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Higher-throughput, mode-of-action-based assays provide a valuable approach to

expedite chemical evaluation for human health risk assessment. In this study, we

combined the high-throughput alkaline DNA damage-sensing CometChip® assay

with the TGx-DDI transcriptomic biomarker (DDI = DNA damage-inducing) using

high-throughput TempO-Seq®, as an integrated genotoxicity testing approach. We

used metabolically competent differentiated human HepaRGTM cell cultures to enable

the identification of chemicals that require bioactivation to cause genotoxicity. We

studied 12 chemicals (nine DDI, three non-DDI) in increasing concentrations to measure

and classify chemicals based on their ability to damage DNA. The CometChip®

classified 10/12 test chemicals correctly, missing a positive DDI call for aflatoxin B1

and propyl gallate. The poor detection of aflatoxin B1 adducts is consistent with

the insensitivity of the standard alkaline comet assay to bulky lesions (a shortcoming

that can be overcome by trapping repair intermediates). The TGx-DDI biomarker

accurately classified 10/12 agents. TGx-DDI correctly identified aflatoxin B1 as DDI,

demonstrating efficacy for combined used of these complementary methodologies.

Zidovudine, a known DDI chemical, was misclassified as it inhibits transcription,

which prevents measurable changes in gene expression. Eugenol, a non-DDI chemical

known to render misleading positive results at high concentrations, was classified

as DDI at the highest concentration tested. When combined, the CometChip®

assay and the TGx-DDI biomarker were 100% accurate in identifying chemicals

that induce DNA damage. Quantitative benchmark concentration (BMC) modeling

was applied to evaluate chemical potencies for both assays. The BMCs for the

CometChip® assay and the TGx-DDI biomarker were highly concordant (within 4-fold)
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and resulted in identical potency rankings. These results demonstrate that these two

assays can be integrated for efficient identification and potency ranking of DNA damaging

agents in HepaRGTM cell cultures.

Keywords: genetic toxicology, TGx-DDI genomic biomarker, TGx-28.65 genomic biomarker, metabolic activation,

toxicogenomics, human health risk assessment

INTRODUCTION

New tools and approaches are urgently needed to allow
regulatory agencies worldwide to evaluate a backlog of chemicals
for potential adverse human health effects (1–7). Twenty-first
century toxicology requires more affordable tests that are higher-
throughput, higher-content, human-relevant, and mechanistic
in nature for effective chemical evaluation (8–13). Applying
in vitro toxicogenomic (TGx) biomarkers in metabolically
competent human cells in culture is a new approachmethodology
(NAM) that can help to accomplish these goals. Transcriptomic
biomarkers are defined gene sets that produce reproducible
changes for altered key events in adverse outcome pathways.
These biomarkers can be used to identify chemical mode
of action (MoA) and to guide chemical prioritization and
classification (14–19). The use of in vitro genomic biomarkers to
predict specific toxicological responses reduces the subjectivity
of interpretation for complex genomic data sets and can thus
facilitate the use of genomics for human health risk assessment.

Genetic damage can lead to mutagenicity and genome
instability, which in turn can result in adverse human health
effects, such as inherited genetic diseases and cancer (20).
Consequently, genotoxicity testing is a critical component of
chemical evaluation. Genotoxicity and mutagenicity testing
depends on jurisdiction, but generally includes the Ames
bacterial reverse mutation assay, an in vitro mammalian
genotoxicity assay (e.g., chromosome aberrations, micronuclei
(MN), and/or gene mutations), and an in vivo rodent
genotoxicity assay [e.g., chromosome aberrations, MN, and/or
transgene mutations; (21–24)]. These tests are not typically high-
throughput and generally do not providemechanistic insight into
a test compound’s MoA. Higher-throughput, mechanism-based
genotoxicity tests in human cell culture models can aid in the
interpretation of these assays to determine potential human risk.
More recent advances to modernize genetic toxicity assays have
begun to address this need; for example, the in vitroMicroFlow R©

micronucleus assay (25–28) and the in vitro CometChip R© assay
(29–33) are compatible with various human and rodent cell
lines and are relatively higher-throughput methods to assess
DNA damage.

A long-term goal is to have a suite of transcriptomic
biomarkers that enable rapid extraction of MoA and hazard

Abbreviations: AFB1, Aflatoxin B1; BaP, Benzo[a]pyrene; CISP, Cisplatin;

CP, Cyclophosphamide; AraC, Cytosine Arabinoside; DDI, DNA damage-

inducing; 2DG, 2-Deoxy-D-Glucose; HC, hierarchical clustering; MMS, Methyl

methanesulfonate; ENU, N-Nitroso-N-Ethylurea; EUG, Eugenol; PG, Propyl

Gallate; ZDV, Zidovudine; HTTr, High-Throughput Transcriptomics; MN,

Micronuclei; MoA, Mode of Action; NAM, New Approach Methodology; non-

DDI; non-DNA damage-inducing; NSC, Nearest Shrunken Centroids; PCA,

Principal Component Analysis; SSBs, Single Strand Breaks; TGx, toxicogenomics.

information from high-throughput transcriptomic (HTTr)
screens (7). The TGx-DDI biomarker provides an alternative
approach wherein potentially genotoxic MoAs can be discerned
using transcriptomic data sets. The TGx-DDI transcriptomic
biomarker was developed from a training set of global gene
expression profiles from human TK6 cells exposed to 28
prototype DNA damage-inducing (DDI) or non-DDI chemicals
(34–37). The biomarker comprises 64 genes; changes in the
expression of these genes can be used to classify chemicals as
DDI or non-DDI using a variety of gene expression technologies
in TK6 cells, including DNA microarrays (35), quantitative PCR
arrays (38) and the high-throughput NanoString nCounter R©

platform (36). Overall, it has been proposed that the TGx-DDI
biomarker can be used in a variety of contexts including chemical
screening (39), hazard identification, chemical prioritization for
further testing, MoA development, weight of evidence analysis,
and/or potency assessment (36).

Currently, tremendous efforts are being made to develop
suitable cell-based assays as a reliable and informative substitute
for in vivo studies. Although, human TK6 cells are a suitable
choice of cell line to evaluate genotoxicity for regulatory
applications, a substantial limitation is that they lack metabolic
activity. Primary human hepatocytes, often considered the gold
standard for physiologically-relevant in vitro liver cell culture
models, also have some notable limitations in that they have a
finite supply from an individual donor making them difficult
to obtain in large quantities for year-over-year evaluations,
have a highly limited lifespan of differentiated functionality in
conventional 2D culture models (∼3–5 days), and in some
countries are not an ethically viable option (40–42). A suitable
alternative is to use human HepaRGTM cells, which were derived
from a hepatocellular carcinoma in a Caucasian female donor
(43). Under differentiating conditions, HepaRGTM cell cultures
express relevant amounts of Phase I and Phase II metabolic
enzymes, transporters and nuclear receptors, and differentiate
into co-cultures of hepatocyte- and cholangiocyte-like cells,
which makes them a suitable choice for toxicity screening (43).
HepaRGTM cells retain many characteristics of primary human
hepatocytes and thus circumvent the need to add rat liver
S9, which can be problematic for some compounds and is
a limitation of the TK6 cell line. Moreover, HepaRGTM cells
have undergone extensive validation for in vitro cytochrome
P450 induction and have been deemed a reliable human cell
line in terms of metabolic competence (44–51). This was
further confirmed by an interlaboratory validation of liver
enzyme induction models led by the European Commission,
Joint Research Center (52). The popularity of these cells in
toxicology studies is thus growing, and they are currently being
used in HTTr screens. For example, Ramaiahgari et al. (53)
used high-throughput targeted RNA-sequencing (TempO-Seq R©;
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TABLE 1 | Test chemical information for Group 1 (genotoxic/DDI chemicals), Group 2 (non-genotoxic/non-DDI chemicals), and Group 3 (misleading/irrelevant positive

chemicals) based on the recommended genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests by Kirkland

et al. (57, 58).

