusion. In the fir-
ing step, we determine the firing probability given the membrane potential reaching this
node. The biophysical mechanisms underlying stochastic firing are not specified in the
SSDS but they are thought to reflect both the stochastic opening of possibly distinct types
of voltage-dependent ion channels in the node of Ranvier [13, 36, 37, 53] and the ephaptic
couplings with neighboring axons [38–42]. Effects of specific biophysical noise sources
on excitability could be approximated in this phenomenological formalism through ad-
justments to the hazard function. This SSDS model allows us to estimate transmission
probability, propagation delay and spike timing jitter for any axon length as a function of
the number of damaged nodes.

Figure 1 illustrates the SSDS model for three distinct local patterns of demyelination for
a spike leaving a given node and propagating through the orthodromic internode to the
next node. Upon activation of the first node of Ranvier, the stereotypical time course of
the action potential is observed (Fig. 1(a)). Depending on the demyelination pattern, the
stereotypical current from the first node will produce a depolarization in the next node
(Fig. 1(b)). This depolarization time course is used to calculate the probability that an
action potential is produced in this node (Fig. 1(c)). Three distinct types of demyelination
pattern are distinguished (Fig. 1(d)): demyelination of the orthodromic internode only,
demyelination of the antidromic internode only, and demyelination of both antidromic
and orthodromic regions. If a spike is generated in the next node, the process continues
along the axons iteratively.

Parameters of the SSDS consist of a non-parametric time-dependent current resulting
from the stereotypical time course of ionic currents in the Nodes of Ranvier (IAP), the
impulse-response function regulating propagation of this current to the next node of Ran-
vier (GX ), the firing threshold at the nodes (θ ) and the stochastic firing sensitivity (β). Pa-
rameter values are either calibrated using published experimental data or follow classical
modeling studies (see Methods). Briefly, first we estimate IAP from the spike-triggered
average membrane potential from patch-clamp recordings. We note that although the
framework is general and can take into account the spike after-hyperpolarization [4], we
have restricted the present analysis to time scales shorter than 10 ms. Second, the impulse-
response function is parameterized according to the theoretical treatment of Rall [33]
where a lumped compartment corresponding to the node and its antidromic internode
is followed by a semi-infinite uniform cable (Fig. 2) corresponding to the orthodromic in-
ternode. Then both the firing threshold and the sensitivity are chosen in order to obtain
standard values of propagation speed and threshold variability (Fig. 3).
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Demyelination will directly affect the impulse-response function. In fact we find that for
our parameterization, two parameters regulate the shape of the impulse-response func-
tion. For a node i followed by internode i and preceded by internode j, these two param-
eters are the electrotonic length constant for the orthodromic cable λi and the ratio of
orthodromic and antidromic length constants γij. Demyelination reduces the length con-
stant by an amount reflecting the degree of demyelination (see Methods). Figure 2 illus-
trates how the different filtering properties arise from changes in the electrotonic constant
λi keeping the antidromic one fixed. Both the impulse-response function amplitude and
the temporal profile are affected by changes in the orthodromic length constant (Fig. 2(a)).
As a result, a decrease in λi will produce both a dampening and a broadening of the depo-
larization reaching the next internode (Fig. 2(b)). In contrast, modifying the antidromic-
to-orthodromic ratio of length constants γij while keeping the orthodromic electrotonic
length fixed modifies the amplitude of the impulse-response function without affecting
its time course (Fig. 2(c)). This results in a dampening of the depolarization reaching the
next node, which is seen without an associated broadening (Fig. 2(d)). Therefore our SSDS
model is biophysically justified, and it can be used to understand how different demyeli-
nation patterns relate to propagation properties.

3.1 Demyelination and propagation properties—single internode
To study the effects of demyelination on single internodal propagation, we derive expres-
sions for propagation delay (Eq. (19)), spike timing jitter (Eq. (20)) and transmission prob-
ability (Eq. (15)) in the SSDS model. We then study the effect of demyelination intensity
for the three different damage patterns illustrated in Fig. 1(d), namely damage affecting
the orthodromic region, the antidromic region, or both regions with equal intensity. The
degree of demyelination is quantified with a metric for quantifying damage (see Methods,
Eq. (13)), which varies between 0% for intact internodes, and 100% for complete demyeli-
nation.

