
Ren et al. Cell Biosci           (2020) 10:11  
https://doi.org/10.1186/s13578-020-0378-8

REVIEW

Control of mesenchymal stem cell biology 
by histone modifications
Jianhan Ren, Delan Huang, Runze Li, Weicai Wang* and Chen Zhou*

Abstract 

Mesenchymal stem cells (MSCs) are considered the most promising seed cells for regenerative medicine because of 
their considerable therapeutic properties and accessibility. Fine-tuning of cell biological processes, including differen-
tiation and senescence, is essential for achievement of the expected regenerative efficacy. Researchers have recently 
made great advances in understanding the spatiotemporal gene expression dynamics that occur during osteogenic, 
adipogenic and chondrogenic differentiation of MSCs and the intrinsic and environmental factors that affect these 
processes. In this context, histone modifications have been intensively studied in recent years and have already been 
indicated to play significant and universal roles in MSC fate determination and differentiation. In this review, we sum-
marize recent discoveries regarding the effects of histone modifications on MSC biology. Moreover, we also provide 
our insights and perspectives for future applications.
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Background
Mesenchymal stem cells are multipotent cells that can 
differentiate into various lineages whose nomenclature 
remains inconsistent. Apart from “mesenchymal stem 
cells”, MSCs are also called “mesenchymal stromal cells”, 
“bone marrow stromal cells” (BMSCs) and “multipo-
tent stromal cells” [1]. Friedenstein originally discovered 
MSCs in mouse bone marrow [2]. Since then, MSCs have 
been isolated from most types of mesenchymal tissue, 
including skeletal muscle tissue, adipose tissue, umbilical 
cord tissue, placenta tissue, liver tissue, skin tissue, syno-
vial membranes, dental pulp, periodontal ligaments, cer-
vical tissue, amniotic fluid, lung tissue, and dermal tissue 
[3].

According to the International Society for Cellular 
Therapy (ISCT) [4], MSCs must be positive for CD105, 
CD90, and CD73 while negative for CD45, CD34, CD14 

or CD11b, CD79α or CD19, and HLA class II. In addi-
tion, MSCs must be able to differentiate into osteocytes, 
chondrocytes and adipocytes in vitro under differentiat-
ing conditions [5]. MSCs can also transdifferentiate into 
different types of cells from other germ layers, including 
neurons, epithelial cells, cardiomyocytes, hepatic cells 
and islet cells [6–10], meaning that they can be used to 
repair or regenerate various tissues, such as cartilage, 
bone, and adipose tissue [11]. Moreover, MSCs possess 
anti-inflammatory and proinflammatory capabilities, 
enabling them to regulate the immune response [12–14]. 
MSCs are regarded as immune-privileged because they 
express MHC-I at low levels and are negative for MHC II 
and T-cell costimulatory molecules. Compared to embry-
onic stem cells (ESCs) and induced pluripotent stem 
cells (iPSCs), MSCs have low tumorigenicity [15]. These 
advantages make them promising candidates for the 
treatment of a wide range of diseases, including myocar-
dial infarction, graft-versus-host disease (GvHD), acute 
respiratory distress syndrome (ARDS), amyotrophic lat-
eral sclerosis, and chronic kidney disease, among others 
[16–20].
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Given the great clinical and scientific significance of 
MSCs, understanding of their biological characteristics 
in vivo and in vitro, including their proliferation, differ-
entiation, cellular senescence and responses to abnormal 
microenvironments, is urgently needed. In this review, 
we systemically summarize the most recent progress in 
the field of histone modification-mediated control of 
MSC biological processes and our perspectives on the 
latest advancements.

Histone modification refers to posttranslational modi-
fication of histones. Most histone modifications involve 
sites within the first 30 amino acids of the N-terminal 
domains of histones (also known as histone tails), such 
as H3K4, H3K9 and H3K27 [21]. There are many differ-
ent kinds of histone modifications, including acetylation, 
methylation, phosphorylation, ubiquitylation, SUMOyla-
tion, and proline isomerization [22].

Histone methylation, which is mediated by histone 
methyltransferases (HMTs) and histone demethylases 
(HDMs), mainly influences lysine and arginine residues 
on the histone side chains; through this process, lysine 
can be mono-, di- or trimethylated. Different histone 
methylations affect gene transcription in different ways 
in cooperation with other identifying proteins [23–25]. 
Histone acetyltransferases (HATs) and histone deacety-
lases (HDACs) are both enzymes that regulate histone 
acetylation on lysine residues, but they produce opposite 
results [26, 27]. In addition, proteins that contain special-
ized binding regions, such as bromodomains, are termed 
readers [28]; these proteins can recognize and bind to 
acetylated lysine residues, thus interacting with specific 
histone modifications [29].

As mentioned above, many types of histone modifica-
tions exist apart from methylation and acetylation. The 
major enzymes and effector molecules corresponding to 
these modifications are summarized in Table 1.

Regulatory roles of histone modifications in MSC 
differentiation
MSC differentiation is a complex process regulated by 
various signaling pathways with intricate crosstalk [30–
33] in which all types of epigenetic and transcriptional 
regulation are involved [34]. Early studies focused on 
how external stimuli and internal transcription factors 
modulate the differentiation of MSCs; however, recent 
studies have revealed the roles of histone modifications 
in this process [35]. For example, it has been well estab-
lished that histones on the promoter regions of master 
transcription factors associated with cell fate commit-
ment, such as RUNX2 and OSX in osteogenic differen-
tiation, PPARG​ and CEBPA in adipogenic differentiation 
[36] and SOX9 in chondrogenic differentiation (Fig.  1), 
are dynamically modified [37]. Histone modification 

changes gene expression and thus strongly influences the 
fate commitment of MSCs. The roles of histone-modify-
ing enzymes are described below and are summarized in 
Fig. 2.