Chemical use/formation Chemical effects Kirkland et al. (57, 58)

chemical group

Aflatoxin B1 Food contaminant produced by

pathogenic fungus

Forms DNA adducts; clastogenic, mutagenic, teratogenic,

carcinogenic

Group 1

Benzo[a]pyrene Polycyclic aromatic hydrocarbon;

formed during incomplete

combustion

Forms DNA adducts; clastogenic, mutagenic, carcinogenic Group 1

Cisplatin Chemotherapeutic agent Alkylating agent that interferes with DNA replication;

cross-linking agent; clastogenic and mutagenic

Group 1

Cyclophosphamide Chemotherapeutic agent Alkylating agent; clastogenic, mutagenic Group 1

Cytosine arabinoside Chemotherapeutic agent DNA anti-metabolite that interferes with DNA replication;

clastogenic

Group 1

Methyl methanesulfonate Chemotherapeutic agent Alkylating agent; clastogenic, mutagenic, carcinogenic Group 1

N-Ethyl-N-nitrosourea Chemotherapeutic agent Alkylating agent; clastogenic, mutagenic, carcinogenic and

teratogenic

Group 1

Zidovudine (Azidothymidine) Anti-HIV drug Nucleoside reverse transcriptase inhibitor (NRTI); clastogenic Group 1

Propyl gallate Antioxidant; food additive Used to prevent oxidation; mutagenic and clastogenic (Group 1)#

2-Deoxy-D-glucose Used as a diagnostic agent in its

radiolabelled form

Investigational drug that is being studied as an anticancer and

antiviral agent; glycolysis inhibitor

Group 2*

Eugenol Naturally occurring phenolic molecule

found in plants; local analgesic agent

to alleviate tooth pain

Interferes with action potential conduction; has

anti-inflammatory, neuroprotective, antipyretic, antioxidant,

antifungal and analgesic properties

Group 3

Urea Organic compound important in the

metabolism of nitrogen-containing

compounds by animals

Nitrogen-containing substance in mammalian urine, also used

in fertilizers; non-toxic

Group 3

#PG was removed from Group 3 in the Kirkland et al. (58) updated recommended lists, as PG is now reported to be positive in the Ames test in the presence of S9 and induces

micronuclei and chromosomal aberrations in vivo. We have thus included PG as Group 1.

*Chemical not included in Kirkland et al. (57, 58) recommended lists for non-genotoxic chemical, but 2-deoxy-D-glucose fits the criteria to be included in Group 2 (non-genotoxic

chemical) and is used as a non-DDI reference chemical in the development of the TGx-DDI biomarker in Li et al. (35).

Templated Oligo-Sequencing) in HepaRGTM cells to conduct
concentration-response modeling for 24 reference compounds to
explore transcriptomic characteristics distinguishing compounds
that result in drug-induced liver injury.

The use of the TGx-DDI genomic biomarker in metabolically
competent human HepaRGTM cell culture is advantageous. Our
pilot work showed that the biomarker was 100% accurate
in identifying five DDI and five non-DDI toxicants in
HepaRGTM cells by RNA-sequencing (54). Corton et al. (39)
also demonstrated predictive accuracies of 90% in identifying
DDI agents in HepaRGTM cells using the TGx-DDI biomarker
in combination with a pattern matching correlation approach.
Nevertheless, additional validation studies that confirm the
accuracy of the TGx-DDI biomarker in human HepaRGTM cells
using the most recent HTTr platforms would be tremendously
useful to advance its application in such chemical screens for
genotoxic hazard identification.

The comet assay offers an alternative approach to genotoxicity
testing that directly tests for the presence of physical damage to
DNA. We reasoned that together, these two approaches would
be highly complementary, providing an efficient integrated test
to accurately identify genotoxic agents. While the traditional
comet assay is not compatible with high-throughput screens
due to the need for a single glass slide for each condition,

the recently available high-throughput CometChip R© platform
has >200x the capacity of the traditional comet assay for
identifying chemicals that induce DNA strand breaks and has
been extensively validated (30–33, 55, 56). The objectives of the
present study are thus to: (1) extend validation efforts of the TGx-
DDI genomic biomarker further through analysis of HepaRGTM

cells exposed to prototype DDI and non-DDI agents; (2) confirm
the predictive accuracy of TGx-DDI using the TempO-Seq R©

platform; (3) explore the integration of the high-throughput
alkaline CometChip R© assay and the TGx-DDI biomarker as
an efficient, next-generation genotoxicity screening approach to
identify DDI chemicals; and (4) conduct concentration-response
modeling to investigate chemical potency ranking for DNA
damage measured by the CometChip R© assay vs. transcriptional
changes in the TGx-DDI biomarker genes.

Herein we investigate 12 test chemicals with varied MoAs,
chemical uses, and effects (Table 1). For practical purposes,
we classified the test chemicals as either DDI or non-DDI.
All DDI test compounds are Group 1 chemicals based on
the Kirkland et al. (57, 58) recommended lists of genotoxic
chemicals for the assessment of the performance of new or
improved genotoxicity tests and should render a positive result
in mammalian genotoxicity tests in culture. In this study, the
DDI chemicals include: aflatoxin B1 (AFB1), benzo[a]pyrene
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(BaP), cisplatin (CISP), cyclophosphamide (CP), cytosine
arabinoside (AraC), methyl methanesulfonate (MMS), N-
nitroso-N-ethylurea (ENU), and zidovudine (ZDV; also known
as azidothymidine). The non-DDI group of chemicals in this
study can be further broken down into one well-established non-
DDI chemical (i.e., Group 2) and three potentially misleading
(irrelevant) positives (i.e., Group 3) based on the Kirkland et al.
(57, 58) recommended list of non-genotoxic chemicals. In this
study, 2-deoxy-D-glucose (2DG) is a non-DDI Group 2 chemical
based on the criteria presented in the Kirkland et al. (57, 58)
reports, as 2DG is expected to render a negative result in in
vitro human and rodent cell-based genotoxicity tests. Group 3
chemicals should also yield negative results in genotoxicity tests
with mammalian cells. Chemicals in Group 3 are most often
negative in the Ames assay and in vivo; however, chemicals in this
grouping have been reported to induce DNA damage, most often
at high concentrations or with high levels of cytotoxicity, which
leads to “misleading” positive results. Based on the Kirkland et al.
(57) recommended lists, eugenol (EUG), propyl gallate (PG),
and urea were all considered to be Group 3 chemicals that have
the potential to result in misleading positive results. However,
based on the updated recommended chemical list published by
Kirkland et al. (58), PG is reported as positive in the Ames test
with S9 and induces MN and chromosomal aberrations in vivo
(59, 60). Thus, PG has now been removed from Group 3, as
it is potentially DNA-reactive and positive in vivo for certain
genotoxic endpoints. Although, PG is not a Group 1 reference
chemical, we expect it to classify as a Group 1; hence, we have
grouped PG with the DDI chemicals herein.

Taken together, we present results for nine DDI, one non-
DDI and two potentially misleading DDI agents. We found
that combining a DNA damage assay that rapidly detects
DNA strand breaks (i.e., the CometChip R©) with the TGx-DDI
genomic biomarker in metabolically competent HepaRGTM cells
provides and efficient and accurate approach to identify and rank
potencies of chemicals.

MATERIALS AND METHODS

Chemicals
Test chemicals were purchased from Cayman Chemical (CISP;
Ann Arbor, MI, USA), TCI America (PG; Montgomeryville,
PA, USA), and Millipore Sigma (remaining chemicals; St. Louis,
MO, USA) for exposures in fully differentiated, cryopreserved
No-Spin HepaRGTM cells (Triangle Research Labs (TRL),
Durham, NC, USA; acquired by Lonza Bioscience). Test
chemical information, including corresponding vehicle control
and concentrations tested are shown in Table 2. The chemical
exposures in HepaRGTM cells, the cell viability studies, and the
paired high-throughput CometChip R© analysis were conducted
at Integrated Laboratory Systems, Inc. (ILS; Research Triangle
Park, Durham, NC, USA).

