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Abstract

Background: Stoichiometric models constitute the basic framework for fluxome quantification in the realm of
metabolic engineering. A recurrent bottleneck, however, is the establishment of consistent stoichiometric models
for the synthesis of recombinant proteins or viruses. Although optimization algorithms for in silico metabolic
redesign have been developed in the context of genome-scale stoichiometric models for small molecule
production, still rudimentary knowledge of how different cellular levels are regulated and phenotypically expressed
prevents their full applicability for complex product optimization.

Results: A hybrid framework is presented combining classical metabolic flux analysis with projection to latent
structures to further link estimated metabolic fluxes with measured productivities. We first explore the functional
metabolic decomposition of a baculovirus-producing insect cell line from experimental data, highlighting the TCA
cycle and mitochondrial respiration as pathways strongly associated with viral replication. To reduce uncertainty in
metabolic target identification, a Monte Carlo sampling method was used to select meaningful associations with
the target, from which 66% of the estimated fluxome had to be screened out due to weak correlations and/or
high estimation errors. The proposed hybrid model was then validated using a subset of preliminary experiments
to pinpoint the same determinant pathways, while predicting the productivity of independent cultures.

Conclusions: Overall, the results indicate our hybrid metabolic flux analysis framework is an advantageous tool for
metabolic identification and quantification in incomplete or ill-defined metabolic networks. As experimental and
computational solutions for constructing comprehensive global cellular models are in development, the
contribution of hybrid metabolic flux analysis should constitute a valuable complement to current computational
platforms in bridging the metabolic state with improved cell culture performance.

Background
The biotechnological industry is facing substantial pres-
sure to achieve global process optimization. Concomi-
tantly, the exploitation of high-throughput cellular data
to support metabolic engineering has intensified in
recent years [1,2]. At the top of the various “omic”
layers, the metabolic fluxome resides as their integrated
functional output, which in turn closely determines the
phenotypic portrait of the cell, particularily productivity
[3]. Therefore, the estimation of intracellular fluxes in
stoichiometric models is essential [4].

With the emergence of increasingly extensive genome
annotations for several organisms, optimization algo-
rithms for genome-wide fluxome estimations have
become well popularized. Such estimations are based on
flux balance analysis (FBA), which assumes a “metabolic
objective” driving the behaviour of the cell (see for
instance [5]). A set of derived frameworks have since
been developed aiming to probe for genomic alterations
(knock-outs, knock-ins, down-regulations and over-
expressions) expected to yield better performances than
the wild-type [6-9], and examples of successful FBA-
driven predictions are available [10,11]. However,
because fluxes are estimated in a landscape in which the
amount of data is not enough to simply use metabolite
balancing, as in small-scale metabolic flux analysis
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(MFA), the need for additional mathematical assump-
tions when searching for high yielding genetic altera-
tions may render such predictions less dependable.
In spite of their value, and regardless of size, currently

available stoichiometric models by-pass a multi-layered
web of regulatory and fundamentally complex cellular
events, thus constituting a simplification of cellular
function [12]. Given the obvious gap between genome
and fluxome, mutants “created” in silico by linear opti-
mization/inspection may not exhibit the expected meta-
bolic behaviour in vivo. While methods for integration
of regulatory and metabolic networks have been
reported [13-15], still fragmentary knowledge of kinetic
and regulatory phenomena (e.g. transcriptional, transla-
tional, signalling), together with their cumbersome bio-
logical specificity [16], may preclude their full
applicability in metabolic engineering. This is especially
relevant when attempting to engineer complex, multi-
genic phenotypes, such as improving the yields of
recombinant proteins derived from animal cell cultures,
for which reason stoichiometric models have been
mostly confined to microbial systems producing small
molecules [5]. In this respect, an additional important
pitfall is the lack of mechanistic knowledge of proces-
sing pathways associated with the formation of proteins
or viruses; simply lumping the necessary precursors in a
set of synthesis reactions has proven a fruitless task
since the stoichiometric requirements for these recombi-
nant products are several orders of magnitude below
those for host biomass formation, thus making their dis-
tinction practically impossible [17,18]. As a result, the
application of stoichiometric models to complex product
formation has been restricted to the evaluation of opti-
mal conditions for cell growth and metabolic efficiency
rather than explicitly defining productivity in the model
[19,20].
These issues are herein addressed by proposing a

hybrid stoichiometric/statistical framework to make
sense of fluxome data either from small-scale or gen-
ome-scale metabolic models. As intended for rapid bio-
process optimization, a scenario is presented where
MFA is employed to reliably estimate intracellular flux
distributions in a small-scale network comprising the
main pathways of carbon and nitrogen flow, substan-
tially reducing data acquisition efforts in the early stages.
Then, projection to latent structures (PLS) [21] is used
to search for correlations between a measured produc-
tivity target and the estimated metabolic state, whereby
the inclusion of a statistical model allows filling the gaps
in our knowledge of global regulation of anabolic
processes.
In order to illustrate this approach, the metabolic

