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system utilizing P0-Cre/EGFP fluorescent time-
lapse imaging
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Abstract

Background: Neural crest cells (NCCs) are embryonic, multipotent stem cells. Their long-range and precision-
guided migration is one of their most striking characteristics. We previously reported that P0-Cre/CAG-CAT-lacZ
double-transgenic mice showed significant lacZ expression in tissues derived from NCCs.

Results: In this study, by embedding a P0-Cre/CAG-CAT-EGFP embryo at E9.5 in collagen gel inside a culture glass
slide, we were able to keep the embryo developing ex vivo for more than 24 hours; this development was with
enough NCC fluorescent signal intensity to enable single-cell resolution analysis, with the accompanying NCC
migration potential intact and with the appropriate NCC response to the extracellular signal maintained. By
implantation of beads with absorbed platelet-derived growth factor-AA (PDGF-AA), we demonstrated that PDGF-AA
acts as an NCC-attractant in embryos.
We also performed assays with NCCs isolated from P0-Cre/CAG-CAT-EGFP embryos on culture plates. The
neuromediator 5-hydroxytryptamine (5-HT) has been known to regulate NCC migration. We newly demonstrated
that dopamine, in addition to 5-HT, stimulated NCC migration in vitro. Two NCC populations, with different axial
levels of origins, showed unique distribution patterns regarding migration velocity and different dose-response
patterns to both 5-HT and dopamine.

Conclusions: Although avian species predominated over the other species in the NCC study, our novel system
should enable us to use mice to assay many different aspects of NCCs in embryos or on culture plates, such as
migration, division, differentiation, and apoptosis.

Background
The neural crest, a pluripotent cell population, produces
a variety of cell types, including neurons, glial cells, sym-
patho-adrenal cells, melanocytes, and mesenchymal
cells. Mesenchymal cells in turn form cartilage, bone,
and connective tissue. NCCs undergo an epithelial-
mesenchymal transition and migrate away from the
neural epithelium in streams to different regions of the
embryo, where they contribute to the formation of a
variety of structures [1]. The processes of NCC induc-
tion and migration have been studied extensively [2-4].
Since one of the most striking characteristics of NCCs is

the mechanism involving their long-range and precision-
guided migration, many studies have focused on this
mechanism.
Many molecules have been reported to regulate the

migration of NCCs: fibronectin and laminin [5]; collagen
[6]; tenascin [7]; chondroitin sulfate proteoglycan
(CSPG) [8]; integrin [9,10]; cadherin [11,12]; Eph recep-
tor kinase and their ligands [13]; neuropilin-1 [14-16];
non-canonical Wnt signaling [17]; 5-HT [18]; and PDGF
[19-22].
In this study, we focused primarily on cranial neural

crest cells (CNCCs), a major component of the verte-
brate cranium. Recent experimental observations in
mouse, chick, and zebrafish have revived interest in the
species-specific aspects of cranial morphogenesis
[23-26]. There are still unexplored issues with respect to
the molecular mechanisms underlying the patterning
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and differentiation of NCCs. Each vertebrate species
exhibits different patterns of CNCC emigration. For
example, in mammals, NCCs begin to emigrate from
the tip or ‘crest’ of the still-open neural folds [27],
whereas in birds NCCs arise only after the neural tube
closure occurs [28]. Another example of interspecies dif-
ferences is seen in the pathways of CNCC migration in
mammals, which are not nearly as well delineated as
they are in birds [29]. On the other hand, fish or frog
embryos exhibit markedly different patterns of CNCC
emigration from mammals or birds.
Until recently, most studies on CNCCs have been per-

formed on avian embryos because the lineage analysis
or direct analysis of NCC differentiation has been hin-
dered in mammals due to a lack of reagents and embry-
ological techniques that allow for the comprehensive
characterization of NCCs. Microsurgical manipulation
and the ex-utero culture of embryos are laborious tasks
in most mammals. In addition, a “pan"-NCC cell surface
marker, such as the human natural killer-1 (HNK-1)
[30], cannot be utilized in mice. Wnt1 is commonly
used as an NCC marker in mice [31-33]. However, our
purpose is to label NCCs in the mouse head region.
Wnt1 does not work for that purpose, because Wnt1
only marks the dorsal neural plate, and labels neuronal
cells as well as NCCs, especially in the head region [34].
For all that, in recent years, many NCC studies per-
formed on non-avian model species using new techni-
ques for cell labeling: mouse [35-38]; Xenopus [39-41];
zebrafish [40,42,43]; hagfish [44]; lamprey [45]; and
amphioxus [46].
The P0-Cre transgenic mouse line is a line that carries

a Cre gene driven by a P0 gene promoter. We previously
reported that, by crossing P0-Cre mice with CAG-CAT-
lacZ indicator transgenic mice, expression of lacZ an E.
Coli b-galactosidase gene) occurs in almost all of the
cells and/or tissues that originate with NCCs [47]. In
the present study, we used enhanced green fluorescent
protein (EGFP) instead of lacZ to observe NCCs in liv-
ing embryos. By employing a P0-Cre/CAG-CAT-EGFP
reporter system in fluorescent time-lapse imaging, we
demonstrated a novel assay system for mouse NCCs
that allows us to observe the behavior of NCCs in real
time. This assay system also should facilitate the func-
tional analysis of any factor’s effect on NCCs via the
implantation of factor-soaked beads. Finally, this assay
system should enable assays on mutant mice.
5-HT is a monoamine neuromediator, and it has been