HepaRGTM Cell Culture and Chemical
Exposures
Human HepaRGTM cell cultures were exposed to increasing
concentrations of 12 test chemicals in parallel 96-well plates

(four test chemicals per plate) for assessment of DNA damage by
CometChip R© and for collection of cell lysates for TempO-Seq R©

analysis for TGx-DDI classification purposes. Concentration
setting for each test chemical was based on data previously
collected at ILS and was established from the observation of
either a robust positive CometChip R© response or an upper
concentration that was approaching (but not above) an overt
cytotoxicity threshold (<40% viable cells) in previous in-house
studies. In the absence of a positive CometChip R© response or
cytotoxicity, chemicals were tested up to a top concentration
of 10mM, which is compliant for non-cytotoxic, negative
compounds in OECD test guidelines for mammalian cell assays
(61, 62). Briefly, differentiated human HepaRGTM cells, derived
from a hepatocellular carcinoma (45) were thawed and seeded at
∼4.0–5.0 × 104 viable cells per well in a collagen-coated 96-well
CometChip R© in William’s E medium with TRL’s Thawing and
Plating Supplement. Cells were incubated for 7 days following
seeding to allow the cells to regain peak metabolic function
(45). Cells were then exposed in culture medium containing
TRL’s Pre-Induction/Tox Supplement to five concentrations of
each DDI or non-DDI chemical daily in a repeated exposure
design (exposures at 0, 24, and 48 h). Four hours following
the last treatment (52 h total time), one plate of cells was
used for cell viability (n = 2 per treatment group alongside
matched solvent controls) and CometChip R© analysis and the
second plate was used to generate cell lysates for gene expression
analysis (n = 4 per treatment group per assay for CometChip R©

and TempO-Seq R©). The media was aspirated from exposed
cells and they were washed with PBS, prior to adding 100
µl of TrypLETM (for cell viability and CometChip R© assays;
ThermoFisher Scientific, Waltham, MA, USA) or 1X TempO-
Seq R© Lysis Buffer in PBS (for TempO-Seq R© assay; BioSpyder
Technologies, Carlsbad, CA, USA) to each well to lyse cells
for 10min at room temperature. Cell lysates were then frozen
and stored at −80◦C for subsequent transcriptome profiling
described below. Samples used for the analysis of cell viability
and DNA damage using CometChip R© were neutralized with the
addition of 100 µl of culture medium to each well and were
processed as described in the following sections.

Cell Viability Assay
The CellTiter-Glo R© Luminescent Cell Viability Assay (Promega,
Madison, WI, USA) was used to determine the number of
viable HepaRGTM cells based on the quantification of ATP
present following each chemical treatment. Cytotoxicity was
evaluated 4 h after the last exposure following the manufacturer’s
instructions in 96-well plates. Briefly, wells containing 100 µl
cell samples were equilibrated at room temperature for 30min
prior to the addition of CellTiter-Glo R© Reagent to each well in
a volume equal to that of the cell culture medium (e.g., 100 µl).
The contents were mixed for 2min on an orbital shaker to induce
cell lysis prior to incubation at room temperature for 10min to
stabilize the luminescent signal. Luminescence was measured on
a SpectraMax R© plate reader (Molecular Devices, San Jose, CA,
USA). Luminescent signal is the result of the release of ATP
from metabolically active cells and is directly proportional to the
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TABLE 2 | Experimental information for DDI (genotoxic) and non-DDI (non-genotoxic) test chemicals used in this study.

Test chemical Chemical abbreviation CAS No. Chemical group# Vehicle control Concentrations tested (µm)

Aflatoxin B1 AFB1 1162-65-8 Group 1 DMSO 3.125, 6.25, 12.5, 15, 25

Benzo[a]pyrene BaP 50-32-8 Group 1 DMSO 0.9375, 1.875, 3.75, 7.5, 15

Cisplatin CISP 15663-27-1 Group 1 DMSO 3.125, 6.25, 12.5, 25, 50

Cyclophosphamide CP 6055-19-2 Group 1 DMSO 1,250, 2,500, 5,000, 7,500, 10,000

Cytosine arabinoside AraC 147-94-4 Group 1 DMSO 12.5, 25, 50, 100, 200

Methyl methanesulfonate MMS 66-27-3 Group 1 DMSO 22.7, 45.4, 90.8, 181.6, 363.2

N-Nitroso-N-ethylurea ENU 759-73-9 Group 1 DMSO 312.5, 625, 1,250, 2,500, 5,000*

Zidovudine (azidothymidine) ZDV 30516-87-1 Group 1 DMSO 125, 250, 500, 1,000, 2,000

Propyl gallate PG 121-79-9 (Group 1) DMSO 125, 250, 500, 750, 1,000*

2-Deoxy-D-glucose 2DG 154-17-6 Group 2 Water 625, 1,250, 2,500, 5,000, 10,000

Eugenol EUG 97-53-0 Group 3 DMSO 156.25, 312.5, 625, 1,250, 2,500*

Urea Urea 57-13-6 Group 3 DMSO 625, 1,250, 2,500, 5,000, 10,000

#Chemical grouping based on Kirkland et al. (57, 58) recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved

genotoxicity tests.

*Indicates a cytotoxic concentration (<40% cell viability; >60% cytotoxic) that was subsequently eliminated from the gene expression analysis; all concentrations were used for

CometChip® analysis.

number of viable cells in the culture. The cytotoxicity cut-off was
>60% cytotoxic (equivalent to <40% viable cells).

Trevigen CometChip® Assay
Exposed and control HepaRGTM cells were loaded into the
CometChip R© wells and were allowed to settle into microwells
of a 96-well CometChip R©. A 1% agarose overlay was then
applied and the cells were lysed in cold lysis buffer (2.5M
NaCl, 100mM EDTA, 10mM Tris, pH 10 with 1% Triton X-
100 (Sigma, St. Louis, MO, USA) and 10% DMSO) overnight
at 4◦C. Following lysis, the CometChip R© was equilibrated in
an alkaline electrophoresis buffer (300mM NaOH/1mM EDTA)
for 40min and electrophoresed for 50min under a 300mA
current at 4◦C. These alkaline conditions are used to detect
DNA single strand breaks (SSBs). Following electrophoresis,
the CometChip R© was neutralized at 4◦C for 2 × 15min
in 0.4M Tris, pH 7.4 and equilibrated overnight at 4◦C in
20mM Tris, pH 7.4. Once equilibrated, the chip was stained
for 30min at 4◦C in 0.1X SYBR Gold and then destained
for >1 h at 4◦C in 20mM Tris, pH 7.4. After destaining,
images were taken at 4X magnification of all 96 wells. The tiff
images were captured and analyzed using Trevigen R© Comet
Analysis Software.

Statistical Analysis of CometChip® Data
The median % tail DNA for the CometChip R© data was analyzed
using one-way analysis of variance (ANOVA). The Anderson-
Darling statistic was used to test the normality assumption and
the Fligner-Killeen test of homogeneity of variances was used to
test the common variance assumption. If either assumption was
not satisfied, the rank transformation was applied and the non-
parametric one-way ANOVA was performed (63). All pairwise
comparisons to matched vehicle controls were conducted using
the t-test. The resulting p-values were then FWER adjusted using
the Dunnett’s method.

TempO-Seq® Library Preparation and
S1500+ Targeted Transcriptome
Sequencing
The TempO-Seq R© Human Tox+Surrogate Panel Reagent Kit
(BioSpyder Technologies, Carlsbad, CA, USA) was used to
prepare libraries in a 96-well plate format from exposed and
control HepaRGTM cell lysates, according to the manufacturer’s
instructions. All five concentrations of each test chemical were
used for gene expression analysis, except for overtly cytotoxic
concentrations that were eliminated from the analysis [i.e., the
highest concentration (C5) of ENU, EUG and PG; Table 2].
Assay controls included a negative no-lysate control (1X TempO-
Seq R© Lysis Buffer only), and two positive controls: qPCRHuman
Reference Total RNA and Human Brain Total RNA (Takara
Bio, CA, USA; four replicates per control). Briefly, 2 µl of cell
lysate in 1X TempO-Seq R© Lysis Buffer from each treatment
and concentration were hybridized with the targeted Human
S1500+ Tox Panel detector oligo (DO) probe mix (v1.1; 2,977
probes), for 10min at 70◦C followed by a temperature gradient
with a ramp rate of 0.5◦C/min to 45◦C over 50min followed by
a nuclease digestion to remove excess, unbound, or incorrectly
bound DOs enzymatically at 37◦C for 90min. The DO pairs
bound to adjacent target sequences were then ligated (60min
at 37◦C, followed by a 15min enzyme denaturation at 80◦C) to
generate a pool of amplification templates. Each amplification
template (10 µl of ligated DOs) was transferred to its respective
well of the 96-well PCR plate containing PCR Pre-Mix and
Primers. Amplification was conducted using a CFX96 Real-Time
PCR Detection System (Bio-Rad, Mississauga, ON, Canada) to
add a sequence tag unique to each sample and the sequencing
adaptors using the following PCR program settings: 37◦C for
10min, 95◦C for 2min; 6 cycles of 95◦C for 30 sec, 54◦C for
30 sec, 72◦C for 120 sec; 16 cycles of 95◦C for 30 sec; 72◦C for
2min; 72◦C for 1min. All 288 TempO-Seq R© libraries prepared
from the three 96-well plates were pooled (5 µl of each sample)
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and purified using the Macherey-Nagel NucleoSpin R© Gel and
PCR Clean-Up kit (Clontech Laboratories Inc., Bethlehem, PA,
USA), according to the manufacturer’s directions for PCR clean-
up with three modifications outlined in the TempO-Seq R© Assay
User Guide. The pooled, purified TempO-Seq R© libraries were
sequenced on two NextSeq R© 500/550 High Output flow cells
(v2 kits, 75 cycles) using an Illumina NextSeq R© 500 Sequencing
platform (Illumina, San Diego, CA, USA).