behaviour of the baculovirus-insect cells system is
explored. The superior versatility and safety of

baculoviruses has been exploited for a wide range of
applications, from recombinant protein manufacture
[22,23] to gene expression in mammalian cells, including
pharmaceutical screening and in vivo gene therapy [24].
Our group has developed rational strategies for baculo-
virus production optimization in insect cell cultures.
These works were based on classical MFA [25,26], from
which hypotheses on how to impact metabolism
towards a higher productive state were tested and ana-
lyzed [27]. Here, these results are combined with new
data to demonstrate the ability of hybrid MFA to assign
individual fluxes/pathways of central metabolism to cell-
specific functions that cannot be completely defined in a
stoichiometric description.

Results
1. Limitations of classical metabolic flux analysis
Supposing the composition of a recombinant product of
interest is known (e.g. protein amino acids sequence or
detailed virus structure), a lumped reaction system com-
prising all metabolic precursors in stoichiometric quan-
tities to synthesize a unit amount of product can be
formulated. If the number of measured flux constraints
is high enough to yield a determined or overdetermined
system, then an estimation of the rate of product synth-
esis can be obtained (see Methods for a description of
MFA). However, this estimation will generally be inac-
curate, often lying outside feasible biological boundaries,
even for a consistent, overdetermined system with car-
bon and nitrogen balances closed within experimental
error. The problem of the ill-definition of protein/virus
formation in a metabolic network is mathematically
expressed by the extremely large sensitivity of such esti-
mation to the measured fluxes. As a corollary, it is only
possible to accurately estimate such a rate if all mea-
surements are precisely known, that is, devoid of experi-
mental error. To illustrate this, a comprehensive
metabolic model of Spodoptera frugiperda cells (Sf9)
comprising a well-defined central carbon and nitrogen
metabolism (see Additional file 1: Metabolic reactions of
the Sf9 cell line metabolism) was combined with a set of
biosynthesis reactions for recombinant baculovirus
synthesis (see Additional file 2: Viral synthesis reactions
used for complete MFA model establishment). This net-
work contains 51 independent material balances (54
balanced metabolites minus 3 independent conservation
relations corresponding to NADH + NAD+ = a,
NADPH + NADP+ = b and FADH2 + FAD = c) and 77
fluxes, resulting in 26 degrees of freedom. Since a total
of 30 fluxes are measured or defined, the final system is
overdetermined with 4 redundant measurements. Then,
the relative sensitivity of the rate of product formation
in this metabolic network was compared to that of
the cell growth rate (see Methods). As presented in
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Figure 1, the existence of measurement errors is signifi-
cantly dampened when estimating the rate of biomass
formation (μ), having sensitivity values lower than 1
(calculated as the fractional variation in μ produced by
an infinitesimal fractional variation in a given measured
flux). However, they are enormously amplified when
estimating the flux of baculovirus formation (vBac),
often by several orders of magnitude.
If a representative scenario is chosen, the impact of indi-
vidually omitting the measurements of μ or vBac, or of
deleting the complete set of biomass or product synth-
esis reactions, can be assessed in terms of overall flux-
ome variation in relation to that estimated by the
complete model (Table 1). As shown, leaving out μ has
a small effect in the fluxome estimation; moreover, the
respective estimated μ corresponds roughly to the mea-
surement in the complete model, indicating that the
assumed stoichiometry is consistent with experimental
data. On the other hand, leaving out vBac has a more
profound effect in the intracellular flux distribution,

evidenced by the considerably higher total fluxome var-
iation. As expected, the estimated viral replication rate
is completely unrealistic, even though the model
remained consistent, evidencing that viral replication
cannot be directly inferred from the nutrients uptake
and metabolites production rates affected by experimen-
tal error. This is a result of the negligible requirement
of anabolic precursors for viral synthesis as compared to
biomass formation. Therefore, it is essentially impossible
to accurately estimate how much complex product is
being synthesized, per cell and unit time, for a given
metabolic state. Finally, taking out reactions associated
with virus biosynthesis has a virtually null effect on the
remaining fluxes, which contrasts with the massive flux-
ome variation obtained after deleting reactions for bio-
mass formation. It is important to note that model
consistency is independent of incorporating the stoichio-
metry of virus formation. This clearly shows that the
mechanisms of complex product synthesis are ill-defined
in a purely stoichiometric description.

