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Abbreviations 
CA: carbonic anhydrase 

CPM: counts per million 

DMR: differential methylated region 

EWAS: epigenome-wide association study 

GO: Gene Ontology 

HEK293T: human embryonic kidney cell line 

KEGG: Kyoto Encyclopedia of Genes and Genomes 

KO: knockout 

logFC: log fold-change 

mtDNA: mitochondrial DNA 

mtDNA-CN: mitochondrial DNA copy number 

NC: normal control 

nDNA: nuclear DNA 

TFAM: mitochondrial transcription factor A 

TMM: trimmed mean of M-values 

ZNF: zinc finger proteins 
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Abstract 
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic 

diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA 
(nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to 
uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome 
and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell 
lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via 
CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 
differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. 
Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the 
neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were 
overrepresented, providing insight into the underlying biological mechanisms facilitating these 
associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of 
mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the 
nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, 
aging, and complex disease.  
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Introduction 
Mitochondria are cytoplasmic organelles that are essential to cell metabolism. They are central to 

many cellular functions such as oxidative phosphorylation, apoptotic processes, and cell differentiation via 
cell signalling [1]. Despite widespread evidence that mitochondrial DNA (mtDNA) mutations affect many 
diseases, the biological mechanisms responsible for mitochondrial dysfunction leading to age-related 
diseases are largely unknown. Unlike nDNA which is present in two copies per cell, mitochondria have 
multiple copies of mtDNA per cell (100s to 1000s). The exact number of mtDNA per cell is highly variable 
depending on cell type and declines with age [2]. Reductions in mtDNA-CN have been associated with 
reduced respiratory enzyme activity, lower expression of proteins in oxidative phosphorylation, and 
differences in cellular characteristics [3]. mtDNA-CN variation has been associated with many age-related 
diseases such as cardiovascular disease [4–7], kidney-related diseases [8,9], respiratory diseases [10,11], 
obesity [12], cancers [13–16], neurodegenerative diseases [17], and diabetes [18], and reduced mtDNA-CN 
has been associated with all-cause mortality [19]. mtDNA-CN estimates are readily obtained using DNA 
from blood samples, hence may serve as a potential clinically relevant biomarker of mitochondrial function 
and disease risk. 
 The nuclear epigenome consists of a collection of chemical modifications to DNA and associated 
proteins that may dynamically influence gene and phenotypic expressions in response to changes in the 
internal and external environment. DNA methylation, the most well-understood epigenetic mark, involves 
the addition of methyl groups on cytosine residues adjacent to guanine residues; these CG dinucleotides are 
called CpG sites [20]. Promoters are often located within close proximity to clusters of CpGs such that the 
methylation status of these CpG islands can affect gene expression by preventing interactions with 
transcriptional machinery [21]. Typically, transcription factors are unable to bind promoters that are heavily 
methylated, hence the gene cannot be transcribed [21].  

Bi-directional communication between mtDNA and nDNA is essential for maintaining 
homeostasis, normal cell functioning, and the structural integrity of the cell [22,23]. A pioneering study 
reported that depletions in mtDNA levels have significant effects on nDNA methylation patterns that may 
contribute to tumorigenesis [24]. This initial discovery has since been supported by multiple studies that 
have demonstrated the link between mitochondrial DNA variation and the nuclear epigenome. Studies have 
identified significant associations between mtDNA-CN, CpG methylation, and gene expression in human 
cohorts, and in vitro models[25–28]. Associations between mtDNA sequence variation and the nuclear 
epigenome have also been observed [29–32]. Despite these associations, the mechanisms driving the 
relationship of mtDNA modification to the nuclear epigenome and transcriptome remain unknown. 

Mitochondrial transcription factor A (TFAM) is a nuclear-encoded mtDNA binding protein with an 
essential role in mitochondrial transcription initiation and mtDNA-CN regulation, such that mtDNA-CN 
measures are positively correlated with TFAM protein level [33,34]. TFAM knockout has demonstrated a 
reduction in mtDNA-CN in vivo [35], with several studies reporting resulting mitochondrial dysfunction 
[36–39]. Studies have also revealed TFAM knockout to influence nDNA methylation and/or gene 
expression in mice [40,41]. We have used our TFAM knockout model to interrogate the effect of mtDNA 
on nDNA methylation and gene expression at specific CpGs/genes identified in an epigenome-wide 
association study (EWAS) of mtDNA-CN [25]. To further characterize the underlying biological 
mechanisms that drive the global effect of TFAM-induced mtDNA-CN variation on nDNA methylation, 
we use our TFAM heterozygous knockout cell line model to observe the effects of in vitro reduction of 
mtDNA-CN on the global nuclear epigenome and transcriptome profiles. Through the integration of 
differentially methylated and differentially expressed genes, our results provide insight into the biological 
mechanisms which mediate the effect of mtDNA-CN on aging-related diseases.  
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Results 
TFAM knockout reduces mtDNA-CN and TFAM expression in a cell model 

Stable heterozygous knockout (KO) of mitochondrial TFAM in HEK293T cells was generated via 
CRISPR-Cas9 and three resultant independent KO cell lines were confirmed by qPCR of TFAM DNA. 
Negative control cell lines (N=3) were used to benchmark TFAM protein expression and mtDNA-CN 
estimates to confirm knockout. The heterozygosity of KO lines was confirmed by qPCR of TFAM DNA. 
KO lines demonstrated a 5-fold reduction of RNA expression and an 18-fold reduction in mtDNA-CN 
compared to negative control lines, see Castellani et al, Figure 1 [25].  

 
Site-specific nuclear methylation differences are associated with TFAM 
knockout  

An EWAS using 3 TFAM KO cell lines and 3 normal control (NC) cell lines (all samples were run 
in technical duplicates) was conducted to identify site-specific differential methylation. Following 
normalization and quality control, 769,026 CpG sites were assessed for differential methylation between 
NC and KO lines. Our linear model identified 4,242 CpGs to be differentially methylated following TFAM 
KO and subsequent reduction of mtDNA-CN (p-value < 1e-7) (Fig 1A, S1 Table). No chromosomal bias 
was identified. However, we observed a strong bias between hyper- and hypomethylation (p-value < 2.2e-
16):  1,113 / 4,242 CpGs (26%) displayed hypermethylation and 3,129 / 4,242 CpGs (74%) displayed 
hypomethylation in the KO groups (Fig 1B).  
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Fig 1. Results from differential methylation analysis. A) Manhattan plot of methylation sites across the 
genome. Red data points correspond to differentially methylated sites (p < 1e-07). B) Volcano plot of 
methylation p-values and effect sizes. Red data points correspond to differentially methylated sites (p < 
1e-07). 
 

