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Discriminating chaotic 
and stochastic time series using 
permutation entropy and artificial 
neural networks
B. R. R. Boaretto1, R. C. Budzinski1, K. L. Rossi1, T. L. Prado1, S. R. Lopes1 & C. Masoller2*

Extracting relevant properties of empirical signals generated by nonlinear, stochastic, and high-
dimensional systems is a challenge of complex systems research. Open questions are how to 
differentiate chaotic signals from stochastic ones, and how to quantify nonlinear and/or high-order 
temporal correlations. Here we propose a new technique to reliably address both problems. Our 
approach follows two steps: first, we train an artificial neural network (ANN) with flicker (colored) 
noise to predict the value of the parameter, α , that determines the strength of the correlation of 
the noise. To predict α the ANN input features are a set of probabilities that are extracted from the 
time series by using symbolic ordinal analysis. Then, we input to the trained ANN the probabilities 
extracted from the time series of interest, and analyze the ANN output. We find that the α value 
returned by the ANN is informative of the temporal correlations present in the time series. To 
distinguish between stochastic and chaotic signals, we exploit the fact that the difference between 
the permutation entropy (PE) of a given time series and the PE of flicker noise with the same α 
parameter is small when the time series is stochastic, but it is large when the time series is chaotic. 
We validate our technique by analysing synthetic and empirical time series whose nature is well 
established. We also demonstrate the robustness of our approach with respect to the length of the 
time series and to the level of noise. We expect that our algorithm, which is freely available, will be 
very useful to the community.

Chaotic and stochastic systems have been extensively studied and the fundamental difference between them is 
well known: in a chaotic system an initial condition always leads to the same final state, following a fixed rule, 
while in a stochastic system, an initial condition leads to a variety of possible final states, drawn from a probability 
distribution1. However, the signals generated by chaotic and stochastic systems are not always easy to distinguish 
and many methods have been proposed to differentiate chaotic and stochastic time series2–10.

A related important problem is how to appropriately quantify the strength and length of the temporal cor-
relations present in a time series11–14. The performance of these methods varies with the characteristics of the 
time series. As far as we know, no method works well with all data types, because methods have different limita-
tions, in terms of the length of the time series, the level of noise, the stationarity or seasonality of the underlying 
process, the presence of linear or nonlinear correlations, etc. Moreover, any time series analysis method will 
return, at least, one number. Therefore, to obtain interpretable results, the values obtained from the analysis of 
the time series of interest need to be compared with those obtained from other “reference” time series, where 
we have previous knowledge of the underlying system that generates the data. Here we use as “reference” model 
a well-known stochastic process: flicker noise (FN).

A FN time series is characterized by a power spectrum P(f ) ∝ 1/f α , with α being a quantifier of the correla-
tions present in the signal15. Flicker noise has been extensively studied in diverse areas such as electronics16,17, 
biology18,19, physics20,21, economy22,23, meteorology24, astrophysics25, etc. Furthermore, related to this issue, many 
methods described in the literature are able to evaluate the time correlation quantification α , such as the Hurst 
exponent H2,11–13,15,21,26.

In this paper, we propose a new methodology that simultaneously allows to distinguish chaotic from sto-
chastic time series, and to quantify the strength of the correlations. Our algorithm, based on an Artificial Neural 
Network (ANN)27, is easy to run and freely available28. We first train the ANN with flicker noise to predict the 
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value of the α parameter that was used to generate the noise. The input features to the ANN are probabilities 
extracted from the FN time series using ordinal analysis29, a symbolic method widely used to identify patterns 
and nonlinear correlations in complex time series30–32. Each sequence of D data points (consecutive, or with a 
certain lag between them), is converted into a sequence of D relative values (smallest to largest), which defines 
an ordinal pattern. Then, the frequencies of occurrence of the different patterns in the time series define the set 
of ordinal probabilities, which in turn allow to calculate information-theoretic measures such as the permutation 
entropy (PE, described in ”Methods”). The PE has been extensively used in the literature, due to the fact that 
is straightforward to calculate, and it is robust to observational noise. Interdisciplinary applications have been 
discussed in Ref.33 and, more recently, in a Special Issue34.