Figure 1 Sensitivity analysis of viral production and biomass production fluxes. Sensitivity analysis of biomass or product synthesis
estimations was performed when the measured value of each of these fluxes was individually omitted from the complete model, yielding an
overdetermined system of equations (see text and Methods section). The estimation of fractional sensitivities was achieved by factoring the
appropriate average value of measured metabolite consumption/production rates and average value of measured cell growth rate or
productivity, respectively, from all available culture conditions (see Table 2). Horizontal axis marks indicate computed sensitivities are zero.
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2. Hybrid metabolic flux analysis
In the absence of sufficient mechanistic detail, the
unknown or ill-defined part of a metabolic network can
be substituted by an empirical (statistical) sub-model
bridging the well-defined stoichiometry with a given cel-
lular function, such as the synthesis of a complex
recombinant product (Figure 2 (A)). The herein pro-
posed hybrid MFA takes advantage of using PLS to find
a regression model between input fluxes, Ve (estimated
through classical MFA), and a vector of target produc-
tivity, Vt, which is not directly linked with the known
part of the network (Figure 2 (B)). The result is a vector
of regression coefficients (B) representing how strongly
each flux correlates with the target. This statistical asso-
ciation can be used to derive hypothesis on how to per-
turb the metabolic network towards increased
productivity (refer to Methods for a detailed mathemati-
cal description).
To assess the performance of this methodology, origi-

nal and published experimental data were pooled
together, comprising a diverse set of 13 independent
infection cultures (Table 2). Included are infections per-
formed with a recombinant baculovirus, at different cell
densities, in different culture systems and subject to var-
ious supplementation and treatment schemes (see
details in Methods). In all experiments, the Sf9 insect
cell line was infected at a low multiplicity of infection
(number of infectious particles added per cell) in serum-
free medium. Overall, a matrix of 13 × 47 fluxes esti-
mated by MFA was used as predictor data for the PLS
model (Additional file 3: Values of measured and MFA-
estimated fluxes for all experiments). In all cases, the
pseudo-steady state hypothesis on intracellular metabo-
lites was assumed, since extracellular metabolite profiles
were approximately linear during the initial 48h to 72h
productive phase after infection. Data from the end of
infection cultures were not taken into account to avoid
confounding effects due to cell lysis. The number of

measured fluxes was in excess of the degrees of freedom
of the system, resulting in an overdetermined model
with 4 redundant measurements. On average, nitrogen
and carbon balances closed to 70% and 88%, respec-
tively, and experimental data were consistent with the
assumed biochemistry and the pseudo-steady state
hypothesis (see Methods). As target, specific baculovirus
productivities were measured as described in Methods,
covering on the whole 3 orders of magnitude.
Our PLS model was able to capture most of the var-

iance in the target productivity, despite using only 3
latent variables to describe the input data (Figure 3(A)).
Because in latent variable models, such as PLS, there is
no direct relationship between predictor and target vari-
ables, the calculation of reliable confidence intervals for
the regression coefficients is not straightforward, limit-
ing their interpretability. Namely, regression coefficients
in PLS models have been found to reflect primarily the
underlying latent structure of the data, rather than
accounting for the error variances of the predictor vari-
ables [28]. To circumvent this problem, Monte Carlo
sampling was used to generate 1000 data matrices based
on the error variances of all 47 metabolic fluxes and
specific baculovirus productivity. PLS models were then
built on the generated data, allowing the estimation of
confidence intervals associated with each regression
coefficient. The procedure revealed that 31 out of 47
regression coefficients were not statistically meaningful,
having strengths of association (a - here defined as the
ratio between the regression coefficient and the respec-
tive confidence interval) lower than 1 (Figure 3(B)). It
should be underlined that the flux discrimination criter-
ion includes both observed correlations with the target
and precision of measurement/estimation.
The reduced list of meaningful fluxes was then hier-

archically clustered in the regression coefficient/confi-
dence interval space in order to highlight groups that
share a common strength of association with the target

Table 1 Impact of biomass and virus synthesis information on the estimation of Spodoptera frugiperda’s post-infection
metabolism

Complete model W/o μ W/o vBac W/o biomass reactions W/o viral reactions

Fluxome var. a - 12.2 32.5 370.2 0.0

μ b 8.6 8.9 8.0 - 8.6

vBac c 920.5 920.5 3995861.2 920.6 -

Redundancies d 4 3 3 4 4

h/c2 e 0.3/7.8 0.0/7.8 0.0/7.8 102.0/9.5 0.3/9.5
aFluxome variation (%), calculated as the average relative variation of all intracellular fluxes estimated by the model, excluding biosynthetic reactions for biomass
or virus formation.
bAdjusted (underlined) or estimated specific biomass formation rate (h-1 × 1000).
cAdjusted (underlined) or estimated specific viral synthesis rate (103 infectious particles × (106 cells × h)-1).
dThe number of redundancies in an overdetermined model corresponds to flux measurements in excess of the degrees of freedom of the system (see Methods).
eA consistency index (h) that is lower than the corresponding c2 (95%) value indicates consistency between flux measurements and the assumed network
stoichiometry in each case (see Methods).
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(Figure 3(B),(C)). Overall, the generated cluster tree pre-
served distance measurements between pairs of data
objects, having a cophenetic correlation coefficient of 0.97.
To evaluate natural divisions in the dataset, a preliminary
analysis was performed by calculating an inconsistency
coefficient for each link in the cluster tree (see Methods).
Essentially, two clusters stand out, one having a values
close to 2 corresponding to the tricarboxylic acids (TCA)
cycle and respiration reactions, and another, with lighter

association strengths, comprising the uptake fluxes of phe-
nylalanine, methionine and histidine. Remarkably, this
selected group of amino acids sharing a positive correla-
tion with productivity had on average higher ratios of cata-
bolization (relative to their specific consumption) than the
rest of the essential amino acids, which were primarily
used for biomass synthesis; the interpretation of these
selections can in principle be based on their contribution
to oxidative metabolism as well.