Roles of histone modifications in MSC osteogenic, 
adipogenic and chondrogenic differentiation
Bone formation involves proliferation of MSCs, differ-
entiation of MSCs into progenitor cells and eventually 
osteoblasts, and secretion of bone matrix by osteoblasts. 
MSC osteogenic differentiation is critical to bone forma-
tion [38], and impairment of the osteoblast differentia-
tion potential of MSCs can lead to various diseases, such 
as osteoporosis, osteopetrosis, osteopenia, and oculo-
faciocardiodental (OFCD) syndrome [39–41]. Recent 
studies profiling the genome-wide patterns of differ-
ent histone marks have revealed relationships between 
histone modifications and osteogenic differentiation of 
MSCs. For example, Meyer and colleagues found that the 
histone patterns of osteogenic differentiated MSCs are 
similar to those of undifferentiated MSCs by ChIP-seq 
and RNA-seq analyses, suggesting an intrinsic prefer-
ence of MSCs for osteogenic differentiation [36]. Tan and 
colleagues noted that H3K9ac marks on gene promoter 
regions globally decrease but that H3K9me2 marks glob-
ally increase during osteogenic differentiation through 
ChIP-on-chip and expression microarray analyses [42].

Adipogenesis is another important process of MSCs. 
Adipogenic differentiation correlates with the formation 
of adipose tissue, which is a critical regulator of energy 
homeostasis, metabolism and immunity [37]. There-
fore, disruption of MSC differentiation potential results 
in abnormal accumulation of adipose tissue [43]. Unlike 
osteogenic differentiated MSCs, adipogenic differenti-
ated MSCs have a significantly different histone pattern 
than undifferentiated MSCs [36].

Chondrogenesis is a critical physiological process for 
cartilage formation. Cartilage formation is essential not 
only during embryogenesis but also during bone tissue 
repair or the pathological processes of diseases such as 
osteoarthritis (OA) [44]. A previous study used genome-
wide ChIP and deep sequencing analyses to examine his-
tone mark changes in specific genes during chondrogenic 
differentiation [45]. The active marks H3K4me3, H3K9ac 
and H3K36me3 were enriched on upregulated chondro-
genic signature genes, including COL2A1, COL9A2, and 
ACAN, among others, whereas the levels of the repres-
sive mark H3K27me3 were decreased on these genes. 
In contrast, H3K4me3, H3K9ac and H3K36me3 levels 
were decreased, while H3K27me3 levels were slightly 
increased, on the genes associated with MSC traits, such 
as CXCL12 [46].
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Table 1  Major histone modification writers, erasers and readers

Type Major member Modification/identification site Function

Writers

 Histone acetylation GCN5 H3K9, H3K14, H3K18, H3K36, H4K8 Transcriptional activation

p300/CBP H2AK5
H3K18, H3K27
H4K8, H4K12

Transcriptional activation

Tip60 H2AK5
H3K14
H4K5, H4K8, H4K12, H4K16

Transcriptional activation

 Histone methylation SUV39h1
SUV39h2

H3K9 Transcriptional silencing

G9a H3K9 Transcriptional repression

SETDB1 H3K9 Transcriptional repression

EZH2 H3K27 Transcriptional silencing

SETD2 H3K36 Transcriptional elongation

CARM1 H3R17, H3R26, H3R42 Transcriptional activation

 Histone phosphorylation Aurora B H3S10, H3S28 Transcriptional activation

 Histone ubiquitylation Ring1B H2A Transcriptional repression

Rad6 H2B Transcriptional elongation

Erasers

 Histone methylation LSD1 H3K4, H3K9 Transcriptional activation/repression

KDM4B H3K9 Transcriptional activation

KDM6B H3K27 Transcriptional activation

JMJD1C H3K9 Transcriptional activation

 Histone acetylation HDAC1 H2A, H2B, H3, H4 Transcriptional repression

HDAC4 H2A, H2B, H3, H4 Transcriptional repression

HDAC6 H2A, H2B, H3, H4 Transcriptional repression

HDAC8 H2A, H2B, H3, H4 Transcriptional repression

 Histone phosphorylation PP1 H3S10, H3S28 Transcriptional repression

 Histone ubiquitylation Ubp8 H2B Transcriptional activation

Readers

 Acetyl-lysine binding domains BRD2 Acetylated lysine Chromatin remodeling

 Methyl-lysine binding domains Brpf1
HP1
L3MBTL1

Methylated lysine

Fig. 1  MSC fate determination is associated with histone modifications on specific regions of lineage-specific genes
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To further clarify the exact roles of histone modifica-
tions in these various MSC processes, we will discuss 
how specific histone marks and histone-modifying 
enzymes impact the differentiation of MSCs.

H3K4 methylation
Methylation of H3K4 is associated with an active or 
poised transcription state and is found in the promot-
ers of most genes [47–49]. Some previous studies have 
implied that H3K4me3 levels may be associated with 
osteogenesis. An initial study reported that depletion of 
Hoxa10, a BMP2-inducible gene, impairs osteogenesis by 
decreasing H3K4 methylation [50]. Consistent with this 
report, some HDMs that specifically demethylate H3K4 
have been identified to directly influence MSC osteogenic 
differentiation. In addition, recent studies have proven 
the negative effects of the HDMs KDM5A and KDM5B 
on the osteogenic differentiation of MSCs [51, 52]. 
Knockdown of KDM5A or KDM5B increases H3K4me3 
levels in the promoter region of Runx2 and results in 
upregulation of osteogenic differentiation. Odontoblasts 
are cells that secrete dentin during tooth development. 
These cells differentiate from MSCs under the control 
of various signaling pathways, including the Wnt, Bmp, 
Shh and Notch pathways [53–55]. Zhou and colleagues 
recently found that mixed lineage leukemias (MLLs, 
H3K4me3 methylases) and KDM6A/B (H3K27me3 dem-
ethylases) play essential roles in the expression of Wnt5a, 
a member of the Wnt ligand family, as well as in odonto-
genic differentiation [56].

