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Abstract

Background: As protein is the basic unit of cell function and biological pathway, shotgun proteomics, the large-
scale analysis of proteins, is contributing greatly to our understanding of disease mechanisms. Proteomics study
could detect the changes of both protein expression and modification. With the releases of large-scale cancer
proteome studies, how to integrate acquired proteomic and phosphoproteomic data in more comprehensive
pathway analysis becomes implemented, but remains challenging. Integrative pathway analysis at proteome level
provides a systematic insight into the signaling network adaptations in the development of cancer.

Results: Here we integrated proteomic and phosphoproteomic data to perform pathway prioritization in breast
cancer. We manually collected and curated breast cancer well-known related pathways from the literature as target
pathways (TPs) or positive control in method evaluation. Three different strategies including Hypergeometric test
based over-representation analysis, Kolmogorov-Smirnov (K-S) test based gene set analysis and topology-based
pathway analysis, were applied and evaluated in integrating protein expression and phosphorylation. In
comparison, we also assessed the ranking performance of the strategy using information of protein expression or
protein phosphorylation individually. Target pathways were ranked more top with the data integration than using
the information from proteomic or phosphoproteomic data individually. In the comparisons of pathway analysis
strategies, topology-based method outperformed than the others. The subtypes of breast cancer, which consist of
Luminal A, Luminal B, Basal and HER2-enriched, vary greatly in prognosis and require distinct treatment. Therefore
we applied topology-based pathway analysis with integrating protein expression and phosphorylation profiles on
four subtypes of breast cancer. The results showed that TPs were enriched in all subtypes but their ranks were
significantly different among the subtypes. For instance, p53 pathway ranked top in the Basal-like breast cancer
subtype, but not in HER2-enriched type. The rank of Focal adhesion pathway was more top in HER2- subtypes than
in HER2+ subtypes. The results were consistent with some previous researches.

Conclusions: The results demonstrate that the network topology-based method is more powerful by integrating
proteomic and phosphoproteomic in pathway analysis of proteomics study. This integrative strategy can also be
used to rank the specific pathways for the disease subtypes.
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Background
Following the quick accumulation of large-scale genome,
transcriptome and other omics data, some studies or ap-
proaches integrating multiple omics data into pathway
analysis have been reported [1–4]. Mass-spectrometry
-based proteomics provides insights into cell-type protein
expression patterns, post-translational modifications
(PTMs) and protein–protein interactions [5–7]. As the
most common PTMs, up to 30% of all human proteins
may be modified by kinase activity (Phosphorylation), and
kinases are known to regulate the majority of cellular sig-
nal pathways. To date, how to integrate the information of
protein expression, PTMs and protein interactions in
pathway analysis is still a big challenge.
Signal pathways describe a group of molecular in a cell

that work together to control one or more cell functions,
such as cell division or cell death. Pathway analysis gives
an insight into the underlying mechanism in a given
condition and makes it more explanatory in comparison
with the studies at individual gene or protein level.
Pathway analysis methods include gene set analysis and
topology-based analysis. Gene set methods only consider
the set of genes/proteins in the pathways while the
topology-based methods use both genes/proteins and the
interactions among them. Gene set methods consist of
Over-Representation Analysis (ORA) based on the Hyper-
geometric test or Fisher exact test [8, 9] and Functional
Class Score (FCS) based on ranked gene list and
Kolmogorov-Smirnov (K-S) test [10]. The ORA only
considers the differentially-expressed (DE) genes and the
representative tools of ORA include DAVID [11],
Onto-Expression [9], GenMAPP [12], GOMiner [13],
GOstat [14] and so on. FCS considers the position of all
genes in the ranked list, which is produced by a selected
statistical test for differential expression, such as Gene Set
Enrichment Analysis (GSEA) [15], Gene Set Analysis
(GSA) [16] and so on. Topology-based pathway analysis
integrate both changes in expression level and in topology
of protein/gene interaction network, which includes Signal
pathway impact analysis (SPIA) [17] and Bayesian Pathway
Analysis (BPA) [18]. In SPIA, the score of the pathway is
based on the impact analysis consisting of two types of
evidence. One is the over-representation of DE genes in a
given pathway and the other is the abnormal perturbation
of that pathway, which is measured by propagating expres-
sion changes across the pathway topology.
In this work, we tried to integrate proteomic and

phosphoproteomic data in pathway analysis in breast
cancer and its subtypes. The results showed that inte-
grating protein and phosphorylation differential expres-
sion with the network-topology based method can
identify the target pathways more accurately. What’s
more, we also identified the top ranked pathways in four
subtypes of breast cancer specifically.