shown to control almost every core function of the cen-
tral nervous system (CNS), such as mood, cognition,
sleep, pain, motor function, and/or endocrine secretion
[48]. 5-HT is also known as a developmental signal [49].
The agents related to 5-HT (uptake inhibitors, receptor
agonists) cause significant craniofacial malformations in

cultured mouse embryos. 5-HT was reported to be an
important regulator of craniofacial development, and a
dose-dependent 5-HT effect on the migration of CNCCs
has been demonstrated [18]. However, the molecular
mechanisms of this effect have not been characterized
very well. Other neuromediators might also affect the
migration of NCC. Dopamine is also a monoamine neu-
romediator and as such is involved in the pathology of
movement disorders such as Parkinson’s disease or
Huntington’s disease; it is also involved in psychiatric
disorders including schizophrenia [50]. 5-HT and dopa-
mine bind to their specific and respective seven trans-
membrane receptors, which are coupled with
heterotrimeric G protein, and they display many com-
mon aspects in their intracellular signaling pathways. 5-
HT was reported to reach the mouse embryo at E9
from maternal sources and has been shown to influence
development of craniofacial and cardiac mesenchyme
[18,51,52]. In the case of dopamine, tyrosine hydroxylase
positive cells were reported to be observed in mouse
embryos at the medio-basal part of the mesencephalon
[53,54] and gut [55] from E10. mRNA of tyrosine hydro-
xylase gene was observed on E8.5 mouse embryos [56].
These timings of the expression of 5-HT or dopamine
overlap with the embryonic stage containing migrating
NCCs.
In this study, we isolated GFP-labeled NCC popula-

tions from the region rostral or caudal to the midbrain-
hindbrain boundary (MHB) of E9.5 P0-Cre/CAG-CAT-
EGFP embryos, and directly observed single cell migra-
tion by utilizing fluorescent time-lapse microscopy. The
organizing center, located at the MHB, patterns the
midbrain and hindbrain primordia of the neural plate
[57] and also affects NCC patterning [58]. We tracked
each cell movement in the images, and measured and
then summarized the mean migration velocity. We
found a difference in the velocity distribution patterns
between the two NCC populations. Previous reports
demonstrated that 5-HT regulated mouse CNCC migra-
tion with modified Boyden chambers [18]. We also
assessed the 5-HT and dopamine effects on CNCC
migration and found that each agent showed unique
dose-dependent and population-dependent patterns of
effects on CNCC migration.

Methods
Specimens
C57BL/6J mice were purchased from Clea Japan Inc.
(Meguro Ward, Tokyo, Japan). Immediately after eutha-
nasia of the pregnant mothers, the embryos were
extracted. All animal experiments were carried out with
the approval of the Ethics Committee of the Center for
Animal Resources and Development, Kumamoto Uni-
versity (D-18-090, A-19-154).
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EGFP Fluorescence Imaging of Embryos
EGFP fluorescence of P0-Cre/CAG-CAT-EGFP embryos
was detected utilizing a SteREO Lumar V12 fluorescent
stereo microscope (Carl Zeiss, Göttingen, Germany).

Detection of b-Galactosidase (lacZ) Activities
Whole embryos were stained for b-galactosidase activity
according to the method of Allen et al. [59]. Samples
were stained with X-gal (5-bromo-4-chloro-3-indolyl-b-
D-galactopyranoside) then fixed in 4% paraformalde-
hyde/PBS, embedded in paraffin, sectioned to a thick-
ness of 4 μm, and finally stained with hematoxylin and
eosin as described by Yamauchi et al. [47].

Tissue Preparation and Immunohistochemistry
Embryos were fixed in 4% paraformaldehyde/PBS,
embedded in paraffin and sectioned to a thickness of 5
μm. Sections were incubated in 3% H2O2 for 5 minutes,
then in blocking solution (10% BSA/PBS) for 20 minutes
at room temperature, and then in 1:400 diluted anti-
PDGFRa antibody (Santa Cruz Biotechnology, Santa
Cruz, CA, USA) overnight at 4°C, followed by a second-
ary antibody incubation. A Vectastain ABC Kit (Vector
Laboratories, Burlingame, CA, USA) was used for the
color reaction, and then the embryo sections were coun-
terstained with hematoxylin.

Mouse Embryo Culture
P0-Cre/CAG-CAT-EGFP mouse embryos (E9.0-E9.5)
were separated and transferred individually onto a bot-
tom layer of collagen gel (about 2 mm thickness) in
two-chamber culture slide dishes (BD Falcon, Franklin
Lakes, NJ, USA). The bottom layer was prepared pre-
viously from an acid collagen solution (Koken, Toshima
Ward, Tokyo, Japan) according to the manufacturer’s
specified protocol. Embryos were then covered with an
approximately 2-mm-thick overlay of the same collagen
gel matrix as used in the bottom layer, followed by an
overlay of 100% rat serum. These were topped with a
mineral oil layer to prevent evaporation. All these struc-
tures were incubated at 37°C on a glass heating plate
(KM-1; Kitazato Supply Co. Ltd., Fuji, Shizuoka, Japan)
under a microscope (SteREO Lumar V12; Carl Zeiss).