In addition to the promoters of genes associated with 
osteogenesis, those of adipose tissue-specific genes such 
as apM1 exhibit increased H3K4me3 levels in MSCs 
during adipogenic differentiation [57]. The H3K4 meth-
yltransferases MLL3 and MLL4 are components of the 

ASC-2 complex (ASCOM), which acts as a transcrip-
tional coactivator of PPARγ and C/EBPα. Mice express-
ing inactivated MLL3 or MLL4 have less fat than mice 
expressing the activated versions of these proteins, and 
mouse embryonic fibroblasts isolated from the inacti-
vated MLL3/MLL4-expressing mice exhibit lower adi-
pogenic differentiation potential, suggesting the positive 
roles of MLL3 and MLL4 in adipogenesis [58]. A recent 
study also reported that silencing of Ash1l, an H3K4 
methyltransferase, promotes adipogenesis while sup-
pressing osteogenesis and chondrogenesis by affecting 
certain master transcription factors. Intriguingly, both 
ASH1L and H3K4me3 are present at the transcription 
start sites (TSSs) of Osx, Runx2 and Sox9, whereas only 
H3K4me3 is present at the TSS of Pparg. Therefore, 
silencing of Ash1l downregulates H3K4me3 levels on 
the Osx and Runx2 promoters but not on the Pparg pro-
moter, consistent with the impact of Ash1l silencing on 
differentiation [59]. Furthermore, knockdown of KDM2A 
upregulates SOX2 and NANOG expression by increas-
ing H3K4me3 on the promoters of these genes and thus 
enhances both adipogenic and chondrogenic differentia-
tion potential in human stem cells from the apical papilla 
(SCAPs) [60].

H3K9 methylation
H3K9 dimethylation and trimethylation are both repres-
sive histone modifications and are mainly catalyzed 
by G9a/GLP and SUV39H1/2, respectively, mediat-
ing the formation of heterochromatic regions through 
interaction with HP1 [61, 62]. Knockdown of ESET or 
SETDB1, a H3K9 methyltransferase, causes bone defects 
in mice [63]. Mechanistically, the impairment of osteo-
genic differentiation results from histone methylation-
induced aberrant expression of Runx2. Euchromatin 

Fig. 2  The various roles of histone-modifying enzymes in determining different MSC fates
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HMT1 (EHMT1), also known as G9a-like protein (GLP), 
specifically dimethylates H3K9. Balemans and col-
leagues reported that knockdown of EHMT1 decreases 
H3K9me2 levels on the promoters of Runx2 and Col22a1 
and thereby upregulates the transcription of these genes 
in brain and bone tissues. Although the authors did not 
provide direct evidence that EHMT1 regulates the osteo-
genic differentiation of MSCs, they found a severe type 
of craniofacial bone malformation, Kleefstra syndrome, 
in Ehmt+/− mice [64]. In addition to HMTs, the HDM 
KDM4B plays a critical role in the osteogenic differentia-
tion of MSCs by removing H3K9me3 [65]. Knockdown of 
KDM4B increases H3K9me3 on the promoters of several 
osteogenic genes and ultimately reduces osteogenic dif-
ferentiation. Furthermore, a similar phenomenon has 
been observed in osteoporotic and aging mice, which 
may indicate a possible relationship between H3K9me3 
and osteoporosis/senescence.

With regard to adipogenic differentiation of MSCs, 
G9a, an HMT that specifically methylates H3K9me1 and 
H3K9me2, has been proven to regulate PPARγ expression 
through enrichment of H3K9me2 on Pparg promoter 
regions and the treatment with BIX01294 (a G9a inhibi-
tor) thereby promotes PPARγ expression and adipogenic 
differentiation [66]. In addition, the H3K9 demethylase 
PHF2 physically interacts with C/EBPα and C/EBPδ and 
binds to the Pparg and Fabp4 promoters, ultimately pro-
moting adipogenic differentiation by lowering the H3K9 
methylation levels in these regions [67]. Inhibition of 
KDM4C, another H3K9 demethylase, with 2-hydroxyglu-
tarate produced by mutating isocitrate dehydrogenase 1 
(IDH1) blocks adipogenic differentiation [68]. Moreover, 
a recent report demonstrated that depletion of JMJD1C 
increases H3K9me2 levels on the C/EBP and PPARG​ 
promoters and suppresses adipogenesis by decreasing 
the expression of these master transcription factor genes 
[69]. Knockdown of SETDB1 also promotes adipogene-
sis through downregulation of H3K9me2 and upregula-
tion of H3K4me2 on the Cebpa promoter [70]. Another 
study reported the existence of H3K4/H3K9me3 bivalent 
chromatin domains in the Cebpa promoter region and 
examined their regulatory effects on gene expression and 
adipogenesis. These H3K4/H3K9me3 bivalent chromatin 
domains are induced by DNA methylation and SETDB1 
recruitment [71]. Similar to these domains, LSD1 also 
regulates H3K9me2 and H3K4me2 levels on the Cebpa 
promoter as well as on Wnt pathway gene promoters and 
promotes adipogenic differentiation by facilitating C/
EBPα expression and inhibiting the Wnt signaling path-
way [70, 72].