Figure 2 Data-driven framework for predictive metabolic flux analysis. (A) Schematic representation of a metabolic network with an
unknown or ill-defined portion corresponding to the synthesis of a complex recombinant product. These poorly defined pathways are
substituted by a statistical sub-model bridging the known well-defined stoichiometry with the target product formation rate. (B) Given a set of
measured fluxes (Vm - usually exchange fluxes of metabolic consumption and production), metabolic flux analysis is used to estimate the entire
flux distribution (Ve) in a predefined metabolic network. Then, PLS is performed to find a linear regression model between the estimated
fluxome and the vector of a measured target such as productivity, Vt. As a result, a list of regression coefficients representing how strongly each
flux correlates with the target is obtained (B), making it possible to predict the productivity of independent cultures after metabolic
manipulation.

Carinhas et al. BMC Systems Biology 2011, 5:34
http://www.biomedcentral.com/1752-0509/5/34

Page 5 of 13



In view of these results, engineering strategies aiming
to increase carbon flow through central oxidative path-
ways, possibly by rearranging flux partitioning at key
metabolic nodes or feeding energy-generating metabo-
lites, could potentially be beneficial for virus replication.
To this respect, it is possible to find in Table 2 a group
of cultures that, based on previous empirical inspection,
were purposefully designed to increase productivity by
the addition of energy-generating metabolites (experi-
ments 6, 7, 8, 9) [27]. Metabolic node rearrangement
was not an issue since Sf9 cells naturally possess a
highly efficient oxidative metabolism [25,27]. Addition-
ally, in face of preliminary simulations, we thought of
some treatment to simulate a depressed energetic state
and negatively impact productivity, namely through the
addition of AICAR (aminoimidazole carboxamide ribo-
nucleotide, experiment 13), a cell permeable AMP
mimetic that strongly binds AMP-activated protein
kinase, inducing downstream effects typical of ATP star-
vation such as inhibition of protein synthesis [29]. This
experiment, together with the substitution of half the
culture medium by PBS (experiment 12), comprised the
lower segment in the baculovirus productivity range.

3. Predictive power
To validate an empirical model it is mandatory to test
its predictive power with new independent experiments
not used in the calibration step. We selected the above
mentioned subset of experiments (6, 7, 8, 9 and 13) to
be used for validation. In a second validation strategy,
the three experiments with the highest productivities (1,
6 and 7) were left aside as a means to prevent data
interpolation. In both strategies, the number of latent

variables was chosen based on maximum total variance
explained (calibration and validation) and constrained
by a limit of 3. As presented in Figure 4(A), the produc-
tivities of experiments 6, 7, 8, 9 and 13 were reasonably
predicted, considering the challenging partition of the
data (validation 1), while the results for validation 2
were considerably sounder. More importantly, the
hybrid MFA-PLS structure clearly outperformed classi-
cal MFA in modeling baculovirus production, as demon-
strated by comparing the predicted productivities
obtained in both validation data sets with the corre-
sponding values predicted by MFA (Table 3).
In terms of metabolic decomposition, these models

corroborate our previous conclusions. Indeed, the most
important pathways for viral replication previously dis-
criminated, namely TCA cycle and respiration, showed a
significant correlation with productivity for both valida-
tion strategies (Figure 4(B)). Also for validation strategy
1, the catabolism of phenylalanine, methionine and histi-
dine had again a values higher than 1, though other
fluxes with lighter correlations were also selected. Over-
all, despite the somewhat limited collection of data,
these results indicate the hybrid MFA framework should
prove a valuable tool in designing metabolic optimiza-
tion strategies for complex products, with potential
applicability to a range of cellular systems.