We find that transmission probability is only affected at extreme damage intensities for
the uniform and orthodromic damage patterns (Fig. 4(a)). This is consistent with previ-
ous computational studies showing that a very high degree of demyelination is required to
prevent internodal propagation [2, 54, 55]. When the damage is antidromic, however, the
probability of transmission starts to drop sharply at mild damage intensities (60% damage).
In the SSDS model, this effect results from the impedance imbalance, where an antidromic
demyelination reduces the impedance in the antidromic direction. This reduces the net
axial current flowing in the orthodromic direction and therefore prevents propagation.
Consistent with this view, the delay and jitter both increase for weak demyelination inten-
sities when the damage is antidromic (Fig. 4(b) and (c)). In the case of uniform damage,
increases in both the delay and the jitter are observed only for very large demyelination
intensities.

In contrast, when the damage is orthodromic, the impedance mismatch forces more
current to flow to the orthodromic side, which compensates for the reduced length con-
stant. This leads to an acceleration of the propagation (Fig. 4(b)) and a decrease in the
jitter (Fig. 4(c)). These results suggest unexpectedly that propagation is more likely to fail
when an action potential attempts to leave a demyelinated region following a healthy re-
gion than when it attempts to traverse a demyelinated region after successfully entering it.
Also, at the weak demyelination intensities where propagation is preserved (pT > 0.8, less
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Figure 4 Effect of demyelination on propagation across a single internode. (a) Effect of demyelination on the
probability of transmission pT for the three cases shown in Fig. 1 (purple is orthodromic damage, blue is
antidromic damage and red is damage on both sides of the node). A purple line is hidden behind the red
curve, but stays at pT = 1 over the range of damage intensities studied. (b) Effect of demyelination on
transmission delay. Having negative delays means a propagation delay shorter than in the absence of
damage. Delays corresponding to pT < 0.1 are not plotted. (c) Same as (b) but for transmission jitter. (d) Spike
timing distributions corresponding to 80% damage (based on a time discretization of 0.01 ms)

than 50% damage), mild damage should cause a net increase in spike timing jitter whereas
the net delay does not vary strongly with damage.

3.2 Lesion patterns and propagation properties—whole axon
We now turn to the demonstration of the power of the model to predict whole axon propa-
gation properties. To determine how demyelination patterns affects propagation along the
length of an axon, we consider demyelination in lesions made of segments of k contiguous
internodes. Lesions are then assumed to arise randomly with probability pL. Transmission
probability, propagation delay and spiking jitter are then computed analytically (see Meth-
ods). For a fixed, mild degree of demyelination, increasing the lesion probability sharply
decreased the probability of transmission over long axonal distances (50% damage, k = 1,
Fig. 5(a)). The total transmission delay increases linearly with distance, consistent with a
constant but damage-dependent speed of propagation. Lesion probability strongly affects
this effective propagation speed (Fig. 5(b)). In contrast, the jitter increases sub-linearly
with the number of internodes traveled (Fig. 5(c)), consistent with a linear increase in vari-
ance. These results suggest that lesion probability strongly affects propagation properties
even for a mild degree of demyelination.

The effects of lesion probability can be contrasted with the effects of lesion size. In Fig. 6
we vary the lesion size k and plot the distance dependence of transmission probability,
propagation delay and spike time jitter. Interestingly, transmission probability is mostly
unaffected by lesion size. This can be explained by noting that, in our model, increasing
lesion size increases the proportion of nodes with damage both in the orthodromic and
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Figure 5 Effect of lesion frequency as a function of the number of successive internodes. For a fixed lesion
size k = 1 and damage intensity 50% damage, the probability of transmission (a), the transmission delay (b)
and the jitter (c) are shown as a function of the average total number of internodes. Lesion frequencies are
plotted for pL = 0.01, 0.1, 0.2 (from bottom to top in panel (a) and from top to bottom in panels (b) and (c))

Figure 6 Effect of lesion size as a function of the number of successive internodes. The setup is the same as
for Fig. 5, but for three lesion sizes: k = 1, 3, 7 (from bottom to top) and fixed lesion frequency pL = 0.1. Note
that the probability of transmission and the jitter depend very weakly on lesion size, as the lines perfectly
overlap

antidromic internodes (Fig. 1, red) without affecting the proportion of asymmetric dam-
age configurations. Since symmetric damage configuration affects propagation properties
only at very strong demyelination degree (Fig. 4, red curves), lesion size does not affect
propagation properties at weak demyelination intensities.