Time-Lapse Imaging of Mouse Embryo Culture
Time-lapse fluorescence images were recorded every 20
minutes for an average of between 24 and 36 hours.
Images were digitally collected and analyzed utilizing
AxioVision Software and Tracking Module Software
(Carl Zeiss).

Analysis of Cell Migration in Embryos
We chose 20 to 25 cells from the particular NCC popu-
lation per embryo in the time-lapse images. With the

Tracking Module Software, we traced the pathway of
migration of each NCC, and analyzed the length of the
migration path, elapsed time, and average velocity.

Bead Implantation Experiment
PDGF-AA (PeproTech, Rocky Hill, NJ, USA) was recon-
stituted in 10 mM acetic acid to 0.1 mg/ml, and diluted
by F-12 medium (GIBCO, Grand Island, NY, USA) to 4
μg/ml. Cibacron Blue 3GA beads (Sigma Chemical, St.
Louis, MO, USA) were soaked into PDGF-AA solution
for 1 hour on ice. Control beads were soaked in 10 mM
sodium acetate diluted by F-12 to the same ratio as the
PDGF-AA. These beads were washed once with F-12
with 10% FCS and then were implanted in the embryos.

NCC Isolation and Culture from P0-Cre/CAG-CAT-EGFP
Embryos
E9.5 P0-Cre/CAG-CAT-EGFP embryos were selected
according to their GFP expression. The rostral or caudal
part to the MHB of the embryos was excised by fine
spring scissors, cut into small pieces, and trypsinized in
a DMEM/F-12 medium (GIBCO). Dissociated cells sus-
pended in the medium were filtered to remove debris
and seeded on collagen-coated plates. The plates were
settled in a standard incubator (5% CO2; 37°C) over-
night to wait for the cells to attach to the bottom
surface.

Measurement of Migration Velocities of Cultured NCCs
We performed GFP-fluorescent time-lapse microscopy
with cultured NCCs utilizing the ‘ImageXpress’ cell
image screening system (Molecular Devices, Sunnyvale,
CA, USA), taking an image every 5 minutes. First, we
recorded images for 2 hours without factors, then we
paused the recording and added a small amount of
DMEM/F-12 medium (5 μl) with a factor or with vehi-
cle. We then re-started the recording for 2 more hours.
After all the recording was finished, we analyzed the
images with MetaXpress software (Molecular Devices)
and then compared the migration velocity of the same
cell before and after the factor was added. Statistical
analyses for Figure Seven, Eight and Nine (Non-repeated
Measures ANOVA, Dunnett’s test) were performed uti-
lizing an Excel Add-In AOVs0702.xla software http://
homepage2.nifty.com/statdograilroad/stat/MyAddIns.
html.

Results
Observation of NCCs in Living Embryos at Different
Stages
Our group reported that by crossing P0-Cre mice with
CAG-CAT-lacZ indicator transgenic mice, lacZ expres-
sion occurred in almost all cells of NCC origin in E9.5,
E10.5, and E12.5 embryos [47]. In this study, we used a

Kawakami et al. BMC Developmental Biology 2011, 11:68
http://www.biomedcentral.com/1471-213X/11/68

Page 3 of 17

http://homepage2.nifty.com/statdograilroad/stat/MyAddIns.html
http://homepage2.nifty.com/statdograilroad/stat/MyAddIns.html
http://homepage2.nifty.com/statdograilroad/stat/MyAddIns.html


CAG-CAT-EGFP strain instead of the CAG-CAT-lacZ
indicator strain and analyzed fluorescence at E9.5 and
E10.5 in living embryos (Figure 1). The distribution of
the fluorescence at E9.5 and E10.5 in embryos (Figure
1b, d) was indistinguishable from the lacZ expression
pattern of P0-Cre/CAG-CAT-lacZ double-transgenic
embryos [47]. Next we used the Rosa26-lacZ (R26R)
mouse as an indicator strain. We confirmed that the
expression pattern of lacZ is not different from that of
CAG-CAT-lacZ or that of the EGFP expression pattern
of CAG-CAT-EGFP (data not shown).

Time Lapse (Movie)
To observe the behavior of NCCs in real time under the
microscope, we constructed an in vitro embryo culture
system using chamber culture glass slides (Figure 2A).
Similar systems were already reported by other groups
[60,61]. This system made it possible to keep embryos
developing for more than 24 hours and allowed us to
also simultaneously observe the NCC migration pat-
terns. We applied fluorescent time-lapse microscopy to