Sequencing Data Preprocessing,
Alignment, and Quality Control
Sequencing data have been deposited in the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) database under accession number GSE171360. Raw
sequencing data were demultiplexed (i.e., assigned to respective
sample files) with blc2fastq v2.20.0.422, and trimmed for quality
control using fastp (v0.20.0). The resulting FASTQ files were
aligned to reference sequences for the TempO-Seq R© Human
Tox+Surrogate Panel (2,977 probes) provided by BioSpyder
using their purpose-built analysis pipeline (TempO-SeqR, v3.0)
to generate a table of counts per gene per sample. Briefly, this
pipeline used STAR v2.7.8a to perform alignment of raw reads to
the reference sequences, and the qCount function of the QuasR
package (v1.30.0) to produce a gene X sample countmatrix of raw
counts from the BAM files output by STAR.

Study-wide quality control was performed on the countmatrix
using several methods to measure consistency and remove low-
quality samples, using Harrill et al. (64) as a guideline. Samples
that clustered as singletons at a dissimilarity of 0.1 using 1-
Spearman correlation using complete linkage were removed from
the study. As described by Harrill et al. (64), we used a cutoff of
uniquely mapped reads as 10% of the number of target sequences
(i.e., 100,000 reads to pass filter, because the target is 1,000,000 for
TempO-Seq R© experiments). We removed any samples outside
of Tukey’s Outer Fence (3X interquartile range) for: (1) the
number of probes capturing the top 80% of the signal; (2) the
Gini coefficient (which measures inequality in distributions); and
(3) the number of active probes (those with at least 5 mapped
reads). Based on these metrics, a single experimental sample was
removed (one replicate of EUG C4).

The code used to perform processing of high-throughput
sequencing data is available at https://github.com/mattjmeier/
2021_Buick_et_al_HepaRG_CometChip_TGx-DDI.

Statistical and Bioinformatic Analyses for
TGx-DDI Classification
Read counts were normalized using DESeq2 (v1.30.1) (65)
using the counts() function in R (66) to account for sequence-
to-sequence variability in read depth between the samples.
Samples with sub-optimal sequencing depth (total number of
reads < 500K) or that were overtly cytotoxic (>60% cytotoxic;
<40% viable cells) were excluded from the analysis. Data
visualization using boxplots and hierarchical cluster analysis
were conducted to identify samples with poor data quality.
This resulted in the exclusion of one sample (a replicate of

EUG C4) from the TGx-DDI classification analysis due to sub-
optimal sequencing depth. One replicate of CISP C2 was also
excluded from the analysis, as it was identified as “a point of high
leverage” outlier (Supplementary Figure 1). Statistical modeling
and bioinformatics tools were used to classify chemicals as
DDI or non-DDI using the TGx-DDI genomic biomarker.
Detailed information about the analyses can be found in Yauk
et al. (67) and Buick et al. (68). Gene Symbols that had
multiple probes for TGx-DDI biomarker genes were averaged.
Hierarchical clustering was completed using the hclust() function
in R (www.r-project.org). Agglomerative clustering was based
on average linkage with Euclidean distances (69). Classifications
(DDI vs. non-DDI) were achieved using the Nearest Shrunken
Centroids (NSC) method (70) in the pamr function of R
(www.bioconductor.org), as has been described previously (36,
67, 68). Briefly, the standardized centroid (SC) was calculated by
applying the NSC method for DDI and non-DDI test chemicals
in the training set and is the mean expression level for each gene
in a class divided by its within-class standard deviation. For each
DDI and non-DDI test article, the SC is shrunken in the direction
of the overall centroid to create the NSC. Treated and control
samples were then classified by comparing their gene expression
profile to the class of NSCs and then assigned to a class closest to
it in squared distance so that the probability of class membership
was >0.90 (35, 36).

Three separate analyses were conducted to classify the
compounds using the TGx-DDI biomarker, including NSC
probability analysis (PA; visualized using heatmaps), principal
component analysis (PCA), and hierarchical clustering (HC),
as outlined in Yauk et al. (67) and Buick et al. (68). PCA
was completed using the prcomp() function in R (71), where
the training set data (35) was used to estimate the principal
components (PC). These PC loadings were applied to the data
generated with the 12 test compounds. A scatterplot generated
using data from the TGx-DDI training set and test chemicals was
generated to visualize the results. Classification was completed as
follows: if a chemical resulted in a positive call in any one of three
classification analyses (NSC PA heatmaps, PCA, or HC), it was
classified as DDI; whereas, a chemical was classified as non-DDI
if it did not lead to a positive result in any of the aforementioned
analyses (54, 67, 68).

Benchmark Concentration Modeling of
CometChip® Data
Benchmark concentration analysis of CometChip R© data
(BMCCC) was conducted using BMDExpress v2.3 (https://
github.com/auerbachs/BMDExpress-2/releases) following BMD
technical guidance (72, 73). Test chemicals with statistically
significant increases in median % tail DNA were included
for BMCCC modeling with the exception of overtly cytotoxic
concentrations, which resulted in the highest concentration
(C5) of ENU being excluded from the BMCCC analysis (all
concentrations of EUG and PG were excluded from this analysis
due to a lack of positive response). Concentration-response
data were fit to a model that best described the data using
the following models: Linear, Exponential (2, 4, and 5), 2◦
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Polynomial, and the restricted Power (power restricted to
≥1). The benchmark response (BMR) was set to one standard
deviation (1SD) (74). The BMCUCC and BMCLCC values signify
the upper and lower 95% confidence limits of the BMCCC,
respectively. The “width” of the confidence interval is the
distance between the BMCUCC and BMCLCC, and therefore
defines the BMCCC estimate’s precision.

Benchmark Concentration Modeling of
TGx-DDI Biomarker Genes
For the TGx-DDI biomarker genes, normalized read counts
were shifted by 0.5 and then log2 transformed using the
counts() function in the DESeq2 package (65). BMC analysis
of TGx-DDI biomarker genes (BMCTGx) was also conducted
using BMDExpress v2.3, in accordance with recommendations
outlined in the US National Toxicology Program (NTP) Research
Report on National Toxicology Program Approach to Genomic
Dose-Response Modeling (72, 73). Test chemicals with positive
TGx-DDI classifications were included for BMCTGx modeling
with cytotoxic concentrations eliminated from the analysis [i.e.,
the highest concentration (C5) of ENU, EUG, and PG were
excluded]. Biomarker genes were analyzed and filtered using the
Williams trend test retaining features with a permutation p-value
<0.05 (with 250 permutations) with fold changes>1.5. To derive
BMCTGx values, TGx-DDI biomarker genes that passed the pre-
filters were fit to the following models: Linear, Exponential (2, 4,
and 5), 2◦ Polynomial, and the restricted Power (power restricted
to ≥1). A best fit model was selected with the lowest Akaike
Information Criterion (AIC) value (lowest complexity). To be
consistent with the BMCCC analysis, the BMR was set to 1SD for
BMCTGx analysis (74). BMCs were filtered based on the goodness
of fit (p-value >0.1), a BMC/BMCL ratio < 20, a BMCU/BMCL
ratio < 40, the BMC < the highest concentration, and the BMC
could not be < two orders of magnitude lower than the lowest
concentration to avoidmodel extrapolation. A secondary analysis
was also conducted in order to generate confidence intervals
for the BMCTGx values using the bootstrap method. For each
gene, 100 bootstrap samples were generated assuming a normal
distribution for each concentration group, where the mean and
standard deviation were based on the sample estimates. These
data were then imported into BMDExpress v2.3 with the same
filtering criteria and model selection as in the BMCTGx analysis.
As bootstrap samples are independent, the BMDExpress results
were then bootstrapped 2,000 times, where each gene in the
biomarker has a probability for inclusion into a bootstrap sample
based on the relative frequency of that gene estimated as the
total number of BMCs for that gene that passed all the filtering
criteria divided by 100. For each bootstrap sample, the median
was estimated. From the resulting bootstrap distribution, 95%
percentile confidence intervals were obtained for the median
BMCTGx (bootstrap).