Research on AT-rich interactive domain 5b (Arid5b), 
a transcriptional coregulator of Sox9, has shown that 
this molecule promotes chondrogenic differentiation by 

recruiting the H3K9 demethylase PHF2 to the promoters 
of the Sox9 target genes Col2a1 and Aggrecan, thereby 
decreasing H3K9me2 levels in these regions [63]. Moreo-
ver, another HDM, KDM4B, removes H3K9me3 marks 
on the promoter region of Sox9 and thus upregulates 
SOX9 expression [73]. Accordingly, depletion of KDM4B 
inhibits chondrogenic differentiation, while overexpres-
sion of KDM4B promotes chondrogenic differentiation.

H3K27 methylation
H3K27 methylation is another heterochromatic histone 
modification associated with transcriptional repression 
[74–76]. Wu and colleagues found that H3K27me3 lev-
els are significantly reduced in the promoter regions of 
all transcriptionally upregulated genes during the pro-
cess of osteogenesis [77]. Polycomb group (PcG) pro-
teins, which were first identified 40 years ago, form PRC 
transcription-repressing complexes and are responsi-
ble for methylation of H3K27 [78]. Enhancer of zeste 2 
(EZH2), a component of PRC2, increases H3K27me3 
on the promoters of Wnt genes, including Wnt1, Wnt6, 
Wnt10a, and Wnt10b [79], suggesting a potential role 
of EZH2 in osteogenesis. Furthermore, knockdown of 
CDK-1, which phosphorylates EZH2 at T487, signifi-
cantly increases EZH2 and H3K27me3 on the Runx2 and 
Tcf7 promoters [80]. Similar to knockdown of KDM4B, 
knockdown of KDM6B also attenuates osteogenesis by 
catalyzing H3K27me3 modification of osteogenic genes 
[65]. In addition, Hemming and colleagues demonstrated 
that KDM6A and EZH2 act as epigenetic switches regu-
lating MSC differentiation. KDM6A and EZH2 regulate 
H3K27me3 status on the promoters of both osteogenic 
and adipogenic genes, including Runx2, Oc, Pparg and 
Cebpa, and knockdown of EZH2 or overexpression of 
KDM6A promotes osteogenesis [81]. A recent study 
further explored the roles of other novel EZH2-targeted 
genes in osteogenic differentiation and found that EZH2 
binds to the TSS regions of FHL1 and the osteogenesis 
regulators ZBTB16 and MX1 and establishes H3K27me3 
modifications. Overexpression of EZH2 decreases the 
expression of these genes, which downregulates RUNX2, 
OPN and OC (Osteocalcin) [82].

EZH2 and KDM6A exhibit different regulatory func-
tions in adipogenesis than in osteogenesis; a previous 
study revealed that overexpression of EZH2 or knock-
down of KDM6A promotes adipogenic differentiation 
of MSCs [81]. However, this study did not elucidate the 
direct regulatory effects of EZH2/KDM6A or H3K27me3 
modifications on adipogenesis-specific genes. A recent 
study showed that phosphorylation of H2B recruits 
EZH2 and initiates adipogenesis [83] through a mecha-
nism involving increases in H3K27me3 levels at the 



Page 6 of 15Ren et al. Cell Biosci           (2020) 10:11 

promoters of Wnt genes and subsequent repression of 
Wnt gene expression.

In addition to affecting osteogenesis and adipogenesis, 
the H3K27me3 demethylases KDM6A and KDM6B have 
also been reported to facilitate the chondrogenic differ-
entiation of MSCs [84–87]. A study on Kdm6b−/− mice 
showed that KDM6B is recruited to the promoter of 
Runx2, a critical regulator of chondrocyte maturation 
and endochondral bone formation, and Ihh and acti-
vates the expression of these genes by decreasing the lev-
els of repressive H3K27me3 marks [85]. Another study 
demonstrated that GSK-J4, an inhibitor of KDM6B and 
KDM6A, inhibits SOX9 and COL2A1 expression and 
thereby disrupts chondrogenic differentiation [84]. A fur-
ther study showed that knockdown of KDM6A reduces 
H3K27me3 levels but increases H3K4me3 levels in the 
promoter regions of Sox9 and therefore inhibits chon-
drogenic differentiation through repression of SOX9 
expression. These results suggest that both KDM6A and 
KDM6B play essential roles in the entire process of chon-
drogenesis, from the initial stage of differentiation to the 
maturation of chondrocytes.

Other types of histone methylation
H3K36me3 is a histone mark that triggers transcrip-
tion elongation [49]. SETD2, an HMT specifically cata-
lyzing H3K36me3, is responsible for MSC osteogenic 
differentiation, and conditional depletion of Setd2 in 
Prx1-Cre mice decreases bone formation. RNA-seq and 
ChIP-seq analyses have shown that loss of Setd2 results 
in downregulation of H3K36me3 levels on the Lbp gene 
and impairs the transcriptional initiation and elonga-
tion of this gene [88]. In addition, Lu and Colleagues 
demonstrated that the H3K36 mutations K36M and 
K36I impair MSC differentiation into chondrocytes and 
induce the formation of undifferentiated sarcoma [89]. 
Genome-wide profiling of H3K36me2/3 and H3K27me3 
has shown that these mutations downregulate H3K36 
methylation and lead to redistribution of the H3K27me3 
landscape. The H3K36 mutation causes H3K27me3 to 
become enriched in intergenic regions and relatively 
scarce in genic regions, facilitating the expression of 
genes blocking mesenchymal differentiation. In addition 
to chondrogenic differentiation, knockout (KO) of the 
H3K36 methyltransferase Nsd2 has also been reported to 
impair adipogenic differentiation of MSCs by inhibiting 
PPARγ target gene expression [90].