Discussion
In this work, a cost-effective hybrid methodology is
reported to make sense of accessible fluxome data for
rapid optimization of complex productivity phenotypes.
PLS modelling is used in tandem with classical meta-
bolic flux analysis to establish a link between an

Table 2 Experimental cultures used for model establishment

# Virus CCIa Culture system Supplementation/Treatmentb Productivityc References

1 1 - 1420.7

2 3 - 117.0

3 3 Gln 174.3

4 3 Amino acids mix 177.1

5 Ac-VP39EGFP 3 Spinner vessel IMS 227.3 [27]

6 3 Pyr 644.2

7 3 a-KG 920.5

8 3 Pyr/a-KG 462.4

9 3 Pyr (24 mM) 455.2

10 - 23.2

11 Ac-VP39EGFP 3 Shake flask - 29.1 This work

12 PBS (50%) 0.9

13 AICAR 3.1

In every case, cells were grown to the appropriate cell density in SF900II serum-free medium and infected with 0.1 infectious particles per cell.
aCell concentration at infection (106 cells × mL-1); “1” and “3” stand for 1-1.5 and 3-4 × 106 cells × mL-1, respectively.
bNutrients supplementation and culture treatment were performed as described in Methods (see indicated references for details). IMS - complete insect medium
supplement.
cMeasured specific viral synthesis rate (103 infectious particles × (106 cells × h)-1).
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Figure 3 Functional metabolic decomposition of baculovirus-producing S. frugiperda’s cells. (A) Performance of predictive MFA in
describing baculovirus productivity based on metabolic data from 13 independent cultures (see Table 2). In all cases, Sf9 insect cells were
infected with a low multiplicity of infection in serum-free medium. A total of 3 latent variables were used to describe the data. Productivity is
expressed in 103 infectious particles × (106 cells × h)-1. (B) In order to estimate confidence intervals for the model regression coefficients, Monte
Carlo sampling was used to generate 1000 data matrices based on the error variances of all predictor and target variables (see Methods section
for details). The strength of association (a) was defined as the confidence interval to regression coefficient ratio, allowing the exclusion of those
fluxes with a values lower than 1. (C) After hierarchical clustering, the TCA cycle and mitochondrial respiration naturally arised as a closely
connected group of fluxes strongly correlated with high productivities. With lighter association strengths, one additional cluster corresponds to
the catabolization fluxes of the essential amino acids phenylalanine, methionine and histidine. Abbreviations: ACoA (acetyl-coenzyme A), Cit
(citrate), Fum (fumarate), His (histidine), Mal (malate), Met (methionine), OAA (oxaloacetate), Phe (phenylalanine), Pyr (pyruvate), Suc (succinate),
SuCoA (succinyl-coenzyme A), aKG (a-ketoglutarate).
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Figure 4 Validation of predictive MFA for metabolic engineering. (A) To validate our framework as a powerful tool to assign targets for
metabolic engineering, the complete set of 13 experiments was purposefully split into calibration and validation subsets in two manners. In
strategy 1, experiments 6, 7, 8, 9 and 13, which have been rationally designed to manipulate the cellular energetic state, were left aside for
validation. In strategy 2, the top three producers (experiments 1, 6 and 7) were chosen as validation cultures to avoid data interpolation. The
number of latent variables used to build the calibration models in each case was 1 and 3, respectively. Productivity is expressed in 103 infectious
particles × (106 cells × h)-1. (B) Metabolic decomposition for each validation strategy, showing the common selection of TCA cycle/respiration as
important pathways for viral replication. Also for validation strategy 1, the catabolism of phenylalanine, methionine and histidine had a values
higher than 1, as well as other fluxes with lighter correlations with the target (other: catabolism of maltose, proline and tyrosine, formation of
alanine).
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estimated metabolic state and system productivity,
therefore providing a predictive in silico platform to
assist genetic/environmental metabolic engineering
when a well-defined stoichiometric description of pro-
duct formation is not available. An important feature of
PLS is that it decomposes complex data sets into subsets
of uncorrelated vectors, called latent variables, while
eliminating redundant information. This permits to
address biological problems where the number of vari-
ables assessed largely exceeds the number of observa-
tions, reason why this method has gathered significance
in interpreting “omic” data sets [30]. As reviewed in
Teixeira et al. [31], combining such data-mining tools
with mechanistic models gives rise to hybrid para-
metric-nonparametric systems, which enable cost-effec-
tive analysis of complex problems with fragmentary
knowledge.
Our method is conceived to perform on the basis of

an informative, yet not exhaustive, preliminary set of
experiments easily available at laboratory scale. It is
especially suited to deal with complex products whose
synthesis mechanisms are ill-defined by considering a
simple stoichiometric description as part of a global
metabolic model, or whose composition is unknown.
Productivity enhancement in the case of simpler mole-
cules, for instance amino acids or TCA cycle intermedi-
aries, has been previously achieved by stoichiometric
analysis of their respective synthesis pathways [32,33].
Here, the main output is the global identification of
fluxes strongly correlated with a highly productive state,
which are discriminated from a background of less sig-
nificant metabolic reactions contributing to product
synthesis. Thus, as opposed to classical MFA, our
approach enables predicting the productivity in indepen-
dent experiments based on a previous calibration, and
the identification of metabolic targets for production
optimization. In this respect, the estimation of reliable
confidence intervals for the flux regression coefficients
is crucial to remove a large portion of uncertainty in the
selection of metabolic targets, considerably improving