RESULTS

Human HepaRGTM cells were exposed to increasing
concentrations of 12 well-characterized compounds. Exposed

cells were analyzed using CometChip R© to assess DNA damage
and TempO-Seq R© for TGx-DDI classification purposes. BMC
analyses were conducted for both tests to compare the potency
for each test chemical for the different assays.

Identification of Relevant Concentration
Ranges for Genotoxicity Testing
Prior to assessing DNA damage and DNA damage-induced
genes, it is first necessary to identify concentration ranges
that include two or more non-cytotoxic concentrations. Cell
viability was assessed using the CellTiter-Glo R© Luminescent
assay following a 3-day repeat exposure to five concentrations
of each test chemical by quantifying the luminescent signal
from ATP, an indicator of metabolically active cells, in the
treated HepaRGTM cells (Figure 1, Supplementary Table 1). All
of the DDI (Group 1) compounds except ZDV and CISP
caused declines in viability (Figure 1A). AFB1, BaP, CP, AraC,
and MMS resulted in reduced cell viability, but none of
the test concentrations exceeded the cytotoxicity threshold
of >60% (equivalent to <40% cell viability). The highest
concentration (C5) of ENU and PG resulted in <20% cell
viability following treatment (Figure 1). 2DG (Group 2) and
Urea (Group 3) did not cause any notable cytotoxicity at any
of the concentrations tested. Finally, EUG (Group 3) caused
declines in viability with the top concentration being eliminated
due to overt cytotoxicity (<20% cell viability). All concentrations
of test chemicals were used for CometChip R© analysis, including
those causing overt cytotoxicity, for simplicity; however, any
chemical treatment exceeding the cytotoxicity limits were
excluded from the TempO-Seq R© gene expression analysis (i.e.,
C5 for ENU, EUG, and PG) due to the higher cost of
this assay. Cytotoxic concentrations (< 40% viability) were
also eliminated for hazard calling and BMC modeling of
both endpoints (i.e., C5 for ENU, PG, and EUG were not
included; only positive CometChip R© and TGx-DDI responses
were modeled).

High-Throughput DNA Damage
Quantification
Levels of DNA SSBs were quantified in human HepaRGTM

cells following repeat exposures to the 12 test chemicals using
the alkaline CometChip R© assay (Figure 2). Chemicals were
considered positive if there was an increase in median % tail
DNA that was statistically significant compared to matched
vehicle control (p < 0.05). DNA damage, measured by median
% tail DNA, was observed for seven of the nine DDI (Group
1) chemicals to varying degrees, with at least one concentration
resulting in significant DNA damage compared to matched
vehicle controls. MMS, ENU, and ZDV exposure caused the
greatest accumulation of significant DNA damage in HepaRGTM

cells (p < 0.001; Figures 2F–H, respectively; note the y-axis
scale for these three compounds is greater than the other
chemicals in this figure); however, the top concentration of ENU
(C5) surpassed the cytotoxicity threshold (< 20% cell viability).
Almost all of the remaining DDI chemicals also induced
significant increases in SSBs as detected by CometChip R©, but
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FIGURE 1 | HepaRGTM cell viability measured using the CellTiter-Glo® Luminescent Cell Viability Assay for (A) DDI (Group 1) chemicals and (B) non-DDI (Group 2 and

3) chemicals. DDI chemical abbreviations: aflatoxin B1 (AFB1), benzo[a]pyrene (BaP), cisplatin (CISP), cyclophosphamide (CP), cytosine arabinoside (AraC), methyl

methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU), zidovudine (ZVD), and propyl gallate (PG; included with Group 1 chemicals). Non-DDI chemical abbreviations:

2-deoxy-D-glucose (2DG), eugenol (EUG), and Urea. The test concentrations for each chemical are shown in Table 2 (C1 is the lowest concentration and C5 is the

highest concentration). The red line represents the cytotoxicity threshold of <40% cell viability.

to a lesser extent. AraC caused significant DNA damage at the
top four concentrations tested (Figure 2E). BaP and CISP caused
significant increases in % tail DNA at C4 and C5 (Figures 2B,C).
CP exposure only caused significant % tail DNA increases at the
highest concentration (p < 0.05; Figure 2D). AFB1 exposure did
not cause measurable increases in DNA SSBs using the alkaline
CometChip R© assay (Figure 2A), which is consistent with the
relatively low magnitude of % tail DNA for agents that induce
bulky lesions [this includes AFB1, BaP, CISP, and CP; (55, 75,
76)]. PG exposure also did not yield a statistically significant
increase in DNA damage, which is consistent with the fact that

it does not directly interact with DNA to create physical damage
[Figure 2I; (77, 78)].

There was no accumulation of SSBs observed at any of the five
concentrations tested for 2DG, the non-DDI chemical (Group
2: non-genotoxic), nor for EUG and Urea (Group 3: misleading
positives); median % tail DNA was not statistically increased
compared to their matched vehicle controls (Figures 2J–L).

In summary, significant DNA damage was detected following
exposure to seven out of nine DDI compounds (Group 1).
Accumulation of DNA damage was concentration-dependent for
the majority of DDI compounds, with very large increases in
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FIGURE 2 | DNA damage in human HepaRGTM cells measured using the alkaline CometChip® assay. Cells were exposed to increasing concentrations of DNA

damage-inducing (DDI; A–I) and non-DDI test chemicals (J–L). Median % tail DNA is shown 4 h following the last exposure. The data are expressed as the median %

tail DNA ± SE (n = 4). Red bars represent Group 1 DDI chemicals, blue bars denote the Group 2 non-DDI chemical and the Group 3 potentially misleading positive

chemicals. Diagonal lines indicate overtly cytotoxic concentrations. Note the difference in the scale of the y-axis for MMS, ENU, and ZDV due to the large magnitude

of the response for these three DDI (Group 1) chemicals. *P < 0.05, **P < 0.001 compared to matched vehicle control.
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FIGURE 3 | TGx-DDI classification results are depicted using TempO-Seq® gene expression technology for the 12 test chemicals. The heatmap on the left shows the

gene expression responses of the TGx-DDI biomarker genes for the 28 reference compounds used to generate the biomarker using DNA microarray analysis in TK6

cells. The test chemicals assessed using TempO-Seq® gene expression technology in human HepaRGTM cells are shown in the subsequent heatmaps (columns).

Gene Symbols corresponding to the GenBank accession numbers for the TGx-DDI biomarker genes are shown on the right. The color scale specifies fold changes

relative to control: up-regulated genes are red, down-regulated genes are green, and genes exhibiting no changes relative to controls are black. Overall calls for all

treatment conditions are shown using red (DDI) and blue (non-DDI) bars above each heatmap. Chemical groupings from Kirkland et al. (57, 58) include Group 1 DDI

chemicals (red), a Group 2 non-DDI chemical (blue), and Group 3 potentially misleading positive chemicals (green). DDI chemical abbreviations: aflatoxin B1 (AFB1),

benzo[a]pyrene (BaP), cisplatin (CISP), cyclophosphamide (CP), cytosine arabinoside (AraC), methyl methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU),

zidovudine (ZVD), and propyl gallate (PG; *included with Group 1 chemicals). Non-DDI chemical abbreviations: 2-deoxy-D-glucose (2DG), eugenol (EUG), and Urea.

The grids above the heatmaps indicate the results of the three different TGx-DDI analyses: Probability Analysis (PA, based on nearest shrunken centroid analysis),

Principal Component Analysis (PCA) and Hierarchical Clustering (HC). The overall call is DDI if any one of these analyses yields a DDI call. Yellow boxes indicate a

positive DDI classification, blue denotes a negative non-DDI classification and white signifies an unclassified response (i.e., does not yield a DDI or non-DDI call).

% tail DNA for ENU, MMS, and ZDV. Exposure to non-DDI
(Group 2) and misleading positive compounds (Group 3) did
not cause increases in DNA SSBs in HepaRGTM cells even in the
presence of overt cytotoxicity.

TempO-Seq® Analysis for TGx-DDI
Biomarker Classification
TempO-Seq R© S1500+ sequencing was conducted for the
purposes of classifying the test chemicals as DDI or non-
DDI using the TGx-DDI genomic biomarker. None of the
negative assay controls (1X TempO-Seq R© Lysis buffer, no lysates)

exceeded 1,200 mapped read counts and the positive assay
controls (Human Reference Total RNA and Human Brain
Total RNA) showed Pearson correlation coefficients between the
replicates that were >0.98 for all pairwise comparisons. The
outlier analysis (described above) resulted in the removal of two
samples (one replicate each of CISP C2 and EUG C4). Thus, the
final sample size was n= 4, except for CISP C2 and EUG C4 that
had an n= 3.