The impact of H4K20 methylation on gene transcrip-
tion is intriguing. H4K20 monomethylation is found in 
euchromatic regions and is associated with active tran-
scription, while H4K20 dimethylation and trimethyla-
tion are more related to transcriptional repression and 
chromatin compaction [91–93]. SETD8, an HMT that 

specifically monomethylates H4K20, has been shown to 
participate in a positive feedback loop. SETD8 is upreg-
ulated by PPARγ during adipogenic differentiation, 
whereas SETD8 inversely modulates PPARγ expression 
through H4K20 monomethylation and thus promotes 
adipogenic differentiation of MSCs [94].

In addition to those on lysine residues, histone modi-
fications on arginine residues also influence MSC 
differentiation. Coactivator-associated arginine methyl-
transferase 1 (CARM1), a protein arginine methyltrans-
ferase (PRMT) also known as PRMT4, targets histone H3 
asymmetric methylation on arginine residues 17, 26 and 
42 [95, 96]. Delivery of CARM1 into MSC nuclei using 
cell-penetrating peptides (CPPs) strongly increases the 
expression of pluripotent marker genes, including Oct4, 
Sox2, and Nanog, through upregulation of H3R17me2 
levels on their promoter regions. In addition, CPP-
CARM1 treatment enhances osteogenic, adipogenic and 
myogenic potential [95]. With regard to adipogenesis, 
another study has verified that CARM1 promotes adi-
pogenic differentiation through coactivation with PPARγ 
[97]. CARM1 and PPARγ bind to the promoter region of 
aP2, an adipogenic gene, and induce aP2 expression by 
upregulating H3R17 methylation [97]. PRMT5, another 
PRMT that mainly methylates H3R2, H3R8 and H2A/
H4R3, has also been demonstrated to promote adipogen-
esis by upregulating adipogenic genes. Mechanistically, 
PRMT5 increases H3R8me2 levels on the adiponectin, 
resistin, and aP2 promoters in C3H10T1/2 cells and then 
facilitates the expression of these genes via recruitment 
of BRG1, an ATPase subunit of SWI/SNF chromatin-
remodeling enzymes [98].

Histone acetylation
HATs and HDACs are both essential for osteogenic dif-
ferentiation. PCAF, an H3K9 acetyltransferase also 
known as KAT2B, is recruited to the promoters of Bmp2, 
Bmp3, Bmpr1b and Runx2, and knockdown of PCAF 
significantly impairs osteogenic differentiation of MSCs. 
In addition, osteoporotic mice show lower expression of 
PCAF in bone tissue than control mice [18]. GCN5, a 
paralog of PCAF also known as KAT2A, also contributes 
to osteogenesis. A recent study revealed that GCN5 binds 
to the promoters of Wnt1, Wnt6, Wnt10a, and Wnt10b 
and increases the expression of these genes through 
upregulation of H3K9ac levels. This activation of Wnt 
signaling results in enhanced osteogenesis [99]. Notably, 
some HATs function in a histone-independent way, regu-
lating differentiation-related gene expression in MSCs 
and thereby fate commitment of MSCs through direct 
interaction with other non-histone proteins [100–103]. 
Several pan-HDAC inhibitors have also been reported to 
upregulate the osteogenic potential of MSCs [104–106], 
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indicating the significant roles of HDACs in osteogenic 
differentiation. Furthermore, several studies have dem-
onstrated the function of HDAC6 in the differentiation 
process [107–109]. The expression of HDAC6 is reduced 
during osteogenic differentiation, and HDAC6 negatively 
regulates the expression of OC, Opn, Bsp2, Osx, and ALP 
partly by binding to the Runx2 C-terminus and adjust-
ing Runx2 activity. HDAC1 also affects osteogenic dif-
ferentiation. Lee and colleagues reported that HDAC1 
recruitment to the promoters of Osx and OC is reduced 
during osteogenesis of mouse BMSCs, leading to upregu-
lation of H3K9 and H4 acetylation [110]. Furthermore, 
mechanical stimulation has been proven to affect the fate 
commitment of MSCs [111]. Wang and colleagues dem-
onstrated that downregulation of HDAC1 during cyclic 
mechanical stretch (CMS)-induced osteogenic differen-
tiation attenuates Notch signaling by inducing H3 acet-
ylation on the promoter of JAG1 [112]. In addition, the 
expression of Col1a1 and Runx2 has recently been shown 
to be decreased in chondrogenic cells from Hdac3–CKO-
Prrx1 mice in osteoinductive culture, indicating a support-
ive role of HDAC3 in osteogenic differentiation [113]. 
Another recent study found that upregulation of HDAC8 
in fibrous dysplasia is associated with impaired osteogen-
esis, while HDAC8 inhibition promotes osteogenic dif-
ferentiation of MSCs [114].

Depletion of CBP/p300 with ribozyme strongly 
represses the expression of PPARγ-targeted genes and 
thus attenuates adipogenic differentiation of preadipo-
cytes [115]. Furthermore, studies on the mechanism of 
p300-mediated histone modification have revealed that 
p300 binds to Pparg2 promoter and enhancer regions 
with enhanced H3/H4ac and H3K27ac, respectively [116, 
117]. GCN5 and PCAF have also been reported to be 
involved in MSC adipogenic differentiation. These fac-
tors are recruited to Pparg2 and Prdm16 promoters and 
increase the H3K9ac levels on the sites. Depletion of both 
Gcn5 and PCAF suppresses adipogenic differentiation 
of mice preadipocytes [118]. Yoo and colleagues [119] 
investigated the roles of HDACs in adipogenic differen-
tiation and found that HDAC1, HDAC2 and HDAC5 are 
downregulated during adipogenic differentiation. Moreo-
ver, treatment with sodium butyrate (NaBu), a nonspe-
cific HDAC inhibitor, promotes adipogenesis. The role of 
HDAC9 in adipogenic differentiation has been explored 
with Hdac9-KO transgenic mice [120]; such studies have 
revealed that HDAC9 is recruited to the Cebpa promoter 
along with USF1 and p300 and that KO of Hdac9 pro-
motes adipogenic differentiation of preadipocytes. How-
ever, a study on HDAC9 lacking the deacetylase domain 
showed that this effect of HDAC9 occurs through a 
deacetylase-independent mechanism. Although nega-
tive roles of HDACs in adipogenesis have been reported, 

Huang and colleagues proposed that HDAC6 facilitates 
adipogenic differentiation [108]. Their study revealed that 
inhibition of Hdac6 with miR-22 represses adipogenic 
differentiation and relevant transcription factor expres-
sion but promotes osteogenic differentiation.