Previous studies using DNA extracted from blood have identified multiple CpGs that are 
significantly associated with mtDNA-CN [25,26]. From the study by Wang et al., 288 CpG sites were 
associated with mtDNA-CN (p-value < 1e-04). From that list, 2 CpG sites overlapped with the 4,242 CpG 
sites identified to be differentially methylated in this investigation, both with the same direction of effect 
(Table 1). No CpGs were found to overlap between those identified in Castellani et al. and this analysis.  
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.01.29.577835doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577835
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

Table 1. Differentially methylated sites that overlapped with those identified by Wang et al., 2021.  
CpG Site Beta Wang.Beta P.Value Wang.P.Value 

cg01100175 -1.1027 -1.25092881 6.97E-09 1.45E-05 
cg13694927 -0.5632 -2.18976753 5.24E-08 8.48E-05 

Beta: beta value determined from differential methylation analysis; Wang.Beta: beta value reported in 
investigation from Wang et al.; P.Value: p-value from differential methylation analysis; Wang.P.Value: p-
value reported in investigation from Wang et al. 
 
TFAM knockout lines exhibit region-level nuclear methylation changes   

Differential methylated region (DMR) analysis was performed to identify clusters of CpGs in the 
same region that were differentially methylated in TFAM KO lines. 228 regions were differentially 
methylated (Bonferroni p-value < 1.17e-5) between the TFAM KO and NC cells. 223 regions (97.8%) were 
hypomethylated in the KO groups while 5 regions (2.2%) were hypermethylated in the KO groups (S2 
Table) (p-value < 2.2e-16 for hypomethylation bias). The top 4 DMRs as identified by the Fisher’s multiple 
comparison statistic by DMRcate exhibited reduced methylation levels in the TFAM KO group compared 
to the NC group. Biological replicates (2 per independent cell line) showed consistent clustering as can be 
seen by four representative plot examples (Figs 2A-D).  
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Fig 2. Top 4 DMRs identified. Pink represents TFAM KO groups, green represents NC groups. Rows 
represent biological replicates in a given group. A) Most significant identified DMR, located on 
chromosome 3. B) Second most significant identified DMR, located on chromosome 5. C) Third most 
significant identified DMR, located on chromosome 20. D) Fourth most significant identified DMR, 
located on chromosome 4. Top pink row corresponds to KO groups. Bottom forest green row corresponds 
to NC group. Blue panels indicate hypomethylation, red panels indicate hypermethylation. 
 
TFAM knockout leads to differential nuclear gene expression 

RNA sequencing was performed to evaluate differential gene expression between our TFAM KO 
and NC cell lines, with each independent cell line analyzed in duplicate and adjusted for batch. After 
normalization and quality control steps were performed, 14,149 genes remained to test for differential gene 
expression. 179 genes were differentially expressed (Bonferroni p-value < 3.53e-6 and an absolute log fold 
change > 2 cut-off was determined by visualization) (S3 Table) with no chromosomal bias identified (Fig 
3A). A strong bias between upregulation and downregulation of gene expression was observed (p-value < 
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1.8e-07): 41 / 179 genes (22.9%) were under-expressed and 138 / 179 genes (77.1%) are over-expressed in 
KO groups (Fig 3B).    

  

 
Fig 3. Results from differential gene expression analysis. A) Manhattan plot of gene transcripts across 
the genome. Red data points correspond to differentially expressed genes (p < 3.53e-6). B) Volcano plot 
of gene expression p-values and effect sizes. Red data points correspond to differentially methylated sites 
(p < 3.53e-6). 
 
Integration of methylation and gene expression identifies CpG-gene 
interactions associated with TFAM KO 

To assess the relationship between differentially methylated sites and differentially expressed 
genes, we used the R package ELMER to integrate methylation and gene expression results for both direct 
and inverse associations between methylation at CpG sites and gene expression [42]. ELMER identified 
35,347 possible Gene-CpG pairs from the 4,242 significant CpGs and the 179 DEGs. Gene-CpG pairs were 
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filtered to include only those with differential methylation and gene expression between KO and NC (p-
value < 0.001 and FDR < 0.01). Further, only CpGs within 1 Mbp from the transcriptional start site of the 
gene were retained. 381 gene-CpG pairs matched the filtering criteria established above, which included 
65 unique genes and 353 unique CpG sites (S4 Table).  

Methylation and gene expression for the top 4 unique gene-CpG pairs, prioritized by p-value and 
gene-CpG distance, were visualized (Fig 4). The top two identified gene-CpG pairs both belonged to genes 
encoding carbonic anhydrases. Both CA2 and CA8 genes were significantly downregulated in the gene 
expression analysis and further associated with hypomethylation at 2 significant CpG sites each (CA2 with 
cg06015329 and cg01059952; CA8 with cg19763925 and cg24998197) (Figs 4A-B).  

 

 
Fig 4. Top integrated methylation and gene expression results from ELMER analysis. A) 
Association between CA2 gene expression and methylation at cg06015329, identified as the top gene-
CpG pair from ELMER analysis. B) Association between CA8 gene expression and methylation at 
cg19763925, identified as the second prioritized gene-CpG pair. C) Association between NCAM2 gene 
expression and methylation at cg11135011, identified as the third prioritized gene-CpG pair. D) 
Association between CLMP gene expression and methylation at cg22289581, identified as the fourth 
prioritized gene-CpG pair. Red corresponds to NC groups, blue corresponds to TFAM KO groups. 
 
GABA and cell signaling-related genes are associated with TFAM knockout-
induced differential methylation and gene expression  
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To identify biological mechanisms underlying the association between TFAM-induced mtDNA-
CN reduction, methylation, and gene expression, we performed Gene Ontology (GO) [43,44], Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment [45–47], and Reactome analyses [48] across 
differentially methylated sites, DMRs, and differentially expressed genes.  