Three independent analyses, including NSC PA, PCA, and HC
were considered in the overall TGx-DDI classification. Figure 3
is a heatmap that represents the TGx-DDI predictions for all
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TABLE 3 | Summary of CometChip® analysis and TempO-Seq® TGx-DDI classification results for 12 test chemicals.

CometChip® (DNA damage) TGx-DDI classification (gene expression)

Group 1 chemicals C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Aflatoxin B1 - - - - - + + + + +

Benzo[a]pyrene - - - + + + + + + +

Cisplatin - - - + + - + + + +

Cyclophosphamide - - - - + - - - + +

Cytosine arabinoside - + + + + + + + + +

Methyl methanesulfonate - + + + + - - + + +

N-Ethyl-N-nitrosourea - - + + X + + + + X

Zidovudine (azidothymidine) - + + + + - - - - -

Propyl gallate - - - - X - - + + X

Group 2 chemicals C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

2-Deoxy-D-glucose - - - - - - - - - -

Group 3 chemicals C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Eugenol - - - - X - - U + X

Urea - - - - - - - - - -

C1 (lowest concentration tested) to C5 (highest concentration tested); X = overtly cytotoxic (< 40% cell viability). For the CometChip® data, + indicates statistically significant increase

in DNA damage (p < 0.05), as measured using the median % tail DNA and - represents no significant DNA damage. For the gene expression data, + represents a DDI classification, -

represents a non-DDI classification, and U indicates a sample that was unclassified using the TGx-DDI genomic biomarker (TempO-Seq® data).

12 test chemicals using NSC PA. Supplementary Figures 2A–L

depicts the PCA results (panel i) and the HC results (panel ii).
If a test chemical had a positive call in one or more analyses,
it was predicted to be DDI; whereas, a chemical that had a
negative call in all three analyses was classified as non-DDI. The
TGx-DDI biomarker accurately classified eight out of nine DDI
chemicals. Four of the nine DDI compounds, AFB1, BaP, AraC,
and ENU, were classified as DDI at all five concentrations tested.
CISP classified as DDI at the top four concentrations; MMS
classified as DDI at the three highest concentrations; and CP and
PG were both predicted to be DDI at top two concentrations
tested (C5 was overtly cytotoxic so gene expression analysis was
not conducted for the highest concentration of PG). ZVD was
the only DDI compound that misclassified as non-DDI at all
concentrations tested.

The TGx-DDI biomarker correctly classified 2DG, a non-DDI
(Group 2) chemical, as non-DDI at all concentrations tested
(Figure 3). For Group 3 chemicals (EUG and Urea), which
are potentially misleading positives according to Kirkland et al.
(57, 58), only urea classified as non-DDI at all concentrations
tested (Figure 3). EUG classified as non-DDI at the two lowest
concentrations, was unclassified at C3, but rendered a positive
DDI classification at C4, the highest concentration tested (C5
was overtly cytotoxic, thus, gene expression analysis was not
conducted for the highest concentration).

An overview of the CometChip R© and TGx-DDI outcomes
is shown in Table 3. Overall, measurements of DNA damage
analyzed by CometChip R© were concordant with TGx-DDI
classification results for eight test chemicals. Four test chemicals
rendered discordant results: AFB1, PG, and EUG yielded
negative CometChip R© results but positive TGx-DDI calls;
and ZDV was positive by CometChip R© but negative with

TGx-DDI. By combining the CometChip R© assay and the
TGx-DDI biomarker (i.e., positive in one assay = positive;
negative in both = negative), 11 of the 12 test chemicals were
accurately classified.

BMC Analysis of CometChip® Data and
TGx-DDI Biomarker Genes
BMC analysis is used to mathematically model the
concentration-response curves to determine the concentration
at which a predefined increase above controls occurs for potency
ranking purposes. BMCmodeling was conducted to derive BMCs
for both apical and transcriptional endpoints and were denoted
as follows: BMC CometChip R© (BMCCC) and BMC TGx-DDI
biomarker genes (BMCTGx). The BMR used was 1SD for both
BMCCC and BMCTGx. BMCL and BMCU were also calculated,
and these are referenced in the same manner (i.e., BMCLCC
and BMCUCC; BMCLTGx and BMCUTGx, respectively). Two
strategies were used to calculate transcriptomic BMCs (i.e.,
the NTP’s approach to genomic dose-response modeling and
a bootstrap method); note that only the bootstrap method
allowed for the calculation of the 95% confidence intervals for
the TGx-DDI gene set (CIs; i.e., distance between the BMCLTGx
and BMCUTGx). Comparison of calculated BMC values and
confidence limits for CometChip R© and the TGx-DDI biomarker
genes (both methods) are shown in Table 4, in addition to the
number of TGx-DDI biomarker genes that could be modeled
and the ratio of BMCTGx/BMCCC for comparison of median %
tail DNA and transcriptomic BMC values.

Of the seven DDI compounds that could be modeled for the
CometChip R© data, BaP, CISP, AraC, and MMS were the most
potent genotoxicants in HepaRGTM, with BMCCC of 1.7, 8.5,
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TABLE 4 | Comparison of benchmark concentrations for CometChip® (BMCCC) and TGx-DDI biomarker genes (BMCTGx).

CometChip® BMC TGx-DDI median BMC TGx-DDI bootstrap median BMC

Median BMCCC

(BMCLCC - BMCUCC)

#TGx-DDI

genes modeled

Median

BMCTGx

#TGx-DDI

genes modeled

Median BMCTGx

(BMCLTGx -

BMCUTGx)

Ratio

BMCTGx/BMCCC

Group 1

Aflatoxin B1 n.m. 26 2.9 53 2.7 (1.7–5.3) -

Benzo[a]pyrene 1.7 (1.4–2.3) 15 0.56 50 0.68 (0.36–1.5) 0.39

Cisplatin 8.5 (6.8–11.2) 19 4.5 54 5.4 (2.5–11.5) 0.63

Cyclophosphamide 8,079 (6,093–9,670) 10 4,808 52 4,949 (2,086–8,408) 0.61

Cytosine arabinoside 12.1 (9.0–17.9) 9 16.6 47 12.9 (3.4–36.2) 1.07

Methyl methanesulfonate 21.3 (16.1–28.8) 22 67.1 49 76.5 (48.2–115) 3.56

N-Ethyl-N-nitrosourea 536 (389–761) 21 285 50 271 (163–494) 0.50

Zidovudine (azidothymidine) 82.5 (64.0–110) n.m. n.m. n.m. n.m. -

Propyl gallate n.m. 20 273 56 336 (246–443) -

Group 2

2-Deoxy-D-glucose n.m. n.m. n.m. n.m. n.m. -

Group 3

Eugenol n.m. 17 535 56 529 (382–748) -

Urea n.m. n.m. n.m. n.m. n.m. -

Chemicals that displayed a statistically significant increase in median % tail DNA were modeled for CometChip® BMC (BMCCC) analysis. Chemicals that resulted in a positive DDI

classification using the TGx-DDI biomarker were modeled for TGx-DDI BMC (BMCTGx ) analysis. Chemicals that did not fit the criteria to be modeled for BMCCC or BMCTGx were not

modeled (n.m.). TGx-DDI Median BMCs were calculated using the criteria and strategy outlined in the National Toxicology Program’s Approach to Genomic Dose-Response Modeling

(72). TGx-DDI Bootstrap Median BMCs were calculated using a bootstrap method to allow lower and upper confidence intervals to be calculated.

12.1, and 21.3µm, respectively. BMCCC’s for ZDV and ENUwere
82.5 and 536µm, respectively; whereas, the data suggest that CP
was the least potent DDI compound in HepaRGTM cells with a
BMCCC of 8079µm. Potency ranking for SSBs was thus BaP >

CISP > AraC > MMS > ZDV > ENU > CP > (negative in
CometChip R© – AFB1, PG, 2DG, EUG, Urea).