P0-Cre/CAG-CAT-EGFP embryos in this system. Our
live imaging had high enough resolution to recognize
single cells and to thereby be able to trace the move-
ment of each cell. We focused mainly on E9.5 embryos
and analyzed CNCC migration using the above-men-
tioned time-lapse system. Figure 2B shows an example
of CNCC migration in an E9.5 embryo.
To analyze cell migration, a vital dye staining method

is commonly used, as it is easy and applicable to a vari-
ety of cell types. For example, works from Patrick Tam’s
lab [62,63] and Osumi-Yamashita’s lab [64-67] clearly
showed that DiI lineage tracing could be used effectively
in mouse embryos in combination with whole embryo
culture to study mammalian NCC development. Our
labeling method utilizes a Cre-loxP/EGFP reporter sys-
tem, in which labeling is both constant and continuous.
Patterns of CNCC migration in mice were analyzed in
detail with vital dye staining, which Serbedzija et al.
pointed out reveals three distinct patterns of CNCC
migration [68]: 1) From the level of the forebrain,
CNCCs migrated ventrally through the mesenchyme in
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Figure 1 Detection of Cre Activity in P0-Cre/CAG-CAT-EGFP Mouse During Embryonic Development. E9.5 (a, b) and E10.5 (c, d) embryos.
Bright field images (a, c) and corresponding fluorescent images (b, d) (n = 5 each). ba1: branchial arch 1, ov: otic vesicle
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a sheet, extending from the dorsal part of the neural
tube to the level of the optic vesicle, and then they
settled in the mesenchyme around the eye. 2) In con-
trast, CNCCs at the level of the midbrain appeared to
migrate ventrolaterally as dispersed cells through the
mesenchyme between the lateral surface of the mesence-
phalon and the ectoderm, toward the general region
around the maxillary process or the eye. 3) CNCCs at
the level of the hindbrain migrated ventrolaterally, along
three segmentally distributed subectodermal streams,
from the dorsal portion of the neural tube to the distal
portion of the first, second, and third branchial arches.
Our data were consistent with the above-mentioned
data by Serbedzija et al. [68] for the most part. However,
there was an apparent discrepancy concerning the
migratory pathway from the forebrain CNCCs. We
observed that CNCCs from the level of the forebrain
migrated not only through the mesenchyme but also
through the ectoderm, and not only in a sheet but also
as dispersed cells (Figure 2B, Movie: Additional file 1).
They described only one pathway where the CNCCs
from the forebrain migrated ventrally through the
mesenchyme in a sheet. This discrepancy could be
caused by a difference in the method or a difference in
the timing of cell labeling. It is also possible that we
were able to observe these additional cell populations
because our labeling method was continuous and strong.

Tracking Analysis of NCCs in Embryos
As the manner of CNCC migration differs between the
midbrain and hindbrain levels, it is also possible that
CNCCs from both levels possess other differences, such
as in the mode of “the mean migration velocity” or in
“the mean migration velocity” distributions. We com-
pared the migration velocity of these two closely distrib-
uted CNCC populations. One population is derived
from the most posterior part of the midbrain, and it
migrates toward the maxillary process and the eye
(Figure 3a). Another population is derived from the
most anterior part of the hindbrain and goes to the first
branchial arch (Figure 3b). Our time-lapse imagery
resolved each CNCC in both population groups. We
traced each CNCC movement and then analyzed their
mean velocities using Tracking Module software (Carl
Zeiss) (Figure 3c, d). We traced an average of 20 cells
per embryo from multiple independent embryos. Each
of the populations had the mode at the same mean velo-
city category (12.5 to 17.5 μm/hour) for all of the
embryos. On the other hand, there was a difference in
“the mean migration velocity” distributions between the
two populations. CNCCs from the midbrain level had a
broader distribution into the higher velocities compared
to those from the hindbrain level (Figure 3c, d). It is
likely that this difference in velocity levels reflects the

intensity of restraint of each CNCC to the extracellular
matrix or adjacent CNCCs in both of the populations,
because CNCCs from the midbrain migrate as dispersed
cells, as opposed to the CNCCs from the hindbrain,
which migrate in streams [68].

Analysis of Expression Pattern of PDGFRa
Several studies have examined the role of the PDGF sig-
naling pathway on CNCCs [19-22,69-71]. Pdgfra (plate-
let-derived growth factor receptor a) mRNA was found
to be expressed at high levels in the non-neuronal deri-
vatives of the CNCC, but not in the crest cell neuronal
derivatives [20,72]. Because of the lack of an appropriate
and adequate NCC marking method, it has been difficult
to demonstrate these results unequivocally. In the pre-
sent study, we compared the expression pattern of
PDGFRa analyzed utilizing immunohistochemical stain-
ing by a PDGFRa-specific antibody with that of the lacZ
expression in P0-Cre/R26R double-transgenic embryos
at E9.5 (Figure 4a-d). At the mandibular arch or fronto-
nasal process, the PDGFRa expression pattern shows a
strong resemblance to the lacZ expression in P0-Cre/
R26R double-transgenic embryos, although PDGFRa
expression was observed not only in NCCs or NCC-
derived tissues but also in other types of tissues, such as
the paraxial mesoderm and heart (data not shown).