After training the ANN with different FN time series, xs(α) , generated with different values of α , we input to 
the ANN ordinal probabilities extracted from the time series of interest, x, and analyze the output of the ANN, 
αe . We find that αe is informative of the temporal correlations present in the time series x. Moreover, by compar-
ing the PE values of x and of xs(αe) (a FN time series generated with the value of α returned by the ANN), we 
can differentiate between chaotic and stochastic signals: the PE values of x and xs are similar when x is mainly 
stochastic, but they differ when x is mainly deterministic. Therefore, the difference of the two PE values serves 
as a quantifier to distinguish between chaotic and stochastic signals. We use several datasets to validate this 
approach. We also analyze its robustness with respect to the length of the time series and noise contamination.

This paper is organized as follows. In the main tex,t we present the results of the analysis of synthetic and 
empirical time series, which are described in “Datasets”. Typical examples of the time series analyzed are pre-
sented in Fig. 1. In ”Methods”, we describe the ordinal method and the implementation of the algorithm, sche-
matically represented in Fig. 2.

Results
Analysis of synthetic datasets.  The main result is depicted in Fig. 3. Panel (a) shows the normalized 
permutation entropy S̄(αe) (Eq. 4) vs. the time-correlation coefficient αe . The filled (empty) symbols correspond 
to different types of stochastic (chaotic) time series, and the solid black line corresponds to FN time series gener-
ated with α ∈ [−1, 3] , which is accurately evaluated by the ANN. For αe = 0 , FN has a uniform power spectrum, 
characteristic of an uncorrelated signal (white noise), with equal ordinal probabilities P (i) ≈ 1/D! and, hence, 
S̄ = 1 . Otherwise, for α  = 0 , some ordinal patterns occur in the time series more often than others, and the 
ordinal probabilities are not all equal, which decreases the permutation entropy. These results are consistent with 
those that have been obtained by using different methodologies7,10,26.

In Fig. 3, we note that fBm signals have larger time-correlation ( αe closer to 2, a classic Brownian motion) 
than the other three stochastic systems αe ≈ 0 . However, their permutation entropies are very close to those of 

Figure 1.   Examples of time series analyzed, their probability density functions (PDFs) and power spectral 
densities (PSDs). (a,b) Time series generated by iteration of the βx map [Eq. (6) with β = 2 ] and its PDF. (c,d) 
Uniformly distributed white noise and its PDF. We see that the PDF of the deterministic map is identical to the 
PDF of the noise. (e,f) PSD of the Schuster map, Eq. (8) with parameter z = 1.5 , and of a Flicker noise with 
α = 1 . We note that the PSD of the Schuster map has a long decay that is very similar to a 1/f α decay of the 
noise. (g) PDF of m summed logistic maps (Eq. 7 with r = 4 ), which approaches a Gaussian as m increases. 
(h–k) Examples of empirical time series analyzed: (h) a stride-to-stride of an adult walking in a slow velocity, 
interpreted as an stochastic process; (i) daily number of sunspots as a function of time (in years), where its 
fluctuations are interpreted as stochastic; (k) voltage across the capacitor of an inductor-less Chua electronic 
circuit, whose oscillations are known to be chaotic.
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the FN signals. The key observation is that stochastic time series all fall close to the FN curve, while chaotic ones 
do not, namely, βx map, Lorenz system, logistic map, skew tent map, and Schuster map. The distance to the FN 
curve thus serves to distinguish stochastic and chaotic time series. This is quantified by

where S̄ is the permutation entropy of the analyzed time series and S̄fn(αe) is the PE of a flicker noise time series 
generated with the value of α returned by the ANN, αe . The results are presented in Fig. 3b, where we see that 
stochastic signals have � ≈ 0 , and deterministic signals have � > 0 . To summarize this finding, Table 1 depicts 
αe and � for ten representative systems.