BMCTGx analysis for DDI test chemicals with a positive
TGx-DDI classification was conducted using two different
methods. Both the median BMCTGx and the bootstrap median
BMCTGx resulted in very similar potency rankings of the DDI
chemicals (Table 4). Of the eight DDI compounds that could
be modeled for the TGx-DDI data, BaP, AFB1, CISP, AraC, and
MMS were the most potent genotoxicants in HepaRGTM, with
BMCTGx (bootstrap median) of 0.68, 2.7, 5.4, 12.9, and 76.5µm,
respectively. BMCTGx for ENU and PG were 271 and 336µm,
respectively. CP was the least potent DDI compound with a
BMCTGx of 4949µm. For the median BMCTGx, the potency
ranking was as follows: BaP > AFB1 > CISP > AraC > MMS
> PG > ENU > EUG > CP > (TGx-DDI negative – ZDV, 2DG,
Urea); whereas, the ranking of ENU and PG were reversed for
bootstrap median BMCTGx (i.e., BaP > AFB1 > CISP > AraC
> MMS > ENU > PG > EUG > CP; Table 4). The number of
TGx-DDI biomarker genes (64 in total) that fit models ranged
from 9 (AraC) to 26 (AFB1) using the median BMC approach,
but increased substantially from 47 (AraC) to 56 (PG and EUG)
using the bootstrap median BMC approach (Table 4).

We then directly compared chemicals that were positive in
both assays and could be fit to BMC models (i.e., 6 of the 12
chemicals). Remarkably, when comparing chemicals that could
be modeled for both CometChip R© and transcriptomic endpoints

(bootstrap method), the chemical ranking was identical and the
ratios of BMCTGx/BMCCC were within 4-fold, ranging from 0.4
to 3.6 (Table 4 and Figure 4). BaP, CISP, CP, and ENU had
marginally lower BMCTGx than BMCCC; whereas, the BMCTGx

and BMCCC were virtually the same for AraC. MMS was the
only test chemical with a lower BMCCC than BMCTGx, and this
is consistent with the fact that MMS is the only chemical that is
primarily repaired by the base excision repair (BER) pathway; see
discussion (Table 4 and Figure 4). The confidence intervals on
the BMCTGx are larger than the BMCCC. Overall, the BMCCC and
the BMCTGx are highly correlated and result in the same chemical
rankings for both the CometChip R© assay and the transcriptomic
TGx-DDI biomarker assay.

DISCUSSION

To address twenty-first century toxicology needs, an efficient
and accurate genotoxicity testing paradigm is urgently required
to assess the expanding backlog of data poor chemicals in
need of genotoxic evaluation. A high-throughput, integrated
test approach that pairs apical and mechanistic data in
a human-relevant cell model with metabolic capabilities
would be beneficial to address this requirement. TGx
biomarkers are useful for this purpose as they enable rapid
extraction of mechanistic data from HTTr data (36), which
is more compelling when paired with a measure of DNA
damage. To address this need, here we have combined a
measure of DNA damage (the CometChip R© assay) with the
TGx-DDI genomic biomarker in physiologically-relevant
human HepaRGTM cell cultures for hazard identification
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FIGURE 4 | Relationship between the BMCs of the CometChip® data (BMCCC) and the TGx-DDI biomarker genes (BMCTGx) for the test chemicals that yielded positive

hazard calls in both tests and could be modeled. Specifically, the BMCCC with a BMR of 1SD with two-sided 95% CIs are shown for the CometChip® vs. median

bootstrap BMCTGX (BMR of 1SD) with two-sided 95% CIs for the TGx-DDI biomarker classification endpoint. The BMCs for the agents that were classified as DDI from

both approaches were within 10-fold. The two parallel black lines with intercepts of 1 and −1 on the double log10 scale represent a 10-fold deviation from the 1:1 line.

and quantitative analysis of genotoxic potential of DDI and
non-DDI chemicals.

We exposed differentiated human HepaRGTM cells using
a 3-day daily repeat exposure protocol to 12 test chemicals
with varying modes-of-action, including nine DDI (Group
1), one non-DDI (Group 2), and two potentially misleading
positives (Group 3). The TGx-DDI transcriptomic biomarker
was analyzed with the high-throughput TempO-Seq R© platform
to establish the value of its integration with the high-throughput
CometChip R© assay to assess DNA damage. Although each
assay had merit on its own, integration of these genotoxicity
tests correctly classified all of the DDI agents (Group 1),
the non-DDI agent (Group 2), and identified one of two
Group 3 chemicals (i.e., “misleading” positive) as non-DDI.
BMC modeling of both endpoints revealed identical potency
rankings for SSBs compared to transcriptional changes (i.e.,
BMCTGx/BMCCC ratios were within 4-fold). We conclude
that integration of the CometChip R© assay with the TGx-DDI
genomic biomarker in HepaRGTM cells provides an effective and
higher-throughput approach to genotoxicity testing to accurately
identify and prioritize chemicals that cause DNA damage and
to evaluate their potency. Below we discuss the concordant

and discordant results in the context of the complementarity
of these assays.

We first explored the concordance of hazard calls made
using the CometChip R© assay with the TGx-DDI transcriptomic
biomarker. Eight of 12 test chemicals yielded concordant hazard
calls (i.e., caused SSBs and classified as DDI, or did not cause
SSBs and classified as non-DDI). Of the nine DDI chemicals, six
produced concordant results albeit at differing concentrations:
BaP, CISP, CP, AraC, MMS, and ENU. Of these, the TGx-DDI
biomarker measured using TempO-Seq R© was somewhat more
sensitive at detecting DNA damage for five of the six chemicals.
Specifically, it classified chemicals as DDI at lower concentrations
than at whichDNAdamage was observed using the CometChip R©

assay (MMS was the only exception). This is consistent with
our BMC analysis, where MMS was the only chemical with a
BMCTGx/BMCCC ratio>1. This is interesting as MMS is the only
test chemical included in this study where DNA damage is almost
exclusively repaired bymeans of Base Excision Repair (BER) (79).
BER enzymes eliminate damaged bases, which result in persistent
SSBs as requisite DNA repair intermediates. The alkaline comet
assay does not directly detect damaged base lesions, rather they
are indirectly measured when the DNA repair enzymes create
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strand breaks in the repair process. This is in contrast to the
highly coordinated Nucleotide Excision Repair (NER) pathway
that is extremely efficient in repairing damage and therefore
minimizes the detectable SSB repair intermediates (55). Thus,
there was a large degree of concordance in genotoxicity hazard
calls between the assays, with a marginally increased sensitivity
of TGx-DDI at lower concentrations.

Conversely, there were three instances of discordant test
results across the two assays for the nine DDI chemicals tested:
AFB1, PG, and ZDV. AFB1 was negative by CometChip R© but
had a very strong transcriptional DNA damage response and
was classified as DDI using the TGx-DDI biomarker. A negative
comet result is not unexpected for AFB1, as it is a genotoxic
carcinogen that induces bulky DNA adducts. The alkaline comet
assay is best suited for the identification of SSBs, abasic sites,
and alkali-sensitive sites (31); it is not very sensitive in the
detection of bulky lesions as they do not directly affect DNA
migration. Thus, modifications to the standard Comet assay
greatly increase sensitivity and therefore help to reliably detect
bulky DNA adducts that are actively repaired by means of NER
in a highly coordinated fashion (possibly with short-lived NER-
induced SSB repair intermediates) (55, 80–83). Specifically, co-
exposure to hydroxyurea and AraC traps NER intermediates,
allowing for SSB repair intermediates to persist, which greatly
improves the sensitivity of the assay for bulky lesions [e.g., (55)].
It is also possible that DNA damage may have been detectable
with the CometChip R© assay following AFB1 exposure had we
used a higher test concentration that reduced cell viability to the
40% target, as a modest increase was seen with other adduct-
forming chemicals (e.g., BaP and CP) that did achieve this level
of cytotoxicity. It is also important to consider the dynamics of
repair and metabolism; it is possible that analysis at a different
time point or in a different human cell line could yield different
findings. Distinct biotransformation properties and genotoxic
responses are associated with both cell line and time, which
can influence the detection capabilities of the assay (75, 84).
Nonetheless, we note that the TGx-DDI biomarker identified
AFB1 as a strong positive, supporting the complementarity of
these assays.

Conflicting responses were also observed for PG, an additive
used to prevent oxidation (negative CometChip R© and positive
TGx-DDI) (78, 85). PG is positive in the Ames assay with S9
metabolic activation (59) and induces MN and chromosomal
aberrations in vitro and vivo (60, 86). Thus, the TGx-DDI
biomarker correctly classified PG as DDI lending support
to the removal of PG from Kirkland et al. (58) Group
3 chemical list. Some antioxidant chemicals, including PG,
promote the generation of reactive oxygen species at elevated
concentrations (85, 86). Thus, it is possible that we may have
detected oxidative DNA damage following PG exposure using a
formamidopyrimidine-DNA glycosylase (Fpg)-modified Comet
assay, as this lesion-specific enzyme can convert undetectable
base lesions caused by oxidative DNA damage into detectable
SSBs (31).