Tsuda and colleagues first reported the positive func-
tion of CBP/p300 in chondrogenesis [121], finding 
that CBP/p300 binds to Col2a1 promoter regions in an 
interaction with Sox9 and promotes Col2a1 expression 
as well as chondrogenesis. Another study revealed that 
p300 promotes Col2a1 expression and chondrogenesis 
by increasing the histone acetylation levels of the Col2a1 
gene [122]. HDACs have also been reported to affect 
chondrogenic differentiation. For example, a study on the 
transcriptional regulation of cartilage oligomeric matrix 
protein (COMP), a marker gene for chondrogenesis, 
revealed a repressive role of HDAC1 in chondrogenic 
differentiation [123], demonstrating that leukemia/lym-
phoma-related factor (LRF) recruits HDAC1 to the nega-
tive regulatory element (NRE) of the COMP promoter 
and downregulates COMP expression. The inhibitory 
effect of the LRF-HDAC1 complex can be attenuated by 
application of Trichostatin A (TSA), indicating the criti-
cal role of HDAC1 in chondrogenesis. HDAC1 has also 
been reported to bind to the promoter of β-catenin and 
to suppress β-catenin expression, playing a negative role 
in chondrogenesis [124]. Similarly, HDAC4 functions 
negatively in chondrogenic differentiation [125]. Overex-
pression of HDAC4 attenuates chondrocyte hypertrophy 
and endochondral bone formation by inhibiting the activ-
ity of RUNX2, a regulator of chondrocyte hypertrophy. 
Hdac4-deficient mice show a phenotype with ectopic 
and early-onset chondrocyte hypertrophy, indicating 
upregulation of chondrogenic potential. In contrast, 
positive chondrogenic effects of the HDACs HDAC7 and 
HDAC3 have been identified by Bradley and colleagues 
[126, 127]. Depletion of Hdac7 promotes chondrogenesis 
through upregulation of β-catenin. In addition, HDAC3 
is recruited to the promoter of Phlpp1, a component 
regulating Akt signaling, and promotes chondrogenesis 
by repressing Phlpp1 expression and upregulating Akt 
signaling. However, HDAC7 is highly expressed in prolif-
erating chondrocytes, while HDAC3 is highly expressed 
in prehypertrophic chondrocytes, suggesting that differ-
ent HDACs exert various functions at different stages of 
chondrogenesis.

Roles of histone modifications in MSC transdifferentiation 
into other lineages
In addition to osteogenic, adipogenic and chondrogenic 
lineages, highly plastic and multipotent MSCs from dif-
ferent germ layers can differentiate into other cell lin-
eages, such as neuron, epithelial cell, cardiomyocyte, 
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hepatocyte and islet cell lineages, under certain induction 
culture conditions. Although the exact mechanism of 
transdifferentiation is largely unknown, epigenetic regu-
lation has been reported to be critical in the process [3, 
34]. In the next section, we discuss how histone modifica-
tions regulate the transdifferentiation of MSCs.

Neuronal differentiation
EZH2 is recruited to the promoter of PIP5K1C, a neu-
ron-related gene regulating Ca2+ signaling, and down-
regulates PIP5K1C expression. Accordingly, knockdown 
of EZH2 promotes the neuronal differentiation of MSCs 
through activation of PIP5K1C-mediated Ca2+ signaling 
[128]. The G9a inhibitor BIX-01294 has been reported 
to promote neuronal differentiation. Mechanistically, 
BIX-01294 induces the expression of neuronal-specific 
genes, including Nestin, Musashi, CD133 and GFAP, 
by downregulating G9a as well as H3K9me2 levels at 
repressor element-1 (RE-1) of these genes [129]. In addi-
tion to histone methylation, histone acetylation has also 
been shown to affect neuronal differentiation; the HDAC 
inhibitor valproic acid (VPA) facilitates MSC neuronal 
differentiation by upregulating neuronal-specific genes 
[10]. These results have been further validated with 
human placenta-derived MSCs and have been proven 
to be mediated by inhibition of HDAC2 [130]. Recently, 
HDAC inhibitors including MS-275, NaBu, TSA, and 
VPA were reported to promote neuronal differentiation 
of MSCs through activation of the Wnt signaling pathway 
[131].

Cardiomyogenic differentiation
Suberoylanilide hydroxamic acid (SAHA), an HDAC 
inhibitor, is much more powerful than 5-azacytidine, 
a DNA methylation inhibitor, in inducing the expres-
sion of the early cardiomyocyte-specific genes GATA4 
and Nkx2.5, indicating that histone acetylation levels are 
possibly more vital than DNA methylation levels dur-
ing cardiomyogenic differentiation [132]. GCN5 plays 
a favorable role in cardiomyogenic differentiation [133, 
134]. GCN5 induces H3 acetylation on the promoters of 
GATA4 and Nkx2.5 and enhances the expression of these 
genes under cardiomyogenic induction conditions [133]. 
In addition, knockdown of HDAC1 facilitates the expres-
sion of the cardiac-specific genes GATA4, Nkx2.5, CTnT, 
and MHC, thereby promoting cardiomyogenic differen-
tiation [135]. These findings have also been validated by 
Wang and colleagues [9], who demonstrated that knock-
down of HDAC1 or Hdac2 enhances the expression 
of the cardiomyocyte-specific genes Myh6 and Tnni3 
through upregulation of both H3 and H4 acetylation lev-
els on the corresponding promoters.