PDGF-AA Bead Implantation
Mice carrying null mutations in the Pdgfra gene have a
cleft face phenotype. Although the maxillary process
was normal-sized, the frontonasal and mandibular pro-
cesses were severely reduced in size and unfused at the
midline. Most embryos also had a cleft palate and con-
sistently displayed a shortened neck and spina bifida
beginning at the cervical level. This phenotype was deli-
neated because of a subset of non-neuronal neural crest
cells with high PDGFRa expression that failed to
migrate to their proper destinations [20]. PDGFs are
known to be involved in chemoattraction, and it is pos-
sible that a PDGF-dependent mechanism may play a
role in the long-range targeting of CNCC migration
[19]. Also, in explant experiments, PDGF-AA enhances
NCC motility without affecting the proliferation rate
and stimulates cultured NCCs to secrete matrix metallo-
proteinase 2 (MMP2) and its activator, membrane-type
matrix metalloproteinase (MT-MMP) [73]. A few years
ago, it was reported that micro-RNA Mirn 140 downre-
gulated the expression of Pdgfra in CNCC, and main-
tained a restricted expression pattern of Pdgfra[74,75].
These results also demonstrated the attractive effect of
PDGF on NCCs.
In the present study, we set out to determine the

direct function of PDGF on CNCCs. We implanted
PDGF-AA-soaked beads in E9.5 P0-Cre/CAG-CAT-
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EGFP embryos. Fluorescent time-lapse imaging demon-
strated that many CNCCs on the surface of the
embryos veered off of their original pathway, or even
reversed back, and they were obviously attracted to the
vicinity of the PDGF-AA beads (Figure 5B, Movie:
Additional file 2). This attractant effect was observable
within a few hours after the bead implantations, and it
was too brief to show any effect on intermediate tissue
in order to release any guidance cues for CNCCs. Con-
trol beads that were soaked in vehicle did not demon-
strate any attractive effects (Figure 5A). This suggested
that, at least in our system, PDGF-AA seems to work as
a long-range remote attractant to CNCCs in living
embryos. However, it is still unclear whether the PDGF
signaling in NCCs is necessary for their migration or
not, as changes in cell migration were not observed in
conditional mutant embryos that lacked PDGFRa in
NCCs [21].

Measurement of Migration Velocities of Cultured NCCs
from Different Neural Tube Levels
The MHB region has been known to work as an organi-
zer for anterior neural patterning [57], and it also has
been shown to affect NCC patterning [58]. We isolated
cells from the region rostral or caudal to the MHB of
E9.5 P0-Cre/CAG-CAT-EGFP embryos. We named them
the forebrain-midbrain NCC (FMB-NCC) for the rostral
NCC population and hindbrain NCC (HB-NCC) for the
caudal NCC population. We then seeded the isolated
cells on collagen-coated plates for 4 hours of time-lapse
observation, taking an image every 5 minutes. The P0-
Cre/CAG-CAT-EGFP system enabled us to distinguish
cells with neural crest origin from the other cells by
GFP fluorescent microscopy.
First, we measured “the mean velocity through all the

frames (Va)” of both populations (Figure 6A, B). The
two populations have similar Va mode value categories
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(FMB-NCC: 16-18 μm/hour, HB-NCC: 18-20 μm/hour)
as well as similar minimum Va (FMB-NCC: 9.6 μm/
hour, HB-NCC: 11.2 μm/hour). Big differences were
observed in the maximum Va (FMB-NCC: 45.5 μm/
hour, HB-NCC: 94.5 μm/hour), the mean Va (FMB-
NCC: 20.4 μm/hour, HB-NCC: 29.1 μm/hour), and the
standard deviation (SD) of Va (FMB-NCC: 5.4 μm/hour,
HB-NCC: 13.1 μm/hour) between the two populations.
Compared to FMB-NCC, HB-NCC had a higher maxi-
mum value or SD of Va. The mode categories of Va
(FMB-NCC: 16-18 μm/hour, HB-NCC: 18-20 μm/hour)
were similar to those of in vivo migration (12.5-17.5
μm/hour) (Figure 3c, d).