3.3 Homeostatic control of demyelination-induced delays
Given the substantial loss of propagation produced by mild demyelination intensities in
the antidromic case (Fig. 4(a)), it appears surprising that propagation appears to be pre-
served amid evident disorder associated with demyelinating diseases. Nodal remodeling,
particularly of axonal excitability, is believed to play an important role in preserving ax-
onal conduction [56, 57] and may underlie the periods of remission in multiple sclero-
sis or other demyelinating diseases [58]. An increase of the density of sodium ion chan-
nels was linked to an improved propagation in demyelinated axons [2] and to membrane
reconfiguration following demyelination [59, 60]. Increasing the density of sodium ion
channels produces a lower action potential threshold [61]. This suggests a homeostatic
control mechanism where the reduced transmission due to weaker depolarization (illus-
trated in Fig. 1(b)) is compensated by a lower threshold. Alternatively, when demyelina-
tion enhances the depolarization, the node would ideally raise its spiking threshold so as



Naud and Longtin Journal of Mathematical Neuroscience             (2019) 9:3 Page 18 of 24

Figure 7 Homeostatic adjustment of threshold partially compensates for demyelination-induced delays and
transmission probability across a single internode. For each demyelination intensity and depending on the
antidromic-orthodromic location of the damage, we attempted to recover undamaged delays by adjusting
the spiking threshold. (a) For 40% damage, the membrane potentials reaching the next node of Ranvier (full
lines) are shown with their corresponding firing thresholds that minimize delay changes (dashed horizontal
lines). (b) Delay probability distributions for the membrane potentials shown in (a). (c) The residual delay and
(d) spike timing jitter are shown as a function of damage intensity. Colors follow the convention in Fig. 1

to preserve the propagation speed. In order to model this homeostatic adjustment, we
have replaced the fixed firing threshold θ by a threshold adjusted to be the highest value
that would preserve conduction velocity. This homeostatic compensation is limited in the
model by restricting the adjustment range for the threshold (see Methods, Sect. 2.1.4).

We start by considering the effect of homeostatic compensation on the propagation
properties of a single internode. As expected from the observation that delays increase
(decrease) when damage is antidromic (orthodromic) (Fig. 4), the compensated threshold
was low for the antidromic damage configuration, unchanged for the symmetric damage
configuration and increased for the orthodromic damage configuration (Fig. 7(a)). This
homeostatic compensation ensured a high transmission probability even for severe de-
myelination. Delays and jitters depend on damage configuration and intensity, in a manner
that remains qualitatively identical to the absence of threshold compensation (compare
Fig. 7(c) and (d) with Fig. 4(b) and (c)).

However, quantitatively the picture is very different. As imposed by homeostatic com-
pensation, the delay across a single internode remained approximately constant for a larger
range of damage intensities (Fig. 7(c) and (d)). As the degree of demyelination increases,
the change in threshold fails to compensate for this damage, with the result that both delay
and jitter are affected.

Importantly, we note that, at mild antidromic damage (50% damage), although the delay
falls from 0.2 ms (Fig. 4(b)) to 0.1 ms (Fig. 7(c)) when introducing threshold compensa-
tion, the jitter remains close to 0.2 ms without (Fig. 4(c)) and with (Fig. 7(d)) threshold
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Figure 8 Effect of lesion frequency over multiple internodes in the presence of homeostatic compensation.
The probability of transmission (a), the transmission delay (b) and the jitter (c) are shown as a function of the
number of internodes through which the activity propagates. Three lesion frequencies are plotted: pL = 0.01,
0.1, 0.2 (from bottom to top in panels (b) and (c), perfect overlap in panel (a)). The demyelination of each
lesion corresponds to 50% damage

compensation. These observations suggests that the measurement of jitter could reveal
demyelination, whether homeostatic compensation were at work or not.