the odds of successful experimental validation. Methods
that assure a higher precision in fluxome estimations,
such as isotopic tracer experiments [34], could in princi-
ple expose other targets for manipulation.
It should be noted that the predictive capacity for the

phenotypic change does not necessarily translate in the
ability to predict the means to deliver this change. Spe-
cifically, finding a strong statistical correlation between
a given metabolic route and productivity does not trans-
late into a direct cause-effect relationship. While this
may often be the case for the synthesis of single mole-
cules, production of correctly formed proteins or viruses
depends on a complex series of steps ranging from gene
transcription to protein secretion or virus assembly,
along with their regulation through even less understood
signalling events (35). Therefore, the identification of
genetic targets may at times be beyond the domain of
central metabolic fluxes, which themselves are upstream
regulated along with the productivity phenotype. On
this issue, the methodology herein presented could at
least allow to hypothesize how different cell pathways/
functions are commonly regulated.
Besides providing a list of prospective metabolic

targets to be exploited for engineering, the proposed fra-
mework adds a functional dimension to previous meta-
bolic decomposition studies based solely on structural
properties of the underlying network, namely connectiv-
ity [36,37] or pathway feasibility [38,39]. Here, clusters
of fluxes are defined by sharing the same relationship
with a given cellular output. As a main drawback, our
method is constrained by data availability on cellular
fluxome and target phenotype, thus demanding some
experimental effort.
As mentioned earlier, when used to handle flux distri-

butions estimated by FBA in genome-scale models, this
approach represents an alternative hybrid framework to
linear optimization techniques during metabolic target
selection, which could significantly surpass existing lim-
itations in modeling complex phenotypes. A recent
paper by Melzer et al. (2009) also explores the use of
multivariate statistics to correlate stoichiometrically-
derived elementary modes in complex networks with
stoichiometrically-defined productivity targets, as
opposed to common search algorithms for strain
improvement [40]. However, our approach differs con-
ceptually to the cited work in that we define a statistical
bridge between a well-defined stoichiometry and a com-
plex phenotype, therefore substituting for a metabolic
link that may be ill-defined in a purely stoichiometric
representation and otherwise hampered by insufficient
kinetic and regulatory information. This should prove
an advantage in predicting non-obvious metabolic tar-
gets associated with the synthesis of more complex
recombinant products in animal cells, particularly

Table 3 Predictive power of the hybrid MFA-PLS
structure compared to MFA

Experiment # Productivitya MFA
prediction

Hybrid MFA
prediction

1 1420.7 28915535.7 1214.6c

6 644.2 -15477747.1 389.9c/586.4b

7 920.5 3995861.2 665.7c/625.6b

8 462.4 18837398.3 637.7b

9 455.2 9971383.5 353.5b

13 3.1 -7199746.4 -130.8b

aMeasured specific viral synthesis rate (103 infectious particles × (106 cells × h)-1).
bValidation strategy 1.
cValidation strategy 2.
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multimeric proteins, multi-protein particles and viruses,
the later adding an additional degree of complexity due
to the virus-coded regulation of cellular machinery.
Finally, from a practical point of view, several issues

are worth considering before opting for a genome-
scale model. In one respect, the availability of a well
sequenced and annotated genome may constitute a
major limitation: while accurate metabolic reconstruc-
tions are available for un-mutated, standard microor-
ganisms such as E. coli and S. cerevisiae, in an
industrial setting a larger diversity of organisms are
used, particularly animal cell systems for which cellular
data is much scarcer [41]. Another consideration is the
cost and time associated with the creation of these
models. Even if a comprehensive genome-scale stoi-
chiometric model is already at disposal, a considerable
experimental effort is necessary to overlay high-
throughput metabolomic and isotopomer flux data for
better constraining fluxome estimations [42]. In parti-
cular, the computational power required for 13C flux
analysis may become prohibitive for very complex net-
works by today’s standards. Overall, our framework
could potentially be more useful to steer rapid devel-
opment of a broad range of organisms on the basis of
a representative small-scale metabolic network. As
such, it would significantly enhance the quality of
information extracted from exploratory experiments
compared to traditional metabolic flux analysis.

Conclusions
The need to understand and manipulate cellular systems
for increased biosynthesis of target products has been a
consistent focus of research, now supported by the huge
flows of data being obtained at different cellular levels.
However, the increasingly available knowledge is still not
sufficient for the construction of global metabolic models
able to accurately predict cell behaviour in response to
perturbations. To this end, multivariate statistical tools
will keep proving useful in functionally connecting differ-
ent layers of cellular information, filling the gaps in our
understanding of kinetic and regulatory phenomena. At
this point, we believe that combining both frameworks
into a hybrid metabolic flux analysis framework constitu-
tes a valuable and straightforward complement to purely
stoichiometric models in optimizing industrially relevant
complex productivity phenotypes.