Methods
Proteomics data and preprocessing
The proteomic and phosphoproteomic data of breast can-
cer in this study included 77 tumor samples and 3 normal
breast tissue samples, which were downloaded from Clin-
ical Proteomic Tumor Analysis Consortium (CPTAC).
The process of quality control and normalization for both
the proteomic and phosphoproteomic data was presented
in Mertin et al.’s work [5]. As the result, 12,553 proteins
(10,062 genes) and 33,239 phosphosites with their relative
abundances quantified across tumors were used in this
work. The missing value in the data matrix was filled with
the minimum value.

Integrating proteomic and phosphoproteomic data
Since ORA, GSEA and SPIA are the representatives of
three kinds of pathway analysis, which are Over-
Representation analysis, Functional Class Score and
topology-based pathway analysis, we used these three
strategies to do pathway analysis. We used R package
‘HTSanalyzeR’ [19] to do ORA, GSEA pathway ana-
lysis and another R package ‘SPIA’ [17] to do SPIA
pathway analysis. P-values for pathway analysis result-
ing from the permutation (n = 2000) were provided in
Additional File 1: Table S1.
Different methods of pathway analysis require different

input data. For ORA, the input file is the list of DE pro-
teins/modifications or the intersection of the DE protein
and phosphoprotein as an integration (Student’s t-test,
with BH-adjusted p < 0.05). The input file for GSEA
method in our study was the list of all proteins/phos-
phoproteins with fold change between the case and con-
trol. We summed up and sorted the fold changes for the
overlapping proteins in the protein expression and phos-
phorylation profiles as the integrated information for
GSEA. As for SPIA, the input files consisted of the top-
ology of the pathways downloaded from KEGG database
and the DE proteins with their fold change. The top-
ology changes of the pathways could be calculated by
the ‘SPIA’ R package. The input for SPIA was the inter-
section list of the DE proteins and DE phosphoproteins
with the sum of their fold change.

Performance evaluation
For the performance evaluation of pathway analysis, a
widely used validation method is using the ranks of the
target pathways in disease that have been validated or cu-
rated in publication, topper rank is better. This method is
proposed in PADOG [20] and used in other studies of
pathway analysis methods comparison [21, 22].
We manually selected twelve breast cancer related

TPs from literatures. Most of TPs are mentioned in
the work about comprehensive molecular portraits of
human breast tumors [23, 24] and the others are also
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widely accepted. The TPs and their references were
listed in Table 1.

Results
The workflow of integrating proteomic and phospho-
proteomic data to perform pathway analysis was shown
in Fig. 1. Firstly, integrating information from prote-
omic and phosphoproteomic data were used as the in-
put of pathway analysis. Then, we processed ORA,
GSEA and SPIA pathway analysis on the integrated in-
formation. Finally, the methods were evaluated by the
ranks of the TPs. In our study, we identified 2337 DE
proteins and 3973 DE phosphoproteins respectively.
The intersection of the two lists were 641 proteins.

Performance evaluation of pathway analysis with protein
expression and/or phosphorylation profiles
To assess the integrating strategies in pathway ranking
with proteomics data, we compared the ranks of TPs
in three kinds of pathway analysis methods with inte-
grated information, including protein expression and
phosphorylation datasets separately. Fig. 2 showed the
box plots of normalized ranks in the range of 1 to 100
(the lower, the better). It could be concluded from the
figure that all the pathway analysis methods per-
formed better using the integrated data than using
single information. Especially, topology-based pathway
strategy introduced in SPIA performed best as the me-
dian rank of rankings for all the TPs was lower than
any other methods.
Besides the TPs, we found nineteen pathways appear-

ing in the overlap of the top 50 pathway ranking lists
of three kinds of pathway analysis methods with inte-
grated information, such as Fanconi anemia pathway,
GABAergic synapse (as shown in Table 2). Although
these pathways are not validated, as well as TPs to be

related to breast cancer, there are still researches indi-
cated the correlation with breast cancer. For example,
Fanconi anemia pathway is closed linked to breast and
ovarian cancer susceptibility gene BRCA1 [25, 26]. Abnor-
mal GABA expression or GABAergic participation has
been described in primary colon, gastric, ovarian, pancre-
atic, and breast cancers [27], while GABA and GABAergic
participation are involved in GABAergic synapse [28].
What’s more, it has been reported that morphine can
stimulate angiogenesis by activating proangiogenic and
survival-promoting signaling and promote breast tumor
growth [29].