In Vitro Assay of the Effects of 5-HT and Dopamine on
Cultured NCCs
We performed in vitro fluorescent time-lapse micro-
scopy with or without several different doses of 5-HT or
dopamine on cultured NCCs that had been purified
from E9.5 P0-Cre/CAG-CAT-EGFP embryos. We mea-
sured and compared the “mean velocity” of both popula-
tions (FMB-NCC and HB-NCC) before (Vc) and after
(Vd) upon the addition of either dopamine or 5-HT.
Figure 7 shows the relationship between the Vd/Vc ratio
(Rd/c) and each dose of 5-HT in the cases of FMB-NCC
(A) and HB-NCC (B). The mean velocity of FMB-NCCs
was increased after the addition of 5-HT at 0.1 μM
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Figure 4 Comparison of LacZ-Positive Cells in a P0-Cre/R26R Embryo and PDGFRa Protein Expression in a Wild-Type Embryo. E9.5 P0-
Cre/R26R embryo (a, c) and wild-type embryo (b, d) (n = 5 each). In the first branchial arch, lacZ-positive cells are seen in the surface epithelium
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the surface ectoderm and mesenchyme tissue layer (c). Separated lacZ-positive cells are scattered in the neuroepithelial wall of the
telencephalon. This distribution shows a strong resemblance to the PDGFRa protein expression pattern in an E9.5 wild-type embryo (d). FNP:
frontonasal process, se: surface epithelium, m: mesenchyme, mnc: migratory neural crest, ml: mesenchyme layer, ol: outer layer of the surface
ectoderm
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Figure 5 PDGF-AA Soaked Bead Implantation Affected the NCC Migration. Fluorescent imaging of the cells expressing EGFP, which shows
the migration pattern of NCCs in an E9.5 P0-Cre/CAG-CAT-EGFP embryo after the implantation of a control bead (A) or of a PDGF-AA soaked
bead (B) in the cranial region. Each figure is an individual frame from a time-lapse movie. The time interval between frames is indicated between
the figures. Three differently colored curved arrows (red, yellow, and blue) represent examples of tracing for three distinct migrating NCCs. White
circles with dotted lines indicate the position of the implanted bead (n = 5 in each bead implantation).
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Figure 6 Comparison of the Distributions of Migration Velocity Between FMB- and HB-NCCs. E9.5 P0-Cre/CAG-CAT-EGFP embryos were
used as samples to discriminate NCCs from the other cell types. We isolated cells from the region rostral or caudal to the MHB. We named the
rostral NCC population FMB-NCC and the caudal NCC population HB-NCC. Then we seeded the isolated cells to collagen-coated plates for 4
hours of time-lapse observation. We measured the “mean velocity through all the frames (Va)” of both populations (A (n = 201) and B (n = 417)).
The two populations have similar Va mode value categories (FMB-NCC: 16-18 μm/hours, HB-NCC: 18-20 μm/hours) and were also similar in
minimum Va (FMB-NCC: 9.6 μm/hours, HB-NCC: 11.2 μm/hours). Big differences were observed between the populations in maximum Va (FMB-
NCC: 45.5 μm/hours, HB: 94.5 μm/hours), mean Va (FMB-NCC: 20.4 μm/hours, HB-NCC: 29.1 μm/hours), and standard deviation (SD) of Va (FMB-
NCC: 5.4 μm/hours, HB-NCC: 13.1 μm/hours).
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(Figure 7A); however, 5-HT did not have any effect on
the mean velocity of HB-NCCs at any of the concentra-
tions tested (Figure 7B).
Figure 8 shows the relationship between Rd/c and

each dose of dopamine in the cases of FMB-NCC (A)
and HB-NCC (B). Dopamine’s effect on the increase in
the mean velocity of FMB-NCCs was observed at all the
concentrations tested (Figure 8A). As for HB-NCCs, the
mean velocity increased after the addition of dopamine
at 0.1 μM (Figure 8B).

In Vitro Assay of the Effects of Antagonists on the
Stimulatory Effects of 5-HT or Dopamine on Cultured
NCCs
A previous study demonstrated that 5-HTIA receptors
are involved in the stimulation of NCC migration. In that
report, a 5-HTlA antagonist, NAN-190, inhibited the
effect of 5-HT [18]. We therefore tested the effect of
NAN-190 on 5-HT. The increase in the mean velocity of
FMB-NCCs after the addition of 5-HT was observed at
0.1 μM in the case of FMB-NCCs (Figure 7A). The
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Figure 7 Dose Dependency of 5-HT’s Effect on the Migration Velocity of FMB- or HB-NCCs. We measured and compared the “mean
velocity” of both populations before (Vc) and after (Vd) the addition of 5-HT, and the graph shows the relationship between the Vd/Vc ratio (Rd/
c) and each dose of 5-HT (*P < 0.05, **P < 0.01; error bars represent ± s.e.m.). The mean velocity of FMB-NCCs increased after the addition of 5-
HT at 0.1 μM (cont: n = 201; 0.01 μM: n = 107, P = 0.798; 0.1 μM: n = 132, P = 0.000101; 1 μM: n = 100, P = 0.176; 10 μM: n = 82, P = 0.521) (A).
No increase in the mean velocity of HB-NCCs was observed at any of the concentrations tested after the addition of 5-HT (B) (cont: n = 417; 0.01
μM: n = 214, P = 0.996; 0.1 μM: n = 187, P = 0.126; 1 μM: n = 194, P = 0.617; 10 μM: n = 207, P = 1.00).
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stimulatory effect of 0.1 μM 5-HT was decreased by 0.1
μM NAN-190 markedly, to control levels (Figure 9A). In
the case of dopamine, there are many reports that a
dopamine receptor belonging to the D-2 family (D2R)
was expressed in the cells derived from NCCs and play
roles in regulating the release of catecholamines [76].
D2R belongs to G-protein-coupled receptors and couples
to the same type of G protein, Gi, as 5-HT1A [77,78]. It
is possible that the stimulative effect of dopamine, as