Methods
Metabolic flux analysis
In MFA, material balances are derived over the meta-
bolic nodes of a biochemical network. Under the
pseudo-steady state assumption, all intracellular pools of
these compounds are constant, and a homogenous sys-
tem of linear equations is obtained

0 A V= × , (1)

with A the network stoichiometric matrix and V a
vector of reaction fluxes. When enough constraints are
available to render system (1) overdetermined (that is,
determined and redundant with flux measurements in
excess of the degrees of freedom of the system), a least
squares solution for the flux distribution can be derived:

V A A Ve e m m= − × ×# , (2)

with Vm a vector of measured fluxes (usually con-
sumption/production rates of metabolites and cell
growth), Am the associated stoichiometric matrix, Ve

the vector of estimated intracellular reaction rates and
Ae

# the pseudo-inverse of the corresponding stoichio-
metric matrix. To provide an estimate that better
approximates the real metabolic flux distribution, redun-
dant measurements were used to balance (adjust) the
measured fluxes according to their normalized variances
to obtain a weighted-least squares solution [43]. In addi-
tion, adjusted flux measurements were used to calculate
a consistency index, h, as defined in [44]. Comparison
of h with the c2 test function allows evaluating the con-
sistency of experimental data with the assumed bio-
chemistry and the pseudo-steady state assumption. For
this, the number of redundant measurements was used
as the degrees of freedom for statistical hypothesis test-
ing at a 95% confidence level. These calculations were
performed with FluxAnalyzer (Version 5.3) [45].

Sensitivity analysis
For the two scenarios where the measurement of product
formation rate or cell growth rate are individually omitted
from the complete model, the Jacobian of the correspond-
ing overdetermined system (2) was calculated as

J A AV V e me m( ) = − × =
∂
∂

# v

v
e,i

m j i j, ,

, (3)

representing the absolute sensitivity of each unknown
flux to each metabolic constraint. In order to compute
fractional sensitivities for biomass and product synthesis
rates, the corresponding (i,j) elements were appropri-
ately factored with an average value of each measured
metabolite consumption/production rate and the aver-
age value of measured cell growth rate or productivity,
respectively, for all metabolic conditions presented in
Table 2.

Hybrid metabolic flux analysis and Monte Carlo sampling
After standardizing the fluxes estimated by MFA, the
decomposition of the predictor matrix Ve

T (with
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different culture conditions/steady states as rows) is per-
formed iteratively and supervised by maximizing covar-
iance with the target vector Vt

T. The result is the
projection of the fluxome space into a “latent space”
defined by a set of uncorrelated (orthogonal) latent vari-
ables (LVs):

T V We
T= × , (4)

V T Q Ee
T T= × + , (5)

where T is the matrix with LVs as columns, W is a
matrix of weights, QT a matrix of “loadings”, and E a
residuals matrix. Similarly, the target vector can also be
decomposed using the same latent space as

V T P Ft
T T= × + , (6)

with PT the corresponding loadings vector and F a
vector of residuals. Finally, the linear model between the
predictor and target variables is derived:

V V B Ft
T

e
T= × + . (7)

Here, B = W × PT is the column vector that maxi-
mizes the squared sample covariance between Vt

T and
the latent variables in T [30]. It represents the set of
regression coefficients establishing the statistical rela-
tionship between fluxome state and the target cellular
function, containing quantitative and qualitative infor-
mation on the potential impact that each flux has on
the target variable. The main algorithm for these calcu-
lations is part of “The N-Way toolbox for MATLAB”
[46] and is described in [47].
For the estimation of confidence intervals associated

with each regression coefficient, 1000 fluxome states
were randomly sampled considering normal error distri-
butions associated with flux estimates that have been
propagated in MFA calculations from an initial 16%
error in measured exchange fluxes (including cellular
growth rate). For the productivity target, a 22% error
was used [48]. PLS regression was then performed for
the complete generated set of data, resulting in a 1001-
sized population of regression coefficients for each flux.
Confidence intervals were computed as

B B (0.975,dg)± ×
∧
s ( ) T , (8)

with s
∧ (B) the observed standard deviations of coeffi-

cients B and T(0.975,dg) the two-sided T-student distribu-
tion value for a 95% confidence level and number of
degrees of freedom (dg) equal to 1001 (observations)

minus 47 (fluxes). All calculations were implemented by
the authors in MATLAB (Version 7.0; Mathworks,
USA).

Hierarchical clustering
Groups of fluxes sharing similar strengths of association
with productivity were hierarchically clustered on the
two-dimensional space defined by the pair correlation
coefficient/confidence interval. The Euclidian norm was
chosen as distance measure. To evaluate if the classifica-
tion presented in the dendrogram correlates well with
the distance measurements between pairs of data
objects, the cophenetic correlation coefficient (c) was
calculated [49]. Values of c close to 1 indicate a good
representation of the data. Additionally, for each link in
the cluster tree, an inconsistency coefficient (I) was cal-
culated, which compares the height of each link with
that of neighbour links at the same level [50]. The
higher the value of I is, the less similar the objects are.
Thus, when plotting the number of emerging tree clus-
ters against decreasing I values, a large discontinuity,
along with the appearance of clusters with unacceptable
small size, suggest a natural division in the dataset. All
calculations were performed using predefined functions
available in MATLAB (Statistics Toolbox, Multivariate
Statistics section).