Pathway rankings in subtypes of breast cancer
The subtypes of breast cancer, which consist of
Luminal A, Luminal B, Basal and HER2-enriched
[23, 30], are various in prognosis and require dis-
tinct treatment [24, 31]. Genomic, transcriptomic,
and proteomic analyses of the breast cancer also re-
veal subtypes would differ in pathway activity [32]. If
the specific pathways and the underlying mechanism
of each subtype are identified, more precision treat-
ments can be applied. Based on the performance
evaluation of different pathway analysis, we analyzed
and ranked the perturbed pathways for each subtype
by integrating protein expression and modification
profiles using the network-topology based approach.
The results showed ranking of the perturbed TPs in
four subtypes (Additional File 2: Figure S1). Some
pathways, like cell cycle and pathway in cancer, were
among top10 rankings in all of subtypes. The ranks
of other TPs were different among the subtypes
though they all play important roles in four sub-
types. We selected representative top-ranked path-
ways in each subtype and display them in Fig. 3.
As shown in Fig. 3a, p53 pathway ranked lowest in

the Basal-like breast cancer type and ranked lower in
Luminal A than in Luminal B. It is reported that TP53
are the most recurrently mutated genes in breast can-
cer, with frequency of 84% in Basal-like tumors [23]
and p53 pathway remains largely intact in Luminal A
cancers but is often inactivated in the more aggressive
Luminal B cancers [33].
In accordance with previous research, expression

levels of Focal adhesion kinase (FAK/PTK2) are corre-
lated strongly with poor tumor differentiation and
significantly associated with HER2 overexpression in
breast cancer [34]. The highest level of FAK (Y861)
and the lowest level of epidermal growth factor recep-
tor 2 (HER2) activity can be observed in MDA-361
cells (ER+/HER2+ cell) [35]. As FAK is the important
role in the Focal adhesion pathway, we can infer that
the activation of the Focal adhesion pathway was nega-
tive correlated with the expression of HER2. The rank

Table 1 The target pathways for breast cancer

KEGG ID Pathway name Reference

hsa04014 Ras signaling pathway [24]

hsa04151 PI3K-Akt signaling pathway [23]

hsa04010 MAPK signaling pathway [23]

hsa04150 mTOR signaling pathway [45, 47, 49]

hsa04310 Wnt signaling pathway [23]

hsa04115 p53 signaling pathway [23, 33]

hsa01521 EGFR tyrosine kinase inhibitor resistance [23]

hsa04012 ErbB signaling pathway [23]

hsa04510 Focal adhesion [34, 35]

hsa04350 TGF-beta signaling pathway [60]

hsa04110 Cell cycle [24]

hsa05200 Pathways in cancer [23]
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of Focal adhesion pathway was lower in HER2-
subtypes (Luminal A and HER2) than HER+ subtypes
(Luminal B and Basal), as shown in Fig. 3b.
PI3K/AKT/mTOR pathway is a key intracellular sig-

naling system that drives cellular growth and survival.

Hyperactivation of this pathway is implicated in the
tumorigenesis of ER+ breast cancer [36–45]. Besides,
the pathway is also important in Triple-negative
breast cancer [46] and HER2-overexpressing breast
cancer [47]. Preclinical studies indicate that inhibitors

Fig. 1 A workflow of integrating proteomic and phosphoproteomic data in pathway analysis. Firstly, the fold change of the two protein lists from
proteomic and phosphoproteomic respectively were summed up. The interaction of the DE proteins and the DE phosphoproteins were also
recorded. Secondly, we performed ORA, GSEA and SPIA pathway analysis by using the integrated information, and obtained the ranks of the
target pathways. Finally, the methods were evaluated by the ranks of the target pathways

Fig. 2 Box plot of the ranks for the target pathways in breast cancer. The ranks were normalized in the range of 1 to 100. Lower rank is, better
performance of the method is. The orchid, blue and pink represent the method based on the integrated information, information from
proteomic and phosphoproteomic data