The top GO terms for each of the three independent analyses include genes relating to GABA, 
channel activity, plasma membrane components, and signalling pathways (Figs 5A-C) (S5-7 Tables). The 
GO Fisher’s combined results of the methylation site with gene expression results and methylation region 
with gene expression results show enrichment of various pathways related to GABA, including GABA-
gated chloride ion channel activity (p-value < 3.56e-10, p-value < 4.98e-10), GABA receptor activity (p-
value < 3.78e-10, p-value < 4.43e-09), GABA-A receptor activity (p-value < 5.84e-10, p-value < 7.76e-
09), GABA-A receptor complex (p-value  < 5.84e-10, p-value < 7.76e-09), and GABA receptor complex 
(p-value < 2.34e-09, p-value < 1.83e-08). Genes relating to the plasma membrane were also 
overrepresented, including integral component of plasma membrane (p-value < 9.05e-15, p-value < 1.67e-
08) and intrinsic component of plasma membrane (p-value < 9.05e-15, p-value < 2.52e-08). GO term 
ligand-gated anion channel activity (p-value < 2.47e-09, p-value < 6.40e-09) was also highlighted in our 
results. 
 

 
Fig 5. Top gene ontology (GO) terms identified. N: number of genes identified in each term; ONT: 
ontology; BP: biological process; CC: cellular components; MF: molecular function. A) Terms identified 
from differentially methylated sites (p < 1e-07). B) Terms identified from differentially methylated 
regions (p < 1.17e-5). C) Terms identified from differentially expressed genes (p < 3.53e-6). D) Fisher’s 
Combined results from methylation site and gene expression. E) Fisher’s Combined results from 
methylation region and gene expression. 
 

Differentially methylated site and gene expression results were enriched for GO terms relating to 
channel activity, including ion channel complex (p-value < 4.00e-10), transmitter-gated ion channel activity 
(p-value < 9.01e-10), transmitter-gated channel activity (p-value < 9.01e-10), and ligand-gated ion channel 
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activity (p-value < 4.40e-09) (Fig 5D, Table 2). Differentially methylated region and gene expression results 
were enriched for GO terms relating to signaling pathways, including gamma-aminobutyric acid signaling 
pathway (p-value < 2.33e-08) and signaling receptor regulator activity (p-value < 2.38e-07) (Fig 5E, Table 
3). Taken together, these results implicate cell communication pathways as integral to these relationships. 

 
Table 2. Overrepresented gene ontology terms identified from Fisher’s combined test of 
differentially methylated sites and differentially expressed genes.  

GO ID Ontology Term N DE P.DE_Meth P.DE_RNA Fisher 

GO:0031226 CC intrinsic component of 
plasma membrane 1701 256 2.61E-09 3.63E-08 3.58E-15 

GO:0005887 CC integral component of 
plasma membrane 1617 242 8.45E-09 2.90E-08 9.05E-15 

GO:0071944 CC cell periphery 5808 711 4.10E-06 9.59E-07 1.07E-10 

GO:0022851 MF GABA-gated chloride 
ion channel activity 13 8 3.17E-05 4.32E-07 3.56E-10 

GO:0016917 MF GABA receptor 
activity 22 12 1.61E-06 9.02E-06 3.78E-10 

GO:0034702 CC ion channel complex 281 64 3.17E-07 4.88E-05 4.00E-10 

GO:0004890 MF GABA-A receptor 
activity 19 10 1.16E-05 1.97E-06 5.84E-10 

GO:1902711 CC GABA-A receptor 
complex 19 10 1.16E-05 1.97E-06 5.84E-10 

GO:0022824 MF transmitter-gated ion 
channel activity 60 21 2.21E-06 1.63E-05 9.01E-10 

GO:0022835 MF transmitter-gated 
channel activity 60 21 2.21E-06 1.63E-05 9.01E-10 

GO:0031224 CC intrinsic component of 
membrane 5297 597 5.09E-05 9.53E-07 1.20E-09 

GO:1902710 CC GABA receptor 
complex 20 10 2.77E-05 3.52E-06 2.34E-09 

GO:0099095 MF ligand-gated anion 
channel activity 18 9 5.21E-05 1.97E-06 2.47E-09 

GO:0060078 BP 
regulation of 
postsynaptic 

membrane potential 
137 40 2.40E-07 4.95E-04 2.84E-09 

GO:0015276 MF ligand-gated ion 
channel activity 143 39 5.09E-07 3.70E-04 4.40E-09 

BP: biological process; MF: molecular feature; CC: cellular component. 
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Table 3. Overrepresented gene ontology terms identified from Fisher’s combined test of 
differentially methylated regions and differentially expressed genes.  

GO ID Ontology Term N DE P.DE_Meth P.DE_RNA Fisher 

GO:0022851 MF GABA-gated chloride 
ion channel activity 13 4 4.49E-05 4.32E-07 4.98E-10 

GO:0016917 MF GABA receptor 
activity 22 5 2.10E-05 9.02E-06 4.43E-09 

GO:0099095 MF ligand-gated anion 
channel activity 18 4 1.41E-04 1.97E-06 6.40E-09 

GO:0004890 MF GABA-A receptor 
activity 19 4 1.72E-04 1.97E-06 7.76E-09 

GO:1902711 CC GABA-A receptor 
complex 19 4 1.72E-04 1.97E-06 7.76E-09 

GO:0005887 CC integral component of 
plasma membrane 1617 33 2.61E-02 2.90E-08 1.67E-08 

GO:1902710 CC GABA receptor 
complex 20 4 2.37E-04 3.52E-06 1.83E-08 

GO:0007214 BP gamma-aminobutyric 
acid signaling pathway 26 5 5.62E-05 1.91E-05 2.33E-08 

GO:0031226 CC intrinsic component of 
plasma membrane 1701 34 3.22E-02 3.63E-08 2.52E-08 

GO:0062023 CC collagen-containing 
extracellular matrix 422 18 6.70E-05 4.60E-05 6.34E-08 

GO:0048731 BP system development 4733 101 9.75E-05 3.91E-05 7.77E-08 

GO:0007275 BP multicellular organism 
development 5085 107 7.77E-05 7.10E-05 1.10E-07 

GO:0031012 CC extracellular matrix 563 19 8.42E-04 7.24E-06 1.21E-07 

GO:0030312 CC external encapsulating 
structure 564 19 8.61E-04 7.24E-06 1.24E-07 

GO:0030545 MF signaling receptor 
regulator activity 517 15 7.07E-04 1.76E-05 2.38E-07 

BP: biological process; MF: molecular feature; CC: cellular component. 
 