To determine the effects of compensated demyelination on the whole axon, we deter-
mine transmission probability, delay and jitter as a function of the total number of nodes
(Fig. 8). Similar to the case without homeostatic compensation, the propagation properties
depend only weakly on the lesion size. We therefore focus on the effects of lesion probabil-
ity. For mild damage intensities (50% damage), transmission is preserved even when lesion
probability is 0.2 (Fig. 8(a)). Propagation speed decreases with lesion probability, but de-
lays remain 2–3 times smaller than in the absence of threshold compensation (Fig. 8(b)).
In comparison, although larger without compensation (Fig. 4(c)), remain of the same or-
der of magnitude as with compensation (Fig. 7(d)). We conclude that spike timing jitter
can be a good predictor demyelination frequency and intensity even when there is nodal
excitability compensation.

3.4 Compensated demyelination can be inferred from the compound action
potential

To investigate whether the effects of demyelination may be observed experimentally, we
estimated the extracellularly recorded compound action potential expected from a bun-
dle of simultaneously activated axons (see Methods, Eq. (23)). We illustrate our results in
the context of homeostasis. We study the hypothesis that an increase in jitter, by reducing
the synchrony within the bundle, may affect the width of the compound action poten-
tial. Figure 9(a) shows that mild (50% damage) lesion probability increases both the delay
of the first trough and the width of the compound action potential. The propagation is
strongly impeded by rare but severe (97% damage) lesions as revealed by the amplitude
of the compound action potential (Fig. 9(b)). Figure 9(c) shows how the full width at half
maximum (FWHM) has a clear dependence on both the damage intensity and the lesion
frequency pL. We conclude that the width of the compound action potential, like the jitter
of an action potential along a single axon (Fig. 8(c)), can be a good predictor of demyeli-
nation frequency and intensity even in the presence of nodal excitability compensation.
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Figure 9 Effect of lesion size and intensity on the compound action potential in the presence of threshold
compensation. The compound action potential is shown (top) for an intact axon with N =100 internodes
(black line) and two lesion frequencies pL = 0.01 (red) and pL = 0.2 (blue). Intensity of damage and lesion size
are kept fixed (50% damage, k = 1). The time course is normalized to the peak amplitude of intact axons
(bottom). (b) Compound action potential for changing lesion intensity 70% damage (red) and 97% damage
(blue) while keeping size and frequency of lesions fixed (pL = 0.1, k = 1). (c) The Full Width at Half Maximum
(FWHM) of the compound action potential as a function of damage intensity for rare and small lesions (gray,
pL = 0.1, k = 1) and frequent but small lesions (blue, pL = 0.2, k = 1)

4 Discussion
We have presented a modeling framework to estimate propagation delay and jitter in
weakly or sporadically demyelinated axons. The framework extends the SSDS model of
propagation along an unmyelinated dendrite with equally spaced excitable spines [25, 62,
63] to the context of a myelinated axon with excitable nodes of Ranvier. Our goal is to
account for different spike shapes and stochastic firing effects. The simplified computa-
tional model can be used to simulate propagation over a very large number of nodes and
internodes, and also to determine how weak or sporadic damage can cumulate over large
distances in terms of probability of transmission and the mean and variance of the prop-
agation speed and delay. Waxman (1976) studied the effect of damage distribution, but
without focusing of the cumulative effect of transmission probabilities, delays and jitter.
Our use of a reduced description allows us to investigate axons of realistic, and in fact
arbitrary length [64].

Our main findings can be summarized as follows. First, we found that orthodromic dam-
age must be strong to affect the transmission probability. Also, antidromic damage has a
more significant effect when a spike leaves a demyelinated region and goes into a myeli-
nated region. As a result, propagation delay down a sequence of internodes can be in-
creased or decreased. Since a spike traversing a demyelinated region first faces damage
in an orthodromic compartment and then in an antidromic compartment, the decreased
delay is followed by an increase delay, with a net increase of the delay. If homeostatic com-
pensation reduces how damage changes the propagation delay, we see that damage is re-
vealed by propagation jitter and almost invisible from the propagation delay. Finally, we
show that this effect can be observed from the dispersion of the compound action poten-
tial.