shown in Figure 8A, B, was via D2R. We tested the effect
of a D2R-specific antagonist, Fluspirilene, on the effects
of dopamine on FMB-NCCs and HB-NCCs. The increase
in the mean velocity of FMB-NCCs after the addition of
dopamine was highest at 0.1 μM (Figure 8A). In the case
of HB-NCCs, the mean velocity increased after the addi-
tion of dopamine at 0.1 μM (Figure 8B). All of these sti-
mulatory effects of dopamine were decreased to control
levels by 30 μM Fluspirilene (Figure 9A, B).
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Figure 8 Dose Dependency of Dopamine’s Effect on the Migration Velocity of FMB- or HB-NCCs. The graph shows the relationship
between Rd/c and each dose of dopamine in the case of FMB-NCC (A) and HB-NCC (B) (*P < 0.05, **P < 0.01; error bars represent ± s.e.m.). The
“mean velocity” of FMB-NCCs was increased after dopamine addition at all the concentrations tested (cont: n = 201; 0.01 μM: n = 58, P = 0.038;
0.1 μM: n = 78, P = 3.11E-06; 1 μM: n = 70, P = 0.0362; 10 μM: n = 92, P = 0.00169) (A). The mean velocity of HB-NCCs increased after the
addition of dopamine at 0.1 μM (cont: n = 417; 0.01 μM: n = 151, P = 0.445; 0.1 μM: n = 236, P = 0.00353; 1 μM: n = 195, P = 0.288; 10 μM: n =
203, P = 0.11) (B).
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Discussion
In this study, we introduced a novel assay system for
mouse NCCs employing a P0-Cre/CAG-CAT-EGFP
reporter system in fluorescent time-lapse imaging. A
large number of studies on NCC migration have been
performed in the chick, mainly using DiI or electropora-
tion to label the NCCs. The advantage of our genetically
engineered reporter system is that, unlike the chick

studies, all NCCs are probably labeled. Our technique
should help efforts to describe the migration of the
minor population of NCCs or to perform long-term
observation of NCCs, and should be suitable for use as
an assay system. We constructed an in vitro culture sys-
tem for mouse embryos, in which we set the embryos
by embedding them into a collagen layer, which made it
possible to observe them microscopically by the use of
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Figure 9 Effect of 5-HT1A-R Antagonist (NAN-190) or Dopamine D-2R Antagonist (Fluspirilene) with or without the Most Stimulatory
Dose of 5-HT or Dopamine on NCC Migration. The graph shows Rd/c of NCCs treated with antagonists with or without the most stimulatory
dose of 5-HT or dopamine. (A) Maximum increase in the mean velocity of FMB-NCCs after the addition of 5-HT was observed at 0.1 μM (Figure
7A). NAN-190 (0.1 μM) markedly decreased the stimulatory effect of 0.1 μM 5-HT, which was reduced to control levels. There were no statistically
significant differences between FMB-NCCs after the treatment of antagonist alone (0.1 μM NAN-190) and control in Rd/c (cont: n = 201; 0.1 μM
NAN-190: n = 43, P = 0.424; 0.1 μM 5-HT + 0.1 μM NAN-190: n = 39, P = 0.873). In the case of dopamine, the maximum effect was observed at
0.1 μM (Figure 8A). And 30 μM Fluspirilene decreased the stimulatory effect of 0.1 μM dopamine markedly, to control levels. There were no
statistically significant differences between FMB-NCCs after the treatment of antagonist alone (30 μM Fluspirilene) and control in Rd/c (cont: n =
201; 30 μM Fluspirilene: n = 43, P = 0.76; 0.1 μM dopamine + 30 μM Fluspirilene: n = 64, P = 0.526). (B) The “mean velocity” of HB-NCCs
increased after the addition of dopamine at 0.1 μM (Figure 8B). Fluspirilene (30 μM) decreased the stimulatory effect of 0.1 μM dopamine
markedly, to control levels. This amount of Fluspirilene alone caused no significant difference from the control (cont: n = 417; 30 μM Fluspirilene:
n = 100, P = 0.757; 0.1 μM dopamine + 30 μM Fluspirilene: n = 17, P = 0.877).
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chamber glass slides. This settled-type culture system
was necessary for continuous observation via a micro-
scope, though a rotating culture system has often been
used prior to this [79]. We used this novel system for
24 to 36 hours of incubation, and we confirmed that
most of the embryos kept developing. This system made
it possible to examine the localization, migration, and
targeting of mouse NCCs with time-lapse images. We
measured the migration velocity of mouse NCCs in
embryos. We believe that these fundamental data should
be very useful for determining the effects of attractive or
repulsive factors that affect the long-range targeting of
NCCs.
We succeeded in observing the effect of PDGF on the

migration of mouse NCCs. This method should be use-
ful for studying other attractive or repulsive factors.
We also measured the migration velocity of isolated

mouse NCCs on culture plates. The mode categories of
Va of FMB-NCCs and HB-NCCs were 16-18 μm/hour
and 18-20 μm/hour, which were similar to those of in
vivo migration (12.5-17.5 μm/hour). This suggests that
the basic characteristics of the migration observed in
vivo and in vitro resemble each other.
On culture plates, we compared “the mean velocity”

distribution of FMB-NCC and HB-NCC. The measure-
ment of the mean velocity (Va) of both populations
revealed that, compared to FMB-NCC, HB-NCC has a
larger maximum value or SD of Va, which means that
the migration velocity of HB-NCC had a more promi-
nent positively skewed distribution than that of FMB-
NCC. HB-NCC may be made up of more heterogeneous
cell populations compared to FMB-NCC.
Many studies have reported that 5-HT regulates cra-