Endothelial differentiation
In addition to cardiomyogenic differentiation, HDAC 
inhibitors can also promote hepatic differentiation of 
MSCs [136, 137]. Snykers and colleagues revealed that 
TSA supplementation greatly enhances hepatic differen-
tiation induced by hepatogenic factors [136]. The result-
ing differentiated cells exhibit epithelial morphology, 
hepatic gene expression and hepatocyte functions. In 
addition, VPA promotes hepatic differentiation of MSCs 
by upregulating global H3/H4 acetylation levels [138]. In 
addition to hepatic lineage cells, MSCs can transdifferen-
tiate into cells of another endoderm cell lineage: endothe-
lial cells. Inhibition of G9a with BIX-01294 promotes 
endothelial differentiation of human adipose-derived 
MSCs by enhancing the expression of some endothelial 
markers and blood vessel formation factors [139].

Roles of histone modifications in MSC senescence
The numbers of MSCs isolated from tissues are usually 
insufficient to meet clinical needs. Therefore, these pri-
mary MSCs are usually expanded in  vitro. However, 
in  vitro culture changes the morphology and reduces 
the differentiation potential and proliferation ability of 
late-passage MSCs, while in  vivo senescence disrupts 
tissue homeostasis and eventually leads to aging-related 
diseases [140, 141]. Mechanistically, various cell bio-
logical processes contribute to the senescence of MSCs, 
including telomere- and telomerase-related processes, 
epigenetic changes, gene expression changes and immu-
nological processes [142]. Among the alterations, altera-
tions in histone modification patterns have been shown 
to be associated with senescence in studies on different 
species and cell lineages [143]. Correlations between his-
tone modifications and DNA methylation in the context 
of MSC senescence are elucidated by a genome-wide 
study [144]. The results show that DNA-methylated 
genes display certain tendencies toward hyper- or hypo-
methylation during aging. In addition, hypermethylation 
is associated with the repressive histone marks H3K9me3 
and H3K27me3, while hypomethylation is associated 
with H3K4me1.

During cellular senescence, the repressive histone 
modification H3K27me3 is downregulated, indicating its 
vital role in aging [145, 146]. Recently, Li and colleagues 
demonstrated that deletion of Ezh2 results in premature 
senescence of MSCs in a study on Ezh2-CKONestin trans-
genic mice [147]. Aged MSCs, marked with a Nestin-
GFP− signature, express much less EZH2 than control 
MSCs. Downregulation of Ezh2 decreases H3K27me3 
marks on the promoters of p15INK4b, p16INK4a, the cell 
cycle inhibitor genes p21CIP1 and p27KIP1 and facilitates 
the expression of these genes. Furthermore, KO of Ezh2 
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increases the percentage of SA-βGal+ cells, directly indi-
cating that cellular senescence is upregulated.

Another HMT, SUV39H1, which specifically targets 
H3K9me3, also functions in MSC senescence [148]. 
One study on a premature aging model demonstrated 
that KO of WRN in MSCs decreases H3K9me3 on α-
Sat and Sat2 loci and upregulates the transcription of 
these genes. Knockdown of SUV39H1 or HP1α, a cofac-
tor of SUV39H1, results in downregulation of global 
H3K9me3 levels and MSC senescence, while overexpres-
sion of HP1α upregulates H3K9me3 levels and therefore 
represses MSC senescence. Similarly, MSCs with catalyti-
cally inactivated endogenous SUV39H1 exhibit the same 
phenotype of accelerated cellular senescence, indicating 
that histone modifications induced by SUV39H1 and 
HP1α play significant roles in MSC senescence.

With regard to histone acetylation, Li and colleagues 
found that the expression of RUNX2 and ALP increases 
in MSCs during aging, whereas that of the stemness 
markers OCT4 and SOX2 decreases. These alterations 
in gene expression result from dysregulation of H3K9ac 
and H3K14ac marks in the promoter regions of these 
genes, while methylation of CpG islands appears to 
remain unchanged [149]. As observed in previous stud-
ies [150–152], aging MSCs progressively lose their prolif-
eration and differentiation potential, although osteogenic 
ability is attenuated more rapidly than adipogenic abil-
ity. A recent study revealed that the levels of the H3K9 
acetyltransferase PCAF are significantly decreased in 
aged mice, which increases adipogenesis and decreases 
osteogenesis. Reducing PCAF in aged mice represses the 
expression of some osteogenic genes through downregu-
lation of H3K9ac levels on these genes [18]. In contrast, 
another study on changes in adipogenic potential in aged 
MSCs demonstrated that recruitment of BMI1 and EZH2 
to the promoters of adipocyte-specific genes results in 
high H3K27me3 levels, repressing the expression of these 
genes and therefore inhibiting adipogenic differentiation 
[153].