Naud and Longtin Journal of Mathematical Neuroscience             (2019) 9:3 Page 21 of 24

We will discuss two particular findings, namely the effect of the antidromic impedance
mismatch and the effect of demyelination on the compound action potential and spike
timing jitter.

Early computational studies have shown that the action potential has a lower amplitude
in both the node before and the node after a partially demyelinated internode [9]. Changes
in impedance can result in conduction block even when the demyelinated region contains
sodium and potassium ion channels [2]. Our simulations indicate that an additional delay
is produced when the action potential leaves a partially demyelinated internode and en-
ters into an intact region. These results are consistent with compartmental simulations of
mild paranodal damage [5], but further work will be required to test experimentally our
predictions regarding jitter and delay upon leaving demyelinated regions. In particular,
this result relies on the fact that in our model, nodal current between two intact intern-
odes will flow in equal proportion in orthodromic and antidromic compartments because
the current is divided equally between compartment with matched impedance. This sit-
uation may be affected by the mismatch of orthodromic and antidromic potential during
propagation. Detailed simulations of a demyelinated segment can resolve this issue.

Our estimates of the compound action potential show that its FWHM can triple for
rare but intense demyelination. This is consistent with previous experimental recordings
of pharmacological demyelination [26], and in patients with demyelinating diseases [27,
28]. Our result that either an increase or a decrease in propagation delay can result from
a damaged internode could explain why the compound action potential delay itself may
be a less potent parker of demyelination [35, 65, 66] than the compound action potential
dispersion.

The approach we have used relies on five critical assumptions delineated in Methods, of
which we discuss three here. First, we have assumed a specific form of the linear impulse-
response function based on a classic theoretical derivation for a uniform semi-infinite
cable with lumped compartment. Many properties of the axon may affect this function.
Some of these characteristics may be reasonably captured by the changes in electrotonic
length constants considered here, but in other cases a different modulation of the impulse-
response function must be considered. Ideally, experimental measurements would either
shore up or replace the hypotheses used here.

Second, we have not considered the active propagation along demyelinated internodes
mediated by an increase in sodium and potassium ion channels in the demyelinated re-
gion [35]. Although a subthreshold activation of these active conductances can be treated
in the spike-diffuse-spike framework [62], it cannot capture a fully nonlinear dynamical
response of the internodes. These two assumptions imply that the modeling framework
should be reserved for the study of relatively mild demyelination where ion channels re-
main concentrated in the nodes of Ranvier and saltatory propagation is preserved.

Finally, implicit to the SSDS model, we assumed that there can be no interactions be-
tween nodes that are more than two internodal regions apart. Triplet or quadruplet inter-
actions can be taken into account, but would require additional extensions of the modeling
framework. Also, the same formalism with the same caveats could be applied to other sit-
uations such as the study of traumatized axons [67]. As a promising next step, our theoret-
ical framework could be used in combination with combined measures of clinical scores
and demyelination properties [68] to identify the main impediments to propagation as
well as the most effective markers of weak demyelination.



Naud and Longtin Journal of Mathematical Neuroscience             (2019) 9:3 Page 22 of 24

Acknowledgements
We thank Daniel C. Côté and Yves De Koninck for helpful discussions.

Funding
RN was supported by an NSERC Discovery Grant (RGPIN-2017-06972) and the Canadian Neurophotonics platform. AL was
support by NSERC Discovery Grant (RGPIN-2014-06204).

Abbreviations
SSDS, Stochastic spike-diffuse-spike; AP, Action potential; FWHM, Full width at half maximum; LFP, Local field potential.