Next, we study the applicability of our methodology to noise-contaminated signals. We analyze the signal

where Xt is a deterministic (chaotic) signal “contaminated” by a uniform white noise, Yt , and η ∈ [0, 1] controls 
the stochastic component of Zt . For η = 0 (1) the signal is fully deterministic (fully stochastic).

Figure 4a shows � as a function of η for different chaotic signals. As expected, for η = 0 , � is high, but as η 
grows, the level of stochasticity increases and � decreases. At η > 0.5 , the signal is strongly stochastic, as reflected 
by � ≈ 0.0 . For comparison, in Fig. 4a we also present results obtained by shuffling a chaotic time series. As 
expected, � ≈ 0 for all η because temporal correlations are destroyed by the shuffling process.

(1)�(αe) =
|S̄fn(αe)− S̄|

S̄fn(αe)
,

(2)Zt = (1− η)Xt + ηYt , t = 1, . . . ,N ,

Figure 2.   Schematic representation of the methodology. We compute the probabilities of the ordinal patterns 
and then use them as input features to the ANN. The ANN returns the temporal correlation coefficient αe . Then 
we compare the permutation entropy of the analyzed time series with the permutation entropy of a FN time 
series generated with the same αe value. Based on this comparison, we use Eq. (1) to classify the time series as 
chaotic or stochastic.

Figure 3.   Temporal correlation and distinction of chaotic and stochastic synthetic signals. Panel (a) shows the 
normalized permutation entropy S̄ as a function of αe , evaluated through the ANN, for different time-series 
(stochastic and chaotic). The black solid line represents FN signals, which are used for training and testing 
the ANN. Filled symbols represent different stochastic signals, which are very close to the FN curve. Empty 
symbols represent chaotic signals, which are far away. The distance to the FN curve is measured by � (Eq. 1) and 
it is shown in panel (b) higher values of � indicate chaotic time series, while lower, vanishing values indicate 
stochastic ones.
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We expect that the addition of a sufficiently large number of independent chaotic signals gives a signal that is 
indistinguishable from a fully stochastic one. This is verified in Fig. 4b, where the horizontal axis represents the 
number, m, of independent chaotic signals added. Here a high value of � is observed for m = 1 (a single chaotic 
signal), but as m increases � → 0 since the chaotic nature of added signals is no longer captured (examples of 
the PDFs of the time series obtained from the addition of m Logistic maps were presented in Fig. 1g, where we 
can observe a clear evolution towards a Gaussian shape).

To further explore the robustness of our methodology, we investigate the role of the length N of the analyzed 
time series in the evaluation of the � quantifier (Eq. 1). Figure 5 shows � as a function of N, where panel (a) 
depicts stochastic signals, and (b) chaotic ones. We see that even for N < 102 , for all stochastic signals in panel 
(a) � < 0.1 , which indicates that we can identify the stochastic nature of short signals. For the chaotic signals in 
panel (b), for N > 102 � > 0.1 (except for βx map), and for N ≥ 103 , � > 0.2 for all signals, which demonstrates 
that our method can also detect determinism in short signals.

As discussed in ”Methods”, the ANN was trained with flicker noise signals with 220 data points. However, it is 
interesting to analyze how much data the trained ANN needs, in order to correctly predict the α value of a flicker 
noise time series. To address this point, we generate L = 1000 FN time series and analyze the error of the ANN 
output, αe , as a function of the length of the time series, N, and of the value of α used to generate the time series. 
The results are presented in panel (c) of Fig. 5 that displays the mean absolute error, E = 1

L

∑L
ℓ=1 |αe − α| . We 

see that as N increases, E decreases. The error depends on both, α and N, and tends to be larger for high α due 
to non-stationarity and finite time sampling10. For FN time series longer than 104 datapoints, the ANN returns 
a very accurate value of α.

