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Complete Genome Sequence of Stenotrophomonas Phage Pokken
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ABSTRACT Stenotrophomonas maltophilia is a Gram-negative bacterium associated
with multidrug-resistant nosocomial infections, a problem for immunocompromised
patients and those with cystic fibrosis. Here, we present the new S. maltophilia-
infecting podophage Pokken. Its 76,239-bp genome, with 92 protein-coding genes
and 5 tRNA genes predicted, is similar to that of phage N4.

tenotrophomonas maltophilia is an emerging Gram-negative multidrug-resistant

opportunistic pathogen (1). Increasingly, S. maltophilia has been seen in nosocomial
infections in intensive care units and in immunocompromised individuals (2). Addition-
ally, S. maltophilia is associated with severe pulmonary disease in cystic fibrosis patients
(3). In the interest of exploring potential therapeutic treatment options, we isolated and
annotated the genome of S. maltophilia podophage Pokken.

Pokken was isolated from filtered (filter size, 0.2 um) freshwater collected at Camp
Creek Lake (Franklin, TX) and propagated aerobically on S. maltophilia (ATCC 17807) at
30°C in nutrient broth or agar (BD) with the soft-agar overlay method (4). To determine
phage morphology, samples were negatively stained with 2% (wt/vol) uranyl acetate
and viewed by transmission electron microscopy at the Texas A&M Microscopy and
Imaging Center (5). DNA was purified with the modified Promega Wizard DNA clean-up
system shotgun library preparation protocol, prepared as lllumina TruSeq libraries with
a Nano low-throughput kit, and sequenced on an lllumina MiSeq instrument with
paired-end 250-bp reads using v2 500-cycle chemistry (6). The 414,121 total reads in the
phage-containing index were quality controlled with FastQC (www.bioinformatics
.babraham.ac.uk/projects/fastqc) and trimmed using the FastX Toolkit v0.0.14 (http://
hannonlab.cshl.edu/fastx_toolkit/). With SPAdes v3.5.0 at the default settings, a raw
contig at 188.1-fold coverage was assembled (7). To verify that the complete sequence
was present, PCR products amplified off the contig ends (forward, 5'-GGGTACATCCC
GAGTAAGAAAC-3’; reverse, 5'-GTGACCTCCATGGTTCGATAG-3’) were sequenced by the
Sanger method. Protein-coding genes were annotated by using GLIMMER v3.0 and
MetaGeneAnnotator v1.0 (8, 9). tRNA genes were detected with ARAGORN v2.36 (10).
TransTermHP v2.09 analysis was used to annotate termination sites (rho independent)
(11). Putative gene functions were assigned based on conserved protein domains,
which were detected using InterProScan v5.33-72 and similarity search results from
BLAST v2.2.31 against the following databases, with a 0.001 maximum expectation
value cutoff: NCBI nonredundant, UniProtKB Swiss-Prot, and TrEMBL (12-14). Potential
transmembrane domains were detected with TMHMM v2.0 (15). Genome-wide DNA
sequence similarity between Pokken and other phages was calculated by progressive-
Mauve v2.4.0 (16). Genomic terminus type was predicted by PhageTerm (17). All tools
were accessed at the Center for Phage Technology Galaxy interface, and Web Apollo
was used for annotation (https://cpt.tamu.edu/galaxy-pub/) (18, 19). Unless otherwise
stated, all tools were executed using default parameters.

The 76,239-bp genome of podophage Pokken has a 55% G+C content, lower than
the 66.8% average G+C content of the host (20). Our analysis predicted 92 protein-
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coding genes and 5 tRNA genes, yielding an overall 92.8% coding density. Of the 29
protein-coding genes that were assigned putative functions, 18 were similar by BLASTp
search to enterobacterial phage N4 (GenBank accession number NC_008720). Pokken
has an overall 29.94% identity with phage N4 and was predicted to contain 627-bp
direct terminal repeats, which were somewhat longer than the direct terminal repeats
in phage N4 (21). Additionally, Pokken encodes four putative tail fiber proteins in a row
(NCBI accession number QEG09305 to QEG09308), and bacteriophage Prado encodes
four tail fiber proteins in a row similar to those of Pokken (GenBank accession number
KF626667) (22).

Data availability. The genome sequence and associated data for phage Pokken
were deposited under GenBank accession number MN062186, BioProject accession
number PRINA222858, SRA accession number SRR8892199, and BioSample accession
number SAMN11411460.
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