Ren et al. BMC Systems Biology 2018, 12(Suppl 8):130 Page 100 of 115



of the pathway can act synergistically with trastuzu-
mab in resistant cells [48].
Many studies have established that mTOR pathway

has tightly interaction with PI3K-AKT and MAPK
signaling pathways. Inhibition of mTORC1, an import-
ant part of mTOR pathway, leads to MAPK pathway
activation through a PI3K-dependent feedback in
human cancer [49]. It can be verified by the ranks of
these pathways in four breast subtypes, the low rank of
mTOR pathway corresponded to the high rank of
PI3K-Akt signaling pathway (Fig. 3c and d). Luminal-
type cells might use the MEK-ERK pathway to a lesser
extent and seem to be more dependent on the PI3K
pathway, shown by the preferential occurrence of PI3K
mutations in this subtype [10]. As show in Fig. 3d,
PI3K-Akt signaling pathway in Luminal subtype ranked
higher than the other two subtypes.
We also took a look at the top 20 ranked pathways

for each subtype of breast cancer. There were 7
common pathways among the four subtypes. Besides
two TPs cell cycle and pathways in cancer, the other
common pathways have been reported to be related
with breast cancer pathways which consist of Fanconi
anemia pathway [50], Progesterone-mediated oocyte
maturation [51, 52], Axon guidance [53], Basal cell
carcinoma [54] and Thyroid cancer [55, 56]. As

shown in Fig. 4, some pathways were specifically
ranked in top 20 for Basal, HER2, Luminal A and
Luminal B respectively. This result indicated that the
subtypes share some common molecular mechanisms
during carcinogenesis and development, but the dif-
ferences between them also exist. For example, as we
mentioned above, p53 pathway is significantly per-
turbed in Basal-like subtype but it also play key role
in the other three subtypes [23, 57]. Notch pathway
in Luminal breast cancer is activated more than in
Basal and HER2 subtypes [58, 59].

Discussion
Expression and modification describe the in vivo
changes of proteins in cancer proteome at different
views. The pathway analysis based on the information
at single level, such as protein expression or protein
phosphorylation alone, often brings high risk of both
false positive and false negative due to technological
limitations. To the best of our knowledge, the integra-
tion proteomic and phosphoproteomic data in pathway
analysis in cancer has not been evaluated and reported.
In this study, the pathway analysis was performed and
compared using the integration of proteomic and
phosphoproteomic data in CPTAC’s breast cancer
dataset. Moreover we tried to find the different pat-
terns in pathway ranking among the subtypes.
Our results suggested that both differential expres-

sion of proteins and phosphorylation were useful for
identifying the important pathways in cancer or can-
cer subtypes. Furthermore, the integration of protein
expression and modification profiles could provide
more comprehensive information and rank TPs more
accurately. Although the ranking lists of three kinds
of pathway analysis were different, some consistent
results were observed since the expression change of
proteins and phosphoproteins are used in all of
strategies. While the GSEA requires the fold change
of all proteins, it has more complete information
reflecting the expression profile. SPIA needs the top-
ology information of the pathways in addition, which
can provide detailed influence between the nodes of
pathways.
We also tested the performance using the union of DE

proteins and phosphoproteins information in pathway
ranking, but poor accuracy was obtained. It’s possibly be-
cause of too much noise in individual omics data. In
order to control the risk of false positive, the intersection
of the DE proteins or DE PTMs were used as input in this
study that might be too conservative. Because only one
dataset was tested here, for some new pathways in top
ranking list, more independent proteomics datasets in
cancer need to be processed and validated in the future.

Table 2 The overlap of top 50 ranking pathways in three
methods with integrated information

KEGG ID Pathway name

hsa03460 Fanconi anemia pathway

hsa04020 Calcium signaling pathway

hsa04024 cAMP signaling pathway

hsao4060 Cytokine-cytokine receptor interaction

hsa04261 Adrenergic signaling in cardiomyocytes

hsa04340 Hedgehog signaling pathway

hsa04710 Circadian rhythm

hsa04713 Circadian entrainment

hsa04723 Retrograde endocannabinoid signaling

hsa04724 Glutamatergic synapse

hsa04725 Cholinergic synapse

hsa04727 GABAergic synapse

hsa04912 GnRH signaling pathway

hsa04914 Progesterone-mediated oocyte maturation

hsa05020 Prion diseases

hsa05032 Morphine addiction

hsa05166 HTLV-I infection

hsa05216 Thyroid cancer

hsa05217 Basal cell carcinoma
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Fig. 3 Comparison of four TPs in breast cancer subtypes. The ranks of p53 signaling pathway (a), Focal adhesion (b), mTOR signaling pathway (c)
and PI3K-Akt signaling pathway (d). The bar plot above describes the ranks of the TP in four subtypes and the below one shows the changed
molecular and the hot member of the pathway
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Conclusions
Integrative pathway analysis by combing the information
from protein expression, protein modification and the
topology of protein interaction network is more efficient
way to identify key pathway in breast cancer. Pathway
ranking in certain subgroup of patients can provide
insight into the specific mechanisms and be helpful for
the precision medicine for each subtype.
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