Analysis of empirical time series.  Here we present the analysis of time series recorded under very differ-
ent experimental conditions, as described in “Datasets”. Figure 6 displays the results in the plane ( αe , � ). The � 
values obtained for the Chua circuit data and for the laser data confirm their chaotic nature35,36 ( � ≈ 0.55 and 
� ≈ 0.20 respectively). For the star light intensity � ≈ 0 , confirming the stochastic nature of the signal37. For 
the number of sunspots, which is a well-known long-memory noisy time series, � ≈ 0 . In this case the value of 

Table 1.   Results obtained from stochastic and deterministic time series: mean and standard deviation of the 
αe parameter and of �(αe) (Eq. 1), calculated from 1000 time series generated with different initial conditions 
and noise seeds.

Stochastic process αe �(αe)

FN ( α = 0) −0.008± 0.013 0.00006± 0.00005

fBm ( H = 0.5) 1.74± 0.01 0.005± 0.001

fGn ( H = 0.5) −0.009± 0.014 0.00006± 0.00004

Cauchy −0.008± 0.004 0.00007± 0.00005

Uniform −0.008± 0.003 0.00007± 0.00006

 Chaotic systems αe �(αe)

βx map 1.277± 0.002 0.2612± 0.0002

Lorenz system ( max(x)) 0.79± 0.04 0.33± 0.004

Logistic map 0.823± 0.003 0.3585± 0.0001

Schuster map 1.364± 0.002 0.3855± 0.0004

Skew Tent map −0.142± 0.002 0.5256± 0.0004

Figure 4.   Limits for identifying determinism. Panel (a) shows the influence of noise contamination: the 
quantifier � , Eq. (1) is plotted as a function of the level of noise, η , in Eq. (2). We see that as η increases, � 
decreases, but it remains, for high values of η , different from the value obtained from shuffled data (black 
pentagons). Therefore, small values of � can still reveal determinism in noise-contaminated signals. Panel (b) 
shows the effect of adding several independent chaotic signals: � is plotted as a function of the number m of 
signals added. We see that as m increases, � decreases, indicating that the deterministic nature of the signal can 
no longer be detected.
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α obtained ( α ≈ 2 ) confirms the results of Singh et al.38 where a Hurst exponent close to 1 was found. Regarding 
the five time series of RR-intervals of healthy subjects, our algorithm identifies stochasticity ( � ≈ 0 ) in all of 
them, which is consistent with findings of Ref.9.

The last empirical set analyzed reveals the nature of the dynamics of human gait: regardless of the age of the 
subjects, � ≈ 0 confirming the stochastic behavior discussed in39. In the inset we show that the αe value returned 
by the ANN decreases with the age, which is also in line with the results presented in40, obtained with Detrended 
Fluctuation Analysis (see Fig. 6 of Ref.40). The authors interpret this variation as due to an age-related change in 
stride-to-stride dynamics, where the gait dynamics of young adults (healthy) appears to fluctuate randomly, but 
with less time-correlation in comparison to young children40.

Discussion
We have proposed a new time series analysis technique that allows to differentiate stochastic from chaotic sig-
nals, and also, to quantify temporal correlations. We have demonstrated the methodology by using synthetic 
and empirical signals.

Our method is based on locating a time series in a two dimensional plane determined by the permutation 
entropy and the value of a temporal correlation coefficient, αe , returned by a machine learning algorithm. In 
this plane, stochastic signals are very close to a curve defined by Flicker noise, while chaotic signals are located 
far from this curve. We have used this fact to define a quantifier, � , that is the distance to the FN curve. � serves 

Figure 5.   Robustness with respect to the time series length. We evaluate � as a function of the time series 
length N for stochastic signals (a) and chaotic ones (b). In (a), we observe that even for N < 100 , � < 0.1 , 
which confirms the stochastic nature of the signal. In (b), even for N < 100 , � > 0.1 (except for βx map). Also, 
� > 0.2 for all cases for N ≥ 1000 , which classifies the signals as chaotic even with only 1000 datapoints. The 
error bars are the standard deviation over 1000 of samples. (c) Mean absolute error, E , between the output of 
the ANN ( αe ), and the parameter α used to generate the time series of flicker noise (depicted in color-code) as a 
function of the length of the time series, N.