Availability of data and materials
Please contact the authors for access to the Python scripts used for simulations.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
AL and RN conceived the study and wrote the article. RN developed the theoretical framework and analyzed the results.
All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 November 2018 Accepted: 20 May 2019

References
1. Helmholtz H. Note sur la vitesse de propagation de l’agent nerveux dans les nerfs rachidiens. C R Acad Sci Paris.

1850;30:204–6.
2. Waxman SG, Brill MH. Conduction through demyelinated plaques in multiple sclerosis: computer simulations of

facilitation by short internodes. J Neurol Neurosurg Psychiatry. 1978;41(5):408–16.
3. Waxman SG, Wood SL. Impulse conduction in inhomogeneous axons: effects of variation in voltage-sensitive ionic

conductances on invasion of demyelinated axon segments and preterminal fibers. Brain Res. 1984;294(1):111–22.
4. McIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: influence of

afterpotentials on the recovery cycle. J Neurophysiol. 2002;87(2):995–1006.
5. Babbs CF, Shi R. Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons.

PLoS ONE. 2013;8(7):67767.
6. FitzHugh R. Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys J.

1962;2:11–21.
7. Basser P. Cable equation for a myelinated axon derived from its microstructure. Med Biol Eng Comput.

1993;31(1):87–92.
8. Nygren A, Halter J. A general approach to modeling conduction and concentration dynamics in excitable cells of

concentric cylindrical geometry. J Theor Biol. 1999;199(3):329–58.
9. Koles Z, Rasminsky M. A computer simulation of conduction in demyelinated nerve fibres. J Physiol.

1972;227(2):351–64.
10. Blight A. Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for

a lower resistance myelin sheath. Neuroscience. 1985;15(1):13–31.
11. Halter JA, Clark JW Jr. A distributed-parameter model of the myelinated nerve fiber. J Theor Biol. 1991;148(3):345–82.
12. Stephanova DI, Daskalova MS, Alexandrov AS. Differences in membrane properties in simulated cases of

demyelinating neuropathies: internodal focal demyelinations with conduction block. J Biol Phys. 2006;32(2):129–44.
13. Hales JP, Lin CS-Y, Bostock H. Variations in excitability of single human motor axons, related to stochastic properties of

nodal sodium channels. J Physiol. 2004;559(3):953–64.
14. Zeng S, Jung P. Mechanism for neuronal spike generation by small and large ion channel clusters. Phys Rev X.

2004;70(1):011903.
15. Zeng S, Tang Y, Jung P. Spiking synchronization of ion channel clusters on an axon. Phys Rev X. 2007;76(1):011905.
16. Ochab-Marcinek A, Schmid G, Goychuk I, Hänggi P. Noise-assisted spike propagation in myelinated neurons. Phys Rev

E. 2009;79(1):011904.
17. Pillow J, Paninski L, Uzzell V, Simoncelli E, Chichilnisky E. Prediction and decoding of retinal ganglion cell responses

with a probabilistic spiking model. J Neurosci. 2005;25(47):11003–13.
18. Pillow J, Shlens J, Paninski L, Sher A, Litke A, Chichilnisky E, Simoncelli E. Spatio-temporal correlations and visual

signalling in a complete neuronal population. Nature. 2008;454(7207):995–9.
19. Mensi S, Naud R, Avermann M, Petersen CCH, Gerstner W. Parameter extraction and classification of three neuron

types reveals two different adaptation mechanisms. J Neurophysiol. 2012;107:1756–75.
20. Pozzorini C, Naud R, Mensi S, Gerstner W. Temporal whitening by power-law adaptation in neocortical neurons. Nat

Neurosci. 2013;16(7):942–8.
21. Gerstner W, Kistler W, Naud R, Paninski L. Neuronal dynamics. Cambridge: Cambridge University Press; 2014.



Naud and Longtin Journal of Mathematical Neuroscience             (2019) 9:3 Page 23 of 24

22. Naud R, Bathellier B, Gerstner W. Spike-timing prediction in cortical neurons with active dendrites. Front Comput
Neurosci. 2014;8:90.

23. Pozzorini C, Mensi S, Hagens O, Naud R, Koch C, Gerstner W. Automated high-throughput characterization of single
neurons by means of simplified spiking models. PLoS Comput Biol. 2015;11(6):1004275.