The top KEGG pathways identified from individual enrichment analyses of differentially 
methylated sites, differentially methylated regions, and gene expression reveal genes involved in substance 
addiction, GABAergic synapse, neuroactive ligand-receptor interaction, and viral infection to be 
overrepresented (Figs 6A-C, S8-10 Tables). The KEGG Fisher’s combined results of both the methylation 
site with the gene expression results and methylation region with the gene expression results show the 
overrepresentation of GABAergic Synapse KEGG pathway (p-value< 2.40e-5, p-value< 2.47e-5) and 
signaling pathways such as the Neuroactive ligand-receptor interaction (p-value< 4.66e-8, p-value< 4.36e-
7) and Retrograde Endocannabinoid signaling (p-value< 2.14e-4, p-value< 1.25e-3) (Figs 6D-E, Tables 4-
5). The Cytokine-cytokine receptor interaction pathway (p-value< 3.91e-3) was also overrepresented in the 
combined methylation region and gene expression results. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.01.29.577835doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577835
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 
Fig 6. Top KEGG pathways identified. N: number of genes identified in each term. A) Pathways 
identified from differentially methylated sites (p < 1e-07). B) Pathways identified from differentially 
methylated regions (p < 1.17e-5). C) Pathways identified from differentially expressed genes (p < 3.53e-
6). D) Fisher’s Combined results from methylation site and gene expression. E) Fisher’s Combined 
results from methylation region and gene expression. 
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Table 4. Overrepresented KEGG pathways identified from Fisher’s combined test of differentially 
methylated sites and differentially expressed genes. 

KEGG ID Pathway N DE P.DE_Meth P.DE_RNA Fisher 
path:hsa05144 Malaria 49 9 3.36E-02 3.37E-02 8.82E-03 

path:hsa05168 Herpes simplex 
virus 1 infection 483 55 1.13E-02 3.33E-02 3.34E-03 

path:hsa04723 
Retrograde 

endocannabinoid 
signaling 

141 30 1.02E-03 1.75E-02 2.14E-04 

path:hsa04974 Protein digestion 
and absorption 101 19 2.40E-02 4.97E-04 1.47E-04 

path:hsa04727 GABAergic synapse 89 25 1.85E-04 9.04E-03 2.40E-05 
path:hsa05032 Morphine addiction 91 27 8.71E-05 1.18E-02 1.52E-05 

path:hsa04080 Neuroactive ligand-
receptor interaction 355 53 4.64E-04 4.80E-06 4.66E-08 

path:hsa05033 Nicotine addiction 40 17 1.70E-06 1.47E-06 6.93E-11 
 
Table 5. Overrepresented KEGG pathways identified from Fisher’s combined test of differentially 
methylated regions and differentially expressed genes. 

KEGG ID Pathway N DE P.DE_Meth P.DE_RNA Fisher 

path:hsa04060 Cytokine-cytokine 
receptor interaction 282 8 9.45E-03 4.75E-02 3.91E-03 

path:hsa04723 Retrograde 
endocannabinoid signaling 141 7 7.14E-03 1.75E-02 1.25E-03 

path:hsa05032 Morphine addiction 91 6 6.94E-03 1.18E-02 8.53E-04 

path:hsa04974 Protein digestion and 
absorption 101 5 2.19E-02 4.97E-04 1.35E-04 

path:hsa04727 GABAergic synapse 89 8 1.91E-04 9.04E-03 2.47E-05 

path:hsa04080 Neuroactive ligand-
receptor interaction 355 11 4.89E-03 4.80E-06 4.36E-07 

path:hsa05033 Nicotine addiction 40 4 4.67E-03 1.47E-06 1.36E-07 
 

Top Reactome pathways identified from differentially methylated sites show results relating to 
channel activity, membrane potential, and the GABAergic synapse (S1 Fig, S11 Table). No overrepresented 
Reactome pathways were identified from gene expression results, therefore no combined analyses were 
performed.  

Many of the identified genes converge on gene sets or pathways relating to GABA.  In fact, the 
GABAergic synapse pathway demonstrates that the GABAA gene is hypermethylated and underexpressed 
in the gene expression results (S2A-C Figs). Several signaling pathways were also identified to be enriched 
in our datasets. This includes the Neuroactive ligand-receptor interaction pathway which was previously 
identified to be enriched in a human EWAS of mtDNA-CN [25]. In the neuroactive ligand-receptor 
interaction pathway, the GabR gene, a regulator of GABA, is hypermethylated in the DMR analysis and is 
underexpressed (S2H-I Figs), further substantiating the implication of GABA in the effects of mtDNA-CN 
reduction on nuclear gene expression [49].  

 
Differentially methylated sites are overrepresented in aging and disease-related 
phenotypes 

The Molecular Signatures Database regulatory target gene sets were used to determine if our results 
were enriched for genes that targeted transcription factor binding sites [50,51]. This analysis demonstrated 
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that 11 of 1,128 transcription factor gene sets are overrepresented in the combined methylation and gene 
expression results (S12 Table). Of the overrepresented gene sets, ZNF274 is known to interact with the 
associated KAPI/SETDB1 histone methyltransferase complex to modulate H3K9 methylation [52].  

To determine the intersection of our results with known protein-coding genes associated with 
mitochondrial proteins and pathways, we cross-referenced our gene set with the MitoCarta3.0 catalogue. 
Top results from this MitoCarta3.0 analysis reveal mitochondrial central dogma, mtRNA metabolism, small 
molecule transport, and calcium-related pathways to be implicated in the methylation results (S13A Table), 
while metabolism was the top RNA-identified pathway (S13B Table). 

No overlapping pathways between methylation and gene expression results were identified in 
MitoCarta3.0 pathways. In addition, 5 (ABCD1, ABCD2, PCK2, SARDH, SDSL) of 179 significant genes 
from the RNA analysis are found in the MitoCarta3.0 database of mitochondrial-related genes, and all 5 
genes are under-expressed (S14 Table). Though the global results are not enriched for mitochondrial genes, 
the ABCD1 gene also demonstrated an association with our methylation results. This relationship showed 
that upregulation of ABCD1 was associated with both hypermethylation and hypomethylation of nine 
significant CpG sites (cg00207916, cg01022618, cg01083397, cg05365121, cg15373098, cg19514407, 
cg20844535, cg24324483, and cg26149887).  