Figure 6.   Analysis of empirical time series. Results obtained from each time series are presented in the plane 
( αe , � ). Deterministic signals are the Chua circuit data (brown triangle) and the laser data (orange ‘X’ marker) 
that have � > 0.0 . The other signals [the light intensity of a star (yellow dot), the number of sunspots (cyan 
diamond), the heart variability of healthy subjects (magenta thin diamond), and the different groups of human 
gait dynamics (green, blue, red, and black squares)] are stochastic and have � ≈ 0 . For the human gait, the inset 
depicts the αe as a function of the age of each subject. Consistent with40, the correlation coefficient αe decrease 
with the ages.
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to distinguish stochastic and chaotic time series, and it can be used to analyze time series, even when they are 
very short (with time series of 100 datapoints we found that � < 0.1 or � > 0.1 , if the time series is stochastic or 
chaotic respectively, Fig. 5). We also found that small values of � can be used to identify underlying determinism 
in noise-contaminated signals, and in signals that result from the addition of a number of independent chaotic 
signals (Fig. 4). We have also used our algorithm to analyze six empirical datasets, and obtained results that are 
consistent with prior knowledge of the data (Fig. 6). Taken together, these results show that the proposed method-
ology allows answering the questions of how to quantify stochasticity and temporal correlations in a time series.

Our algorithm is fast, easy-to-use, and freely available28. Thus, we believe that it will be a valuable tool for 
the scientific community working on time series analysis. Existing methods have limitations in terms of the 
characteristics of the data (length of the time series, level of noise, etc.). A limitation of our algorithm lies in the 
analysis of noise-contaminated periodic signals, because their temporal structure may not be distinguished from 
the temporal structure of a fully stochastic signal with a large α value. Future work will be directed at trying to 
overcome this limitation. Here, for a “proof-of-concept” demonstration, we have used a well-known machine 
learning algorithm (a feed-forward ANN), a rather simple training procedure, and a popular entropy measure 
(the permutation entropy). We have not tried to optimize the performance of the algorithm. We expect that 
different machine learning algorithms, training procedures, and entropy measures can give different perfor-
mances, depending on the characteristics of the data analyzed. Therefore, the methodology proposed here has 
a high degree of flexibility, which can allow to optimize performance for the analysis of particular types of data.

Methods
Ordinal analysis and permutation entropy.  Ordinal analysis allows the identification of patterns and 
nonlinear correlations in complex time series29. For each sequence of D data points in the time-series (consecu-
tive, or with a certain lag between them), their values are replaced by their relative amplitudes, ordered from 
0 to D − 1 . For instance, a sequence {0, 5, 10, 13} in the time series transforms into the ordinal pattern “0123”, 
while {0, 13, 5, 10} transforms into “0312”. As an example, Fig. 7 shows the ordinal patterns formed with D = 4 
consecutive values..

We evaluate the frequency of occurrence of each word, defined as the ordinal probability P (i) with 
∑D!

i=1 P (i) = 1 , where i represents each possible word. Then, we evaluate the Shannon entropy, known as 
permutation entropy29:

The permutation entropy varies from S(D) = 0 if the j-th state P (j) = 1 (while P (i) = 0 ∀ i �= j ) to 
S(D) = ln(D!) if P (i) = 1/D! ∀ i . The normalized permutation entropy used in this work is given by:

In this work, to calculate the ordinal patterns, we have used the algorithm proposed by Parlitz and coworkers32. 
We have used D = 6 and no lag, i.e., D − 1 values overlap in the definition of two consecutive ordinal patterns. 
Therefore, we use as features to the ANN (see below) the D! = 720 probabilities of the ordinal patterns. For a 
robust estimation of these probabilities, a time series of length N >> D! is needed. However, as we show in Fig. 5, 
the algorithm returns meaningful values even for time series that are much shorter.