24. Teeter C, Iyer R, Menon V, Gouwens N, Feng D, Berg J, Szafer A, Cain N, Zeng H, Hawrylycz M, et al. Generalized leaky
integrate-and-fire models classify multiple neuron types. Nat Commun. 2018;9(1):709.

25. Bressloff PC, Coombes S. Synchrony in an array of integrate-and-fire neurons with dendritic structure. Phys Rev Lett.
1997;78:4665–8.

26. Payne T, Newmark J, Reid KH. The focally demyelinated rat fimbria: a new in vitro model for the study of acute
demyelination in the central nervous system. Exp Neurol. 1991;114(1):66–72.

27. Thaisetthawatkul P, Logigian EL, Herrmann DN. Dispersion of the distal compound muscle action potential as a
diagnostic criterion for chronic inflammatory demyelinating polyneuropathy. Neurology. 2002;59(10):1526–32.

28. Isose S, Kuwabara S, Kokubun N, Sato Y, Mori M, Shibuya K, Sekiguchi Y, Nasu S, Fujimaki Y, Noto Y, et al. Utility of the
distal compound muscle action potential duration for diagnosis of demyelinating neuropathies. J Peripher Nerv Syst.
2009;14(3):151–8.

29. Rushton W. A theory of the effects of fibre size in medullated nerve. J Physiol. 1951;115(1):101–22.
30. London M, Meunier C, Segev I. Signal transfer in passive dendrites with nonuniform membrane conductance.

J Neurosci. 1999;19(19):8219–33.
31. Koch C. Cable theory in neurons with active, linearized membranes. Biol Cybern. 1984;50:15–33.
32. Stephanova DI, Kolev BD. Computational neuroscience: simulated demyelinating neuropathies and neuronopathies.

Boca Raton: CRC Press; 2013.
33. Rall W. Membrane potential transients and membrane time constant of motoneurons. Exp Neurol. 1960;2(5):503–32.
34. Tuckwell HC. Introduction to theoretic neurobiology. Cambridge: Cambridge University Press; 1988.
35. Bostock H, Sears T. Continuous conduction in demyelinated mammalian nerve fibres. Nature. 1976;263:786–7.
36. Chow CC, White J. Spontaneous action potential fluctuations due to channel fluctuations. Biophys J.

1996;71:3013–21.
37. Faisal AA, White JA, Laughlin SB. Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr Biol.

2005;15(12):1143–9.
38. Katz B, Schmitt OH. Electric interaction between two adjacent nerve fibres. J Physiol. 1940;97(4):471–88.
39. Holt GR, Koch C. Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci.

1999;6(2):169–84.
40. Binczak S, Eilbeck J, Scott AC. Ephaptic coupling of myelinated nerve fibers. Phys D, Nonlinear Phenom.

2001;148(1):159–74.
41. Reutskiy S, Rossoni E, Tirozzi B. Conduction in bundles of demyelinated nerve fibers: computer simulation. Biol

Cybern. 2003;89(6):439–48.
42. Chow CC, Kopell N. Dynamics of spiking neurons with electrical couplings. Neural Comput. 2000;12:1643–78.
43. van Kampen NG. Stochastic processes in physics and chemistry. 2nd ed. Amsterdam: North-Holland; 1992.
44. Gerstner W, Ritz R, van Hemmen J. Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns.

Biol Cybern. 1993;69(5–6):503–15.
45. Plesser H, Gerstner W. Noise in integrate-and-fire neurons: from stochastic input to escape rates. Neural Comput.

2000;12:367–84.
46. Jolivet R, Rauch A, Lüscher H, Gerstner W. Predicting spike timing of neocortical pyramidal neurons by simple

threshold models. J Comput Neurosci. 2006;21:35–49.
47. Gerstner W, Naud R. How good are neuron models? Science. 2009;326:379–80.
48. Bostock H, Sears T. The internodal axon membrane: electrical excitability and continuous conduction in segmental

demyelination. J Physiol. 1978;280(1):273–301.
49. Kole MH, Letzkus JJ, Stuart GJ. Axon initial segment kv1 channels control axonal action potential waveform and

synaptic efficacy. Neuron. 2007;55(4):633–47.
50. Rudolfer SM. A Markov chain model of extrabinomial variation. Biometrika. 1990;77(2):255–64.
51. Lindén H, Pettersen KH, Einevoll GT. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials.