 
TFAM knockout differentially methylated sites are overrepresented for cancer 
and autoimmune disease-related CpGs 

To explore if TFAM knockout-induced differentially methylated CpGs sites were associated with 
disease-related sites, we leveraged the MRC-IEU EWAS catalog. This EWAS catalog is a curated database 
of CpG sites that have been found to be associated with traits/exposures across over 2,000 EWAS 
publications [53] From our list of differentially methylated sites, we prioritized independent CpGs within 
a range of 1Mbp by selecting for the most significant CpG in each window. For both global (all-disease) 
and individual disease terms, a permutation test was performed on the EWAS catalog terms to identify if 
there was enrichment for our differentially methylated sites for each disease term. Of the 4,242 differentially 
methylated sites identified in this study, we identified 785 independent CpGs that overlap with those in the 
EWAS catalog (S15 Table). Although these CpGs were not enriched for overall disease terms (p-value = 
0.347), they were enriched for cancer-related CpGs (115 CpGs, permutedp-value = 0.001) and CpGs related 
to autoimmune diseases (93 CpGs, permuted p-value = 0.011) (S3 Fig). 

 
Epigenetic regulation of non-coding regions may be modulating mtDNA-
nuclear crosstalk  

Genomic region enrichment testing was performed to determine if identified CpG, gene, and 
chromatin state regions are overrepresented in our datasets. We discovered significant overrepresentation 
(FDR < 0.01) of intergenic regions, enhancers, zinc finger proteins (ZNF) genes and repeats, 
heterochromatin, bivalent TSS, flanking bivalent TSS/Enhancer, bivalent enhancer, repressed polyComb, 
weak repressed polyComb and quiescent/low group in the methylation dataset (Fig 7, S16 Table). 
Conversely, the 5’UTR was under-enriched (FDR < 0.01) and overrepresentation of intergenic regions, 
different enhancer types, heterochromatin and repressed PolyComb regions was observed, implicating 
epigenetic marks in non-coding regions of the heterochromatic and enhancer region to be overrepresented 
in the overall methylation analysis. 
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Fig 7. Enrichment of CpG, gene, and chromatin state regions in methylation data. FDR: false 
discovery rate; TSS: transcription start site; ZNF: zinc-finger. *indicates significant enrichment (FDR < 
0.01).  
 
Discussion 

To determine the genes, regulatory sites, regions, and biological pathways associated with mtDNA-
CN variation, we analyzed DNA methylation data from methylation microarrays and RNA sequencing data 
generated from cell lines with a heterozygous knockout of the TFAM gene. We report widespread 
differential methylation and differential gene expression in TFAM KO samples with reduced mtDNA-CN. 
The results specifically implicate GABA receptors, neuroactive ligand-receptor interaction pathways, the 
ABCD1 gene, cellular signaling, regulation of carbonic anhydrases, and non-coding regulation as candidates 
for methylation-mediated mitochondrial gene regulation. 

 
GABA receptor and neuroactive ligand-related processes and pathways are 
associated with mtDNA-CN-induced nuclear genome modifications 

The combined methylation and gene expression enrichment analyses identified numerous GABA-
associated pathways, including GABA-gated chloride ion channel activity, GABA receptors, and 
GABAergic synapse. Additionally, Nicotine Addiction, Neuroactive Ligand Receptor Interaction, 
Morphine Addiction, GABAergic Synapse, Protein Digestion and Absorption and Retrograde 
Endocannabinoid Signaling pathways are overrepresented, and these pathways are all related to cell-
signaling and the nervous system.  

A previous study had found an association between the neuroactive ligand receptor interaction 
pathway and mtDNA-CN following a multi-ethnic EWAS meta-analysis across multiple independent 
human cohorts [25]. Together, these studies provide further evidence that these changes are likely mediated 
through mtDNA-CN and that similar mechanisms may be involved. In addition, the cytokine-cytokine 
receptor interaction pathway was also overrepresented in the methylation site-specific and gene expression 
results. This finding aligns with the discovery of the role of mtDNA variability in modulating cytokine and 
cytokine receptor expression as part of cellular stress responses [54,55]. Both KEGG-identified pathways 
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are classified under the Environmental Information Processing and Signaling Molecules and Interaction 
KEGG category, indicating the importance of cellular signaling in transmitting the effect of mtDNA-CN 
variability on nDNA methylation and gene expression. 

The GABAergic synapse pathway was overrepresented in the integrated KEGG results, where gene 
expression results were combined with both differentially methylated sites and regions. Additionally, GO 
results revealed enrichment for GABA and GABAA related gene groups in our dataset. The GABAA 
receptor is comprised of four subunit genes: GABRB1, GABRB3, GABRE, and GABRG1 [56]. In our study, 
all four GABA receptor genes were significantly downregulated in the TFAM KO samples relative to the 
NC samples. In addition, integration analysis found the GABRB1 gene to be associated with site-specific 
methylation at 13 CpGs. The GABAA receptor functions as a ligand-gated ion channel that allows for fast 
inhibitory synaptic transmission [56]. Reduced expression of the GABAA receptor genes reduces available 
receptors for the binding of the GABA neurotransmitter, leading to cells with over-excitation of their 
terminal neurons. Additionally, the GABA neurotransmitter plays an important role in a variety of cellular 
processes such as suppressing inflammatory immune responses [57] and binding to islet alphas-cells to 
inhibit the secretion of glucagon [58]. Further, a mouse model study demonstrated mice lacking GABA-
synthesizing genes die at birth despite no visible structural differences in their brains, suggesting further 
associated functions of GABA in neurodevelopment and animal physiology [56]. Taken together, reduced 
mtDNA-CN in TFAM KO samples appears to be associated with GABAA receptor genes, which may lead 
to abnormal GABAergic signaling. This may provide a mechanism in which mtDNA-CN is related to age-
related chronic diseases. 

 
Mitochondrial-related genes are under-expressed in TFAM KO and associated 
with mtDNA-CN-induced DNA methylation and gene expression with 
implications for disease 

The family of carbonic anhydrase (CA) enzymes are found in the mitochondria across tissue types 
where they elicit a variety of physiological functions [59]. CAII, encoded by the CA2 gene, is involved in 
several pathological conditions including neurodegeneration, glaucoma, epilepsy, and altitude sickness, 
which has led to growing interest in the clinical use of carbonic anhydrase inhibitors [60–62]. Patients with 
osteopetrosis and renal tubular acidosis were discovered to carry mutations resulting in the downregulation 
of CAII [63]. These manifestations are also observed in inherited autosomal recessive CAII deficiency 
syndrome [64]. CAVIII, encoded by the CA8 gene, is another carbonic anhydrase isoform that is 
downregulated in renal cell carcinoma [65] and congenital ataxia [66]. Our results found both CA2 and CA8 
to be downregulated following TFAM KO and associated with hypomethylation at 2 unique CpG sites each 
(4 CpG sites total) (S4 Table).  