Artificial neural network.  Deep learning is part of a broader family of machine learning methods based 
on artificial neural networks (ANNs)41. In this work, we use the deep learning framework Keras42 to compile 
and train an ANN. Since we want to regress the information of the features into a real value (classical scalar 
regression problem43) an appropriate option is a feed-forward ANN. The ANN is trained to evaluate the time 
correlation coefficient considering as features the 720 probabilities of the ordinal patterns. We connect the input 
layer to a single dense layer with 64 output units connected to a final layer, regressing all the information of 
the inputs into a real number. Other combinations were tested with different numbers of units ( 16, 512, 1024 ) 
and layers. We found that a single layer with 64 units was sufficient to accurately predict the α value. The ANN 
parameters and the compilation setup are given in Table 2. As explained in the discussion we have used the feed-
forward ANN as a simple option for a “proof-of-concept” demonstration. Other deep learning/machine learning 
methods or a different compilation setup may give better results depending on the type of data that is analyzed.

(3)S(D) = −

D!
∑

i=1

P (i) ln (P (i)).

(4)S̄(D) =
S(D)

lnD!
.

{xt, xt+1, xt+2, xt+3} =
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r) (s) (t) (u) (v) (w) (x)

Figure 7.   Schematic illustration of 24 ordinal patterns that can be defined from D = 4 consecutive data values 
in a time series.
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The training stage of the ANN is performed using a dataset of 50,000 flicker noise time series with N = 220 
points, where the parameter α of each time series is randomly chosen in −1 ≤ α ≤ 3 (see “Datasets” for details). 
We separate the dataset into two sets: the training dataset ( Ltrain = 40,000 ), and the test dataset ( Ltest = 10,000 ). 
To quantify the error between the output of the ANN and the target, α , we use the mean absolute error:

where L is the number of samples. The training stage is concluded and then the parameters of the ANN are 
fixed. After that, we apply the ANN to the test dataset, and the error in the evaluation of αe regarding α is 
E (Ltest) ≈ 0.01.

Datasets
Stochastic systems.  In this paper, we use three types of stochastic signals: flicker noise (FN), fractional 
Brownian motion (fBm) and fractional Gaussian noise (fGn). Flicker noise (FN) or colored noise time series are 
used for the training of the Artificial Neural Network. They are generated with the open Python library colored-
noise.py44,45. fBm and fGn time series are generated with the Python library fmb.py46. Both time series depend on 
a Hurst index H47. For the fBm H = 0.5 corresponds to the classical Brownian motion. If H > 0.5 ( H < 0.5 ) 
the time-series is positively (negatively) correlated. For fGn H = 0.5 characterizes a white noise47; if H > 0.5 
( H < 0.5 ) the fGn time series exhibits long-memory (short-memory). The Hurst index is related to the α of 
flicker noise: for a fBm stochastic process, α = 2H + 1 and 1 < α < 3 ; for fGn, α = 2H − 1 and −1 < α < 147.

Chaotic systems.  In this paper, we analyze time series generated by five chaotic systems:

1.	 The generalized Bernoulli chaotic map, also known as βx map, described by:

where β controls the dynamical characteristic of the map. Throughout this paper, we use β = 2 , which leads 
to a chaotic signal1.

2.	 The well-known logistic map1:

we use r = 4 to obtain a chaotic signal1.
3.	 The Schuster map48, which exhibits intermittent signals with a power spectrum P(f ) ∼ 1/f z . It is defined as:

where we use z = 0.5.
4.	 The skew tend map, which is defined as

Here, we use ω = 0.1847 in order to obtain a chaotic signal3.
5.	 The also well-known Lorenz system, defined as:

(5)E =
1

L

L
∑

ℓ=1

|αe,ℓ − αℓ|.