J Comput Neurosci. 2010;29(3):423–44.
52. Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for studying the

function of cortical circuits. Nat Rev Neurosci. 2013;14(11):770–85.
53. Faisal A, Laughlin S. Stochastic simulations on the reliability of action potential propagation in thin axons. PLoS

Comput Biol. 2007;3:79.
54. Stephanova D, Daskalova M, Alexandrov A. Differences in potentials and excitability properties in simulated cases of

demyelinating neuropathies. Part I. Clin Neurophysiol. 2005;116(5):1153–8.
55. Stephanova D, Daskalova M. Membrane property abnormalities in simulated cases of mild systematic and severe

focal demyelinating neuropathies. Eur Biophys J. 2008;37(2):183–95.
56. Turrigiano G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu

Rev Neurosci. 2011;34:89–103.
57. Seidl AH. Regulation of conduction time along axons. Neuroscience. 2014;276:126–34.
58. Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci.

2006;7(12):932–41.
59. Ritchie J, Rang H, Pellegrino R. Sodium and potassium channels in demyelinated and remyelinated mammalian

nerve. Nature. 1981;294:257–9.
60. Rasband MN, Trimmer JS, Schwarz TL, Levinson SR, Ellisman MH, Schachner M, Shrager P. Potassium channel

distribution, clustering, and function in remyelinating rat axons. J Neurosci. 1998;18(1):36–47.
61. Platkiewicz J, Brette R. A threshold equation for action potential initiation. PLoS Comput Biol. 2010;6(7):1000850.
62. Coombes S, Bressloff P. Saltatory waves in the spike-diffuse-spike model of active dendritic spines. Phys Rev Lett.

2003;91(2):028102.
63. Timofeeva Y, Lord GJ, Coombes S. Spatio-temporal filtering properties of a dendritic cable with active spines: a

modeling study in the spike-diffuse-spike framework. J Comput Neurosci. 2006;21(3):293–306.



Naud and Longtin Journal of Mathematical Neuroscience             (2019) 9:3 Page 24 of 24

64. Coggan JS, Prescott SA, Bartol TM, Sejnowski TJ. Imbalance of ionic conductances contributes to diverse symptoms
of demyelination. Proc Natl Acad Sci. 2010;107(48):20602–9.

65. Halliday A, McDonald W, Mushin J. Delayed visual evoked response in optic neuritis. Lancet. 1972;299(7758):982–5.
66. Asselman P, Chadwick D, Marsden D. Visual evoked responses in the diagnosis and management of patients

suspected of multiple sclerosis. Brain. 1975;98(2):261–82.
67. Lachance M, Longtin A, Morris CE, Yu N, Joós B. Stimulation-induced ectopicity and propagation windows in model

damaged axons. J Comput Neurosci. 2014;3(37):523–31.
68. Bégin S, Bélanger E, Laffray S, Aubé B, Chamma É, Bélisle J, Lacroix S, De Koninck Y, Côté D. Local assessment of myelin

health in a multiple sclerosis mouse model using a 2d Fourier transform approach. Biomed Opt Express.
2013;4(10):2003–14.


	Linking demyelination to compound action potential dispersion with a spike-diffuse-spike approach
	Abstract
	Keywords

	Introduction
	Methods
	Single axon model: stochastic spike-diffuse-spike.
	Internodal drift diffusion
	Nodal spiking
	Internodal delay and speed
	Homeostatic threshold compensation
	Jitter

	Modeling axonal damage
	Altered propagation
	Delay, failure and jitter along a complete axon
	Modeling damage distribution

	Compound action potential

	Results
	Demyelination and propagation properties-single internode
	Lesion patterns and propagation properties-whole axon
	Homeostatic control of demyelination-induced delays
	Compensated demyelination can be inferred from the compound action potential

	Discussion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Publisher's Note
	References