The ABCD1 gene functions as an ATP-binding cassette transporter which helps move very long 
chain fatty acid-CoA from the cytosol to the peroxisome [67,68]. Additionally, the ABCD1 gene also 
regulates mitochondrial-related functions such as oxidative phosphorylation and fatty acid synthesis 
[67,68]. The X-linked adrenoleukodystrophy genetic peroxisome disease has been linked to mutations in 
the ABCD1 gene, which affects the nervous system and kidney [69,70]. Our gene expression results identify 
the ABCD1 gene and it is also included in the MitoCarta3.0 database. The ABCD1 gene is also associated 
with 9 significant CpG sites from our dataset (S4 Table). Furthermore, ABCD1, and its paralog ABCD2, are 
both underexpressed in our analysis and only the metabolism pathway overlapped between the 
MitoCarta3.0 database and the overrepresented pathways from the gene expression analysis. mtDNA-CN 
reduction following TFAM KO may lead to ABCD1 hypermethylation, resulting in decreased expression 
and consequently altered energy metabolism. Further investigations on a potential association between 
mtDNA-CN alterations and ABCD1-related diseases such as X-linked adrenoleukodystrophy is warranted 
[71].   
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mtDNA-CN reduction is related to the enrichment of non-coding chromatin 
regions  

Enrichment in chromatin state regions such as enhancers and repressed Polycomb was identified in 
our analyses. These findings may suggest the existence of interaction between mtDNA-CN and the 
machinery regulating chromatin states as another avenue of mitochondrial-nuclear crosstalk, with potential 
implications on disease etiology. Further investigations of the associations between mtDNA-CN and 
chromatin states by leveraging ATAC-seq or ChIP-seq is warranted. 

No CpG-related regions (islands, shores, shelves, or open sea) were overrepresented, which is 
consistent with a similar previous EWAS study on mtDNA-CN [26]. The enrichment for intergenic regions 
in our dataset follows another mtDNA-CN-modifying investigation that found DMRs overrepresented in 
intragenic regions, with the majority found in introns [72]. These findings further suggest gene expression 
control is being regulated through non-coding regions.  

 
mtDNA-CN remodels the nuclear epigenome and transcriptome 

Our results, alongside emerging evidence on the association between mtDNA variability, the 
nuclear epigenome, and nuclear gene expression, reinforce the complex interplay between the mitochondria 
and the nuclear genome [73–75]. Our results demonstrate a reduction in mtDNA-CN and widespread 
changes to nDNA methylation and gene expression following TFAM knockout. These dynamics have also 
been found to be influenced by environmental stimuli [76]. It has been proposed that these environmental 
stimuli affect the bidirectional cross-talk between the mitochondrial and nuclear genome through several 
key mitochondrial metabolites [77]. Here, we identify biological pathways in relation to these associations 
and highlight key targets for further research. With advancements in both mitochondrial genome editing 
and mitochondrial transplantation as potential avenues to revolutionize the prevention and treatment of 
mitochondrial-related diseases, these findings provide insight on anticipated effects to the nuclear 
epigenome and nuclear genome expression as a result of mtDNA modifications.  

Some limitations of these results include that TFAM KO cells have resulted in a more substantial 
reduction in mtDNA-CN compared to what is generally observed in human patients and should therefore 
be interpreted with caution. Additionally, the TFAM gene may also independently impact other pathways 
in addition to regulating mtDNA-CN and therefore could impact nDNA methylation and gene expression 
through unknown biological mechanisms. Furthermore, the kidney-derived HEK293T cell lines in which 
the TFAM KO and NC cell lines were established may have specific baseline methylation patterns not found 
in other cell types. Therefore, the findings of this study are not expected to be generalizable to all cell types.  
 
Conclusion 

In conclusion, we report the impact of reduction of TFAM on site-specific differential DNA 
methylation, differentially methylated regions, and differential gene expression. Overrepresentation of 
GABAA receptor genes, the neuroactive ligand receptor interaction pathway, the ABCD1/2 genes, 
regulation of carbonic anhydrases, and cell signalling processes were identified. Furthermore, enrichment 
of functional genomic regions demonstrated that chromatin states such as enhancers and heterochromatin 
are overrepresented in the methylation results, implying that mtDNA-CN may also be impacting gene 
expression via chromatin states. The results indicate that mitochondrial DNA variation influences the 
nuclear DNA epigenome and transcriptome and has the potential to contribute to processes related to 
development, aging, and complex disease risk. 
 
Materials and Methods 
TFAM Knockout Cell Line Model 

The experimental models generated in this study were modified HEK293T cell lines with a 
heterozygous knockout of the TFAM generated via CRISPR-Cas9 using the Origene TFAM – Human Gene 
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Knockout Kit following the manufacturer’s protocol. The sgRNA guide sequence used was 
GCGTTTCTCCGAAGCATGTG. Turbofectin 8.0 was used to perform lipofection, and puromycin was 
used for selection. The knockout procedure was performed independently for each of the 3 KO cell lines. 3 
NC cell lines were generated using the same original cell line performing all identical steps but without 
performing the knockout. This resulted in 6 independent samples (3 KO and 3 NC). For all downstream 
analyses, each independent sample was run in a minimum of technical duplicates. qPCR was used to 
measure mtDNA-CN as an estimate relative to nuclear DNA copy number and to confirm the number of 
copies of TFAM in cell lines as well as to confirm the number of copies of TFAM DNA. A Western Blot 
was performed to demonstrate the reduction in TFAM protein in the KO lines with Tubulin as the control. 
TFAM gene expression was also measured using qPCR. Gene expression was determined using the double 
delta cycle threshold method.  

 
DNA/RNA Sequencing Data Generation 

DNA was extracted using the AllPrep DNA/RNA Mini Kit following manufacturer’s protocol and 
quantified using a Nanodrop 1000. Following bisulfite conversion, DNA strands were hybridized to the 
Illumina Infinium EPIC BeadChip to determine the DNA methylation profile for over 850,000 CpGs in the 
human genome. All samples (3 KO and 3 NC) were run on the EPIC BeadChip at two separate time points 
which resulted in 12 individual runs represented by 12 raw .idat files (6 KO and 6 NC). 