niofacial development [80-86]. In contrast, dopamine is
not known to be involved in craniofacial morphogenesis.
In this study, we demonstrated for the first time that
dopamine has a stimulative effect on the migration of
NCCs. Our data do not allow us to reach a conclusion
that dopamine plays a role in craniofacial development.
Zhou et al. reported the targeted disruption of the
mouse tyrosine hydroxylase (TH) gene and presented
the phenotypes of embryos carrying homozygous dele-
tion of TH alleles [87]. They showed that inactivation of
both TH alleles resulted in mid-gestational lethality.
Although they reported that NCCs were among the first
TH-positive cells to appear, they did not observe any
craniofacial phenotypes in those embryos. About 90% of
mutant embryos die between E11.5 and E15.5, appar-
ently of cardiovascular failure [87]. Cardiac NCC, a sub-
population of NCCs, is known to be essential for
vertebrate cardiovascular development and in utero sur-
vival [88-94]. Although it is possible that cardiac NCC
was related to the cardiovascular failure of the TH-defi-
cient embryos, we could not find any reports suggesting

a relationship between cardiac NCC function and dopa-
mine. Since the downstream signaling pathways of 5-
HT1AR and dopamine D2R resemble each other, it is
possible that dopamine merely mimics the action of 5-
HT. However, dopamine was known to have a function
in some tissues originating from NCC [76,95], and our
study demonstrated that migrating NCCs responded to
dopamine. To prove the role of dopamine in NCC-
related morphological events, we are planning to do sev-
eral experiments with dopamine antagonists or to
observe phenotypes of mouse strains that have muta-
tions in genes belonging to dopamine signaling path-
ways, synthesis pathways, and transporters.
Both FMB-NCCs and HB-NCCs showed responses to

dopamine. In contrast, no increase in the mean velocity of
HB-NCCs after the addition of 5-HT was observed at any
of the concentrations tested, which means that it is highly
possible that the stimulative effect of 5-HT reported pre-
viously [18] was only for the FMB-NCC; significantly, it
might not be stimulative for the HB-NCC. Previous works
suggested that 5-HT uptake in the craniofacial region
occurred mainly at the epithelia of the developing palate,
tongue, nasal septum, and maxillary and mandibular pro-
minences [80,81]. In addition, the selective serotonin reup-
take inhibitor (SSRI) Fluoxetine induced abnormality in
maxillary, mandibular, and lens vesicles of cultured
embryos [83,84]. Although NCCs have some flexibility in
their fate even after emergence from the neural tube, in
previous reports the mesenchyme around the lens vesicle
or inside the maxilla originated from the forebrain and
midbrain, and the mesenchyme inside mandible was made
from the forebrain, midbrain, and hindbrain [23]. An NCC
migration assay with 5-HT by Moiseiwitsch and Lauder
[18] was performed using mandibular explants. So our
results suggested that the migration of only FMB-NCC
but HB-NCC population in the mandible was stimulated
by 5-HT.

Conclusions
All the results of this study demonstrated the usefulness
of the P0-Cre/CAG-CAT-EGFP reporter system for var-
ious NCC analyses. Our in vitro embryo culture system
is applicable to a variety of embryonic experiments. In
an in vitro assay under fluorescent microscopy, GFP-
labeled NCCs purified from P0-Cre/CAG-CAT-EGFP
embryos were easily distinguished from cells having
other origins; thus, our results were more reliable com-
pared with other methods. Our system enabled us to
confirm the effect of 5-HT on FMB-NCC migration,
and we newly discovered the effects of dopamine on
FMB-NCCs and HB-NCCs. Eventually, this P0-Cre/
CAG-CAT-EGFP system should become an important
tool for various live-cell assays on the nature of NCCs
or NCC-derived cells.
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Additional material

Additional file 1: Time-Lapse Movie: An Example of NCC Migration
of E9.5 P0-Cre/CAG-CAT-EGFP Embryo. NCCs migrated along the
surface of the E9.5 embryo. A P0-Cre/CAG-CAT-EGFP embryo over the
course of 11 hours and 20 minutes. Their speed was not uniform, and
sometimes they were retarded or wandered. Figure 2B shows several
frames from a time-lapse movie.

Additional file 2: Time-Lapse Movie: An Example of NCC Migration
of E9.5 P0-Cre/CAG-CAT-EGFP Embryo with PDGF-AA Bead
Implantation. NCCs migrated along the surface of the E9.5 embryo. A
P0-Cre/CAG-CAT-EGFP embryo with an implanted PDGF-AA soaked bead
(looks black in the movie) over the course of 16 hours. The PDGF bead
had a strong attractive effect on the migrating NCCs. Many NCCs ran off
the original pathway or even turned back. Figure 5B shows several
frames from a time-lapse movie.

List of abbreviations
CAG: a composite promoter that combines the human cytomegalovirus
immediate-early enhancer and a modified chicken beta-actin promoter; CAT:
chloramphenicol acetyl transferase; CNCC: cranial neural crest cell; Cre: Cre
recombinase from P1 bacteriophage; FMB-NCC: forebrain-midbrain neural
crest cell; HB-NCC: hindbrain neural crest cell; HNK-1: human natural killer-1;
5-HT: 5-hydroxytryptamine; lacZ: E. Coli β-galactosidase gene; loxP: target site
for Cre recombinase from P1 bacteriophage; MT-MMP: membrane-type
matrix metalloproteinase; NCC: neural crest cell; PDGFR: platelet-derived
growth factor receptor; TH: tyrosine hydroxylase; X-gal: 5-bromo-4-chloro-3-
indolyl-β-D-galactopyranoside
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