HDACs seem to exert various influences on MSC 
senescence. One study found that MSC senescence 
decreases the expression of HDAC1 and HDAC2. 
HDAC1 and HDAC2 upregulate the expression of HMT 
PcGs such as BMI1, EZH2 and SUZ12 through RB phos-
phorylation while downregulating the expression of 
KDM6B through direct promotion of H3 acetylation on 
the KDM6B promoter [154]. As a result, inhibition of 
HDAC1 and HDAC2 with specific siRNAs decreases PcG 
expression and increases KDM6B expression, reducing 
the levels of repressive H3K27me3 marks on the p16INK4A 
promoter and initiating expression of this gene [154]. In 
contrast, Zhu and colleagues found that HDAC4, HDAC5 
and HDAC6 are increased during MSC senescence. This 

change is associated with decreases in global H3 and 
H4 acetylation levels and OCT4 expression [155]. The 
HDAC inhibitors TSA and largazole enhance the expres-
sion of some pluripotent and proliferative genes through 
upregulation of H3K9ac and H3K14ac and therefore 
delay the senescence of MSCs [156]. However, NaBu, 
VPA and MS-275 enhance MSC senescence [154, 157]. 
The conflicting effects of these pan-HDAC inhibitors on 
MSC senescence may be due to different effects on differ-
ent HDACs.

Roles of histone modifications in other MSC 
biological processes
The therapeutic potential of MSCs is associated with 
their paracrine effects [158], and regulation of the HAT 
GCN5 could amplify angiogenesis during MSC therapy 
[159]. In osteoporosis mice, decreases in GCN5 are asso-
ciated with impairment of the proangiogenic capacity of 
BMSCs. Mechanistically, GCN5 binds to the promoter 
of Vegf and increases H3K9ac levels, which facilitates 
VEGF expression and therefore enhances angiogenesis. 
Shen and colleagues found that the lncRNA H19 affects 
angiogenesis of human amniotic MSCs (HAMSCs) in an 
EZH2-dependent manner [160]. Knockdown of H19 in 
HAMSCs inhibits the formation of vessel‐like structures 
when HAMSCs and human umbilical vein endothelial 
cells (HUVECs) are injected subcutaneously into nude 
mice. Mechanistically, H19 interacts with EZH2, facili-
tating its binding to the promoter region of VASH1, an 
angiogenesis inhibitor gene, and therefore suppresses 
VASH1 expression by increasing H3K27me3 levels.

Efforts have been made to promote the therapeu-
tic effects of MSCs through genetic modification and 
pretreatment (priming) before MSC administration 
[161–164]. For example, treatment with combinations 
of DNA-hypomethylating agents and HDAC inhibitors 
has recently been shown to enhance the anti-inflamma-
tory effects of MSCs [165]. Such epigenetically modified 
MSCs express increased levels of IL-10 and IDO and 
inhibit T cell differentiation of peripheral blood mono-
nuclear cells (PBMCs) under T0 and T17 conditions. 
These MSCs also suppress the expression of proinflam-
matory factors, including IL-17, IFN-γ and IL-2, when 
cultured with PBMCs. Furthermore, coculture of epige-
netically modified MSCs with synovial fluid mononu-
clear cells (SFMCs) from rheumatoid arthritis patients 
decreases IL-17+/CD4+ T cell populations and down-
regulates IL-17 and IL-2 expression. Sphingosine-1 phos-
phate (S1P) is used as a priming factor in MSC therapy 
to enhance MSC function; however, S1P exhibits low 
efficacy and can induce adverse inflammatory reactions 
in vivo [166]. A recent study has reported that the HDAC 
inhibitor VPA can cooperate with S1P to increase CXCR4 
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expression in MSCs and to enhance MSC migration, self-
renewal and anti-inflammatory capabilities [167].

Furthermore, HDAC1 silencing in human umbilical 
cord-derived MSCs (hUC-MSCs) enhances the neuro-
protective effects of these cells against traumatic brain 
injury (TBI) in mice [168]. Knockdown of HDAC1 in 
hUC-MSCs enhances cell viability and attenuates oxida-
tive stress, neuroinflammation and cell death after TBI 
through modulation of the PI3K/AKT pathway. However, 
how HDAC1 regulates PI3K/AKT on the chromatin level 
remains unclear.

Conclusion
Through this discussion of various fruitful studies, we 
have provided a brief overview of the roles of histone 
modifications in MSC biology. Modulation of histone-
modifying enzymes is likely a promising strategy for reg-
ulation of MSC differentiation and senescence.

However, the targets of histone-modifying enzymes 
seem to be relatively nonspecific; thus, manipulating 
these enzymes could influence more than one cell func-
tion. For instance, KDM4B and KDM6B regulate RUNX2 
and SOX9 expression, which may facilitate both osteo-
genic and chondrogenic differentiation. Inhibition of G9a 
promotes adipogenic, endothelial, neuronal and cardio-
myogenic differentiation. Similarly, EZH2 facilitates both 
adipogenic and neuronal differentiation and is also asso-
ciated with cell senescence.

Therefore, precise, gene-specific control of certain 
histone-modifying enzymes remains a considerable 
challenge. However, there are a few possible directions 
for future research. First, a deeper and more systematic 
understanding of histone modification would help elu-
cidate the gene-specific control of histone modification 
enzymes. In addition to more studies on individual his-
tone modification marks or enzymes, comprehensive 
studies on the interactions of sequence-specific tran-
scription factors with known histone modification sys-
tems are of great necessity and importance. Second, since 
some drugs or small molecules targeting histone-modify-
ing enzymes have already been discovered and are even 
undergoing clinical trials [169–172], cocktails of several 
kinds of drugs should be investigated, as these might help 
enhance the specificity and efficiency of the existing com-
pounds. Finally, coordination of the histone modification 
system with genome-editing techniques using CRISPR/
Cas9 [173] and other vectors [174] is a promising strategy 
for precise regulation.

In summary, histone modifications undoubtedly play 
important roles in the regulation of biological processes in 
MSCs. Precise control of these modifications in MSCs will 
not only help us understand their functions but also enable 

us to direct cell fate for optimal tissue regeneration and 
damage repair.
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