RNA extraction, quantification, quality control, library preparation, and sequencing were 
performed using the Qiagen AllPrep DNA/RNA Mini Kit, Qubit 2.0 Fluorometer, and Illumina’s TruSeq 
Stranded Total RNA kit. Total RNA was converted to cDNA, and end repair was performed. Fragments 
were ligated and size selected. The Illumina HiSeq 2500 instrument was used to perform paired-end 150 
bp sequencing to generate gene expression profiles. Each of the 6 samples (3 KO and 3 NC) were sequenced 
twice which resulted in 12 FASTQ files.  

 
nDNA Methylation Analysis of Cell Lines 

The minfi package was used for EPIC BeadChip analysis and quality control to remove poor quality 
probes [78]. The data was normalized using functional normalization [79] and poor quality probes were 
removed if the probe had a detection p-value > 0.01. Cross-reactive probes were identified and omitted 
[80], as well as probes with known SNPs at the CpG site. Additionally, CpGs with greater than a 0.15 
difference in mean beta value between the first and second runs for the NC cell lines were removed. This 
step accounted for measurement variation inherent in the EPIC BeadChip. 

Differentially methylated sites were determined using a linear model with mtDNA-CN as the 
independent variable and methylation values as the dependent variable using both DMPFinder in minfi and 
a linear mixed model, with sample ID included as a random variable, where possible[78]. A significance 
threshold of p-value < 1e-7 was used to determine differentially methylated sites as previously 
demonstrated to be appropriate for EWAS analyses [81–84].  

DMRs were determined via linear modelling using the R package DMRcate with treatment status 
(KO vs NC) as the independent variable and methylation beta value as the dependent variable [85]. The 
batch (1st and 2nd run) was included as a fixed effect. A significance threshold of p-value < 1e-7 was used 
to determine differentially methylated sites prior to DMR identification. Regions were defined as having a 
minimum of 10 CpGs with at most 1000 bps between CpGs within the region. Additionally, regions were 
removed if the region had a mean beta value difference < 0.05 between KO and NC. A significance 
threshold of p-value < 1.17e-5 was used to identify significant DMRs which reflects Bonferroni correction 
for multiple testing (4,259 tests). 

 
RNA-Sequencing Analysis of Cell Lines 

Kallisto was used to pseudo-align the compressed FASTQ files to the Genome Reference 
Consortium Human Build 37 to generate transcript level counts [86]. To account for uncertainties in 
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transcript counts, a total of 100 bootstraps were performed in Kallisto. Transcript level counts were 
converted to gene level counts using the transcript count of the isoform with the highest expression. 

Normalization, quality control, and differential expression analysis were performed using the 
EdgeR package [87]. The data was normalized to scale for effective library size of samples using the 
trimmed mean of M-values (TMM) [88]. Genes with less than 15 reads across all samples were removed 
due to low expression. In addition, genes with a sum of counts per million (CPM) across samples < 6 were 
also discarded from the analysis. Samples for a gene were included in the sum of CPM if the CPM for the 
sample was > 0.6. 

Gene expression was modelled using a weighted likelihood empirical Bayes method as described 
by Chen et al. [89]. Differentially expressed genes were determined using a likelihood ratio test between 
the null and the observed model, with the batch (1st and 2nd run) adjusted for as a fixed effect. Genes with 
an absolute log fold-change (logFC) < 2 were removed. A significance threshold of p-value < 3.53e-6 was 
used to determine differentially expressed genes which reflects Bonferroni correction for multiple testing 
(14,149 tests). 

 
Integration of Methylation and Gene Expression 

The ELMERv2 [42] package was used to integrate differential methylation and differential gene 
expression to find associations between methylation and gene expression of nearby genes. Associations 
with any direction of effect were considered. The supervised approach was used such that methylated and 
unmethylated groups were split into KO and NC labels. Significant CpGs from differentially methylated 
site analysis and significant genes from differential expression analysis were used as the methylation and 
the gene expression data inputs respectively. 

Each CpG site was mapped to the nearest 20 genes (10 upstream and 10 downstream) in the 
genome. Each Gene-CpG pair was tested using a one-sided Mann-Whitney U test to check for methylation 
differences between KO and NC (p-value < 0.001). Genes in Gene-CpG pairs were tested for differential 
gene expression between KO and NC using the Student’s t-test (p-value < 0.001). Following the same 
parameters to previous studies, Gene-CpG pairs were removed from the analysis if the CpG was greater 
than 1 Mbp from the transcriptional start site of the gene using the ENSEMBL [90] gene level annotations 
[25,91]. A significance threshold of false discovery rate (FDR) < 0.01 was used to determine significant 
Gene-CpG pairs.  

 
Enrichment Analyses 
 Enrichment analyses were performed on the differential methylation sites/regions and differential 
gene expression results with all tested sites, regions, or genes as background, respectively. We leveraged 
the following databases to uncover physiological mechanisms overrepresented in our results: The Gene 
Ontology (GO) [43,44] database for functional gene groups, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [45–47] for biological pathways, the Reactome Pathway and transcription factor gene 
sets from the Molecular Signatures Database (MSigDB) [50,51], and the MitoCarta3.0 [92] database for 
mitochondrial related genes and pathways.  

GO and KEGG over-enrichment analysis was performed on the significant methylation sites and 
methylation region results using missMethyl [93]. missMethyl is particularly well suited for this as it 
accounts for the bias introduced from unbalanced CpG-gene mapping. GO and KEGG functional 
enrichment analyses was performed on significant genes from RNA-sequencing using limma [94]. The top 
KEGG pathways were visualized using Pathview to map up/down-regulation of genes within pathways 
[95]. Reactome pathway functional enrichment [48] was performed on differentially methylated sites using 
the MethylGSA package [96] using p-value < 1e-07 and differentially expressed genes using the 
ReactomePA package [97]. 
 MSigDB transcription factor binding sites regulatory target gene sets and MitoCarta3.0 mammalian 
mitochondrial protein sets and pathways were used to perform over-enrichment analysis on significant 
methylation and gene expression results. Overrepresentation of transcription factor genes was determined 
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by using the Student’s t-test on significant genes in the gene set against the genes that were not present in 
the gene set. A significance threshold of p-value < 0.05 was used. In addition, the significant genes from 
the RNA analysis were tested for overlaps with genes in MitoCarta3.0 using a Chi-squared test (p<0.05).  