(6)xt+1 = βxt (mod1),

(7)xt+1 = rxt(1− xt),

(8)xt+1 = xt + xzt (mod1),

(9)xt+1 =

{

xt/ω if xt ∈ [0,ω],

(1− xt)/(1− ω) if xt ∈ (ω, 1].

(10)
dx(t)

dt
=σ(y − x),

(11)
dy(t)

dt
=x(R − z)− y,

Table 2.   Compilation setup and parameters of the feed forward ANN.

Compilation setup

Optimizer Adam

Loss function Mean square error

Metrics Mean absolute error

Trainable parameters

 Layer (type) Output shape Param # activation

Dense # 1 64 46144 ‘relu’

Dense # 2 1 65 None

Total params: 46209
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with parameters σ = 16 , R = 45.92 , and b = 4 , which lead to a chaotic motion49. For analyze the time series 
of consecutive maxima of the x variable.

Empirical datasets.  We test our methodology with empirical datasets recorded from diverse chaotic or 
stochastic systems. Additional information of the datasets can be found in Table 3. These are:

Dataset E-I: Data recorded from an inductorless Chua’s circuit constructed as50. The circuit was set up and 
the data was kindly sent to us by Vandertone Santos Machado51. The voltages across the capacitors depict chaotic 
oscillations. To detect this chaoticity we compute the maxima values of the first capacitor C1.

Dataset E-II: Fluctuations in a chaotic laser data approximately described by three coupled nonlinear dif-
ferential equations36. To detect the chaoticity of the laser, we compute the maxima values of the time series. The 
data is available in52.

Dataset E-III: Light intensity of a variable dwarf star (PG1599-035)36 with 17 time-series (segments). These 
variations may be caused by an intrinsic change in emitted light (superposition of multiple independent spheri-
cal harmonics36), or by an object partially blocking the brightness as seen from Earth. The fluctuations in the 
intensity of the star have been observed to result in a noisy signal36. The data is open and freely available in53.

Dataset E-IV: Three time-series of the sunspots numbers for the period of 1976–201338, the daily sunspots 
numbers depicts a noisy “pseudo-sinusoidal” behavior. It is accepted that magnetic cycles in the Sun are gener-
ated by a solar dynamo produced through nonlinear interactions between solar plasmas and magnetic fields54,55. 
However, the fluctuations in the period in the cycles is still difficult to understand56. This type of data has been 
analyzed in38, where its stochastic fluctuations depict a Hurst exponent H ≈ 1 , meaning the data carries memory. 
The data can be found at57–59.

Dataset E-V: Five RR-interval time-series from healthy subjects. Each time series have ∼ 100,000 RR inter-
vals (the signals were recorded using continuous ambulatory electrocardiograms during 24 h). It still a debate 
if the heart rate variability is chaotic or stochastic9. While some studies suggest that heart rate variability is a 
stochastic process9,60,61. Much chaos-detection analysis has been identified as a chaotic signal9,62. The dataset is 
open and freely available in63.

Dataset E-VI: Fractal dynamics of the human gait as well as the maturation of the gait dynamics. The stride 
interval variability can exhibit randomly fluctuations with long-range power-law correlations, as observed in39. 
Moreover, this time-correlation tends to decrease in older children39,40. The analyzed dataset is then separated 
into 3 groups, related to the subjects’ ages. Group No. 1 has data for n = 14 subjects with 3- to 5-years old; Group 
No. 2 has data for n = 21 subjects with 6- to 8-years old; Group No. 3 has data for n = 15 subjects with 10 - to 
13-years old; Group No. 4 has data for n = 10 subjects with 18- to 29-years old39. The data is open and freely 
available in64–66.
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