Cell culture and virus handling
The host insect cell line Sf9 (ECACC 89070101) was
maintained in 50 mL working volume shake flasks
(Corning, USA) and kept in a humidified incubator
operated at 27°C and 90 rpm. Sf900II serum- and pro-
tein-free medium (Gibco, Glasgow, UK) was used
throughout this work. Cell density and viability were
determined by cell counting using a Fuchs-Rosenthal
chamber after diluting bulk samples in Trypan Blue.
The recombinant Autographa californica nucleopoly-

hedrovirus Ac-vp39EGFP, coding for the baculovirus
major structural capsid protein, vp39, fused N-termin-
ally to an EGFP reporter [51], was kindly provided by
Dr. K. Airenne (University of Eastern Finland, Kuopio,
Finland). Recombinant viruses were amplified by infect-
ing Sf9 cells at 1x106 cells.mL-1 with a MOI of 0.1 IP.
cell-1, in 125 mL (working volume) spinner flasks
(Wheaton, USA), and stored as culture supernatant at
4°C, protected from light. Virus titers were determined
by an end-point dilution assay in 96-well plates, screen-
ing for GFP signal under an inverted fluorescence
microscope [48].

Infection experiments
Cells were cultured in 125 mL (working volume) spin-
ner flasks or 50 mL working volume shake flasks (see
Table 2). Infections with Ac-vp39EGFP were carried out
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at low (1x106 cells.mL-1) or high (3-4x106 cells.mL-1)
cell density, using in all cases a low multiplicity of infec-
tion (0.1 IP.cell-1). Nutritional supplements were added
at the time of infection as described in [27]. Briefly, con-
centrated stock solutions of sodium pyruvate, disodium
a-ketoglutarate and L-glutamine (Sigma Aldrich, USA)
were prepared in PBS and added to a final concentration
of 12 mM, unless otherwise indicated. The amino acids
mixture (Sigma Aldrich: R-7131) and complete Insect
Medium Supplement (Sigma Aldrich: I-7267) were
directly diluted 1:50 and 1:10 in culture medium,
respectively, following indications of the manufacturer.
In order to simulate nutrient limitations, cells were cen-
trifuged prior to infection and ressuspended in a 1:1
dilution of conditioned medium with PBS buffer
(adjusted to pH 6.1 and 370 mOsm). For AMPK activa-
tion, aminoimidazole carboxamide ribonucleotide
(Sigma Aldrich: A-9978) was added to the culture at
6-8h post¬infection to a concentration of 500 μM [52,53].

Metabolic profiling
Samples from infection experiments were collected at
given time points and centrifuged at 1700xg for 10 min-
utes, at room temperature. Cell-free sterile supernatants
were stored at 4°C for later virus titration, or at - 20°C
to measure the concentration of sugars, lactate, ammo-
nia, amino acids and carboxylates. Glucose and lactate
concentrations were determined with automated enzy-
matic assays (YSI 7100 Multiparameter Bioanalytical
System, USA). Ammonia was quantified enzymatically
using a UV assay (No 1112732035; Boehringer Man-
heim, R-Biopharm AG, Germany). Maltose and sucrose
were indirectly quantified after enzymatic hydrolysis
using a-glucosidase and invertase from Sigma-Aldrich,
respectively. Amino acid concentrations were profiled by
high performance liquid chromatography (HPLC) using
a reverse phase 3.9 × 150 mm column (AccQ.Tag,
Waters, USA). A pre-column derivatization method
(Waters AccQ.Tag Amino Acid Analysis) was used, as
described in [27]. For the analysis of the carboxylic
acids a-ketoglutarate and pyruvate, an ion-exclusion 8 ×
300 mm sugar SH1011 column (Shodex, USA) was used
[27].

Additional material

Additional file 1: Metabolic reactions of the Sf9 cell line
metabolism. Includes a list of all stoichiometric reactions corresponding
to exchange (measured) and intracellular (unknown) fluxes comprising
the MFA model. References are provided for further information.

Additional file 2: Viral synthesis reactions used for complete MFA
model establishment. Includes information and references on the
composition of insect viruses, and the set of viral synthesis reactions
used to set the complete MFA model addressed in Table 1.

Additional file 3: Values of measured and MFA-estimated fluxes for
all experiments. Includes a table containing the values of all measured
and MFA-estimated fluxes for the 13 experiments presented in this work.
The later were used as direct inputs for correlation with a target vector
of productivities (presented in Table 2) to establish hybrid MFA.
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