For the GO, KEGG, and transcription factor enrichments, the methylation and gene expression 
results were combined using the Fisher’s combined probability test to combine p-values [98]. Fisher’s 
combined probability test could not be applied to Reactome results due to the lack of gene expression results 
following p-value filtering. The methylation site and the methylation region results were combined 
separately with the gene expression results using this method. Terms/groups with p-value > 0.05 in either 
the methylation or gene expression results were removed before combining p-values. 

The EWAS Catalog was used to identify any differentially methylated CpG sites that have been 
previously reported in the literature to be associated with known phenotypes. CpG sites and their associated 
phenotypic traits were obtained from the EWAS Catalog website in June 2023. Traits were further collapsed 
into broader disease categories. Pruning was first performed to select for the most significant CpG per 1Mbp 
from our significantly differentially methylated probes and separately for all probes. To assess for 
enrichment in overlapping CpGs with given specific disease terms, 1,243 CpGs were randomly selected 
from the EWAS Catalog (representing the total number of pruned CpGs from our TFAM knockout 
differently methylated probes). Further, the overlap between the randomized set and each disease category 
was recorded. This was repeated for 1,000 permutations with the p-value measured as the percentage of the 
number of permutations in which the number of overlapping CpGs was greater than the observed number 
of overlapping CpGs.  
 Enrichment of genomic regions was performed using the DMRichR [99] package to test for 
overrepresented CpG categories (CpG islands, shores, shelves, and open sea) and gene regions (promoter, 
UTR, exon, intron, downstream, intergenic, active TSS, transcription, enhancers, ZNF genes and repeats, 
heterochromatin, PolyComb, quiescent/low). The enrichment testing for overrepresented CpG and gene 
regions used a Fisher’s Exact test at a significance threshold of FDR < 0.01. The DMRichR package also 
includes a wrapper for LOLA [100] which tests for enrichment of 15 chromatin states from ChromHMM 
[101]. Enrichment testing for chromatin states used a Fisher’s Exact test, and a significance threshold of 
FDR < 0.01 was used. 
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Supporting information 
S1 Fig. Top 20 Reactome pathways identified from differentially methylated sites (p-value < 1e-07). 
N: number of genes identified in each term; ONT: ontology; BP: biological process; CC: cellular 
components; MF: molecular function. 
 
S2 Fig. Enriched KEGG pathways identified. Red indicates hypermethylation/over-expressed genes; 
green indicates hypomethylation/under-expressed genes. A) DMSs – GABAergic synapse; B) DMRs – 
GABAergic synapse; C) DEGs – GABAergic synapse; D) DMSs – Protein Digestion and Absorption; E) 
DMRs – Protein Digestion and Absorption; F) DEGs – Protein Digestion and Absorption; G) DMSs – 
Neuroactive Ligand-Receptor Interaction; H) DMRs – Neuroactive Ligand-Receptor Interaction; I) DEGs 
– Neuroactive Ligand-Receptor Interaction. 
 
S3 Fig. Number of independent CpG sites associated with cancer or autoimmune disease (p < 0.05) 
in the EWAS catalog following 1000 randomized selections for the number of CpGs from the 
EWAS catalog identified in our primary analysis (785 CpGs). Dashed line represents the actual 
number of significant CpGs from TFAM KO analysis that overlap reported CpGs from the EWAS catalog 
for each disease term. P-value represents enrichment for terms in our analysis. 
 
S1 Table. Summary statistics from identification of differentially methylated sites. 
 
S2 Table. Summary statistics from identification of differentially methylated regions. HMFDR: 
harmonic mean of the individual component FDRs 
 
S3 Table. Summary statistics from identification of differentially expressed genes. LogFC: log fold 
change; logCPM: log counts per million; LR: likelihood ratio. 
 
S4 Table. Gene-CpG pairs discovered to be associated (negative or positive correlation). 
Log2FC_Experiment.vs.Control: log2 fold change between the TFAM KO group and the NC group; 
Experiment.vs.Control.diff.pvalue: p-value of fold change difference between the TFAM KO group and 
the NC group. 
 
S5 Table. Overrepresented gene ontology terms identified from differentially methylated sites (p < 
1e-07). BP: biological process; MF: molecular feature; CC: cellular component; N: number of genes in 
GO term; DE: number of gene differentially methylated. 
 
S6 Table. Overrepresented gene ontology terms identified from differentially methylated regions (p 
< 1.17e-5). BP: biological process; MF: molecular feature; CC: cellular component; N: number of genes 
in GO term; DE: number of gene differentially methylated. 
 
S7 Table. Overrepresented gene ontology terms identified from differentially expressed genes (p < 
3.53e-6). BP: biological process; MF: molecular feature; CC: cellular component; N: number of genes in 
GO term; DE: number of gene differentially methylated. 
 
S8 Table. Overrepresented KEGG pathways identified from differentially methylated sites (p < 1e-
07). N: number of genes in KEGG term; DE: number of gene differentially methylated. 
 
S9 Table. Overrepresented KEGG pathways identified from differentially methylated regions (p < 
1.17e-5). N: number of genes in KEGG term; DE: number of gene differentially methylated. 
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S10 Table. Overrepresented KEGG pathways identified from differentially expressed genes (p < 
3.53e-6). N: number of genes in KEGG term; DE: number of gene differentially methylated. 
 
S11 Table. Overrepresented Reactome pathways identified from differentially methylated sites (p < 
1e-07). BP: biological process; MF: molecular feature; CC: cellular component; N: number of genes in 
Reactome term; DE: number of gene differentially methylated. 
 
S12 Table. Transcription factors identified from Fisher’s combined test of differentially methylated 
sites and differentially expressed genes. 
 
S13 Table. Methylation sites and genes identified in the MitoCarta 3.0 database. A) Methylation sites 
identified in the MitoCarta 3.0 database. B) Genes identified in the MitoCarta 3.0 database. 
 
S14 Table. Differentially expressed genes identified in the MitoCarta 3.0 database.  
 
S15 Table. Differentially methylated sites overlapping with those reported in the EWAS Catalog. 
 
S16 Table. Odds ratio (OR) and FDR for functional region enrichment.  
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