Finally, ZDV also yielded discordant outcomes; in this case,
a strong DNA damage response by CometChip R© was observed
with a non-DDI prediction using the TGx-DDI biomarker. This

result is plausible and not unexpected as ZDV, also known as
azidothymidine, is an anti-HIVmedication that belongs to a class
of nucleoside analog reverse-transcriptase inhibitors (87), which
can dampen the gene expression response (88, 89). Indeed, visual
inspection of the heatmap of TGx-DDI genes reveals a broad
decrease in transcript levels following ZDV exposure (Figure 3).

These discordant results highlight the fact that a single in vitro
genotoxicity test is not likely to detect all DDI compounds due to
the vast array of genotoxic MoAs and the limitations inherent to
specific genotoxicity assays. However, when a standardized DNA
damage test (i.e., the Comet assay) is paired with a transcriptomic
biomarker for DNA damage (i.e., the TGx-DDI biomarker), this
built-in test redundancy helps to ensure correct classification and
indicates when further follow-up may be necessary to further
assess certain chemicals. Indeed, Allemang et al. (90) compared
classical and twenty-first century genotoxicity tools (in vitro
MN, ToxTracker assay, and genomics-based methods including
TGx-DDI) and found that no single test correctly classified
all genotoxicants when used in isolation; however, the ability
to identify genotoxicants improved dramatically when the in
vitro MN assay was combined with another predictive test such
as the TGx-DDI biomarker. They determined that a “fit for
purpose” approach was required to combine the appropriate
assays to maximize the predictive capacity of the tests for
genotoxicity assessment.

The TGx-DDI transcriptomic biomarker was originally
developed to distinguish DDI from non-DDI compounds to
aid in the interpretation of positive in vitro genotoxicity
outcomes. In our previous work, Li et al. (36) demonstrated
that the TGx-DDI biomarker correctly identified nine out of
10 chemicals classified as having “irrelevant positive” in vitro
chromosome damage results. In this study, there are two
potentially misleading positive chemicals from the Group 3 list:
EUG and Urea. Group 3 chemicals should test negative, but
have been reported to induce gene mutations, chromosomal
aberrations, or MN, often at high concentrations or high levels
of cytotoxicity (57, 58). Urea rendered negative results (i.e.,
no SSBs and non-DDI classifications) at all concentrations
tested for both assays. However, this was not the case for
EUG. EUG is a naturally occurring phenolic molecule found in
plants (Table 1) (91, 92). While it did not cause any detectable
SSBs using the CometChip R© assay herein, exposure to EUG
resulted in a DDI classification at the highest non-cytotoxic
concentration (C4) with TGx-DDI. Although EUG is generally
negative for genotoxicity endpoints in p53-competent cells (86),
it has tested positive in the mouse lymphoma assay and for
chromosomal aberrations at high levels of cytotoxicity – it has
been hypothesized that these levels of exposure may overwhelm
detoxification leading to positive results (58, 93). The highest
concentration of EUG analyzed for TGx-DDI was very close
to the cytotoxicity threshold of 60% (56% for EUG C4); thus,
it seems that high levels of cytotoxicity may be a plausible
reason for the misclassification of EUG herein. Moreover, EUG
was tested at a high concentration for C4 (1250µm), which
may have contributed to the misleading positive TGx-DDI
classifications at this test concentration, as it may have depleted
the detoxification potential of the cells, leaving EUG to cause
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primary DNA lesions in some cell types (91). It is possible that the
discordant observations for EUG are a result of the different assay
sensitivities. Alternatively, it is possible that EUG is exerting a
genotoxic effect via a different MoA (i.e., a genotoxic mechanism
that does not lead to SSBs), which results in a positive TGx-
DDI classification in the absence of SSBs. Based on our results
and those of the aforementioned studies, we speculate that the
discordant results obtained for EUG are in fact relevant and
thus require further analysis to explore the DDI potential of this
chemical at high concentrations and/or levels of cytotoxicity.

The field of genetic toxicology is shifting toward more
quantitative analyses of genetic toxicology data for potency
assessments (94–97). Previous work has shown that
transcriptional PODs are well-aligned with apical PODs
(98–101). Moreover, Bemis et al. (102) demonstrated the
correlation between in vitro and in vivo BMDs for flow
cytometric micronucleus data and suggested that the clastogenic
potential of a chemical can be calculated from animal studies or
cell-based models of chromosome damage. Our previous work in
human TK6 cells also demonstrated the concordance of BMCMN

and BMCTGx (i.e., within 10-fold) following exposure to three
chemicals (68). Herein, we applied BMC modeling to the 12 test
chemicals to compare potencies using the CometChip R© assay vs.
the TGx-DDI biomarker. The BMCTGx values calculated were:
(1) the TGx-DDI median BMC, and (2) the TGx-DDI bootstrap
median BMC. The bootstrap median BMC method allowed
us to model a much higher number of TGx-DDI biomarker
genes (e.g., 9 to 26 genes modeled for median BMC method
vs. 47 to 56 for the bootstrap median BMC method). It also
allowed us to generate 95% confidence intervals for the BMCTGx

values (i.e., BMCLTGx and BMCUTGx), which is particularly
useful for comparing chemical potency rankings. However, given
that the concentration ranges differed for the test chemicals
in this study, the BMCs were primarily used to compare each
chemical’s response across the two assays (i.e., BMCCC vs.
BMCTGx for each chemical) and BMC comparisons within
each assay must be interpreted with caution. For chemicals
that had a positive response in both assays, we observed a good
correlation between the BMCCC and the BMCTGx in that the
ratio of BMCTGx (bootstrap method)/BMCCC was between
0.39 and 3.6 for BaP, CISP, CP, AraC, MMS, and ENU. Of the
six chemicals that were modeled for both methodologies, the
BMCTGx was more sensitive for four of the chemicals (i.e., BaP,
CISP, CP, ENU); the BMCs were virtually identical for AraC, and
the BMCCC was more sensitive for MMS. However, it should
be noted that the lower BMCTGx values were offset by larger
confidence intervals on the TGx-DDI biomarker BMCs, which
is expected as this is a composite biomarker that includes many
gene BMCs. Nonetheless, chemical rankings are identical (i.e.,
the ranking from lowest to highest BMC) for the CometChip R©

assay vs. the TGx-DDI biomarker using the bootstrap method
(e.g., BaP > CISP > AraC > MMS > ENU > CP). This study
provides further experimental evidence to support the use of
BMCs as transcriptional points of departure since they are highly
predictive of apical PODs.

In this study, the TGx-DDI assay was conducted using
high-throughput targeted RNA-sequencing (TempO-Seq R©) to

improve the throughput, accuracy, and dynamic range of the
gene expression analysis directly from HepaRGTM cell lysates,
which also eliminates the requirement to extract RNA thereby
improving the efficiency (103, 104). When HTTr is used in
combination with a metabolically competent human cell line,
such as HepaRGTM cells, it greatly decreases the time and cost
required to assess a chemical (no additional test in the presence
of S9 needed), while improving the human relevance of this
NAM. Beyond the TGx-DDI classification, rich mechanistic data
from the transcriptomic data are available for further mining. For
example, standard pathway analyses can be applied to explore
additional key events and other biomarkers can be analyzed
in the same data sets [e.g., we have recently developed the
TGx-HDACi transcriptomic biomarker; (105)]. One caveat is
that chemicals that inhibit transcription are not amenable to
analysis by transcriptomics, which can lead to misclassification
(e.g., ZDV, a nucleoside transcriptase inhibitor, misclassified at
all concentrations). However, our work and the work of others
[e.g., (106, 107)] demonstrate that the use of transcriptomic
biomarkers provides a rapid and non-subjective approach to the
extraction of information about key toxicological events.

In summary, we demonstrate the potential of a new test
paradigm that integrates the TGx-DDI biomarker with the
high-throughput CometChip R© assay. We validate performance
by HTTr profiling in the physiologically-relevant HepaRGTM

cell model. Concentration-response modeling for the two
tests established the concordance of BMCs for DNA SSBs
measured using the CometChip R© assay and transcriptional
changes in TGx-DDI biomarker genes. This is another step in
accomplishing a more integrated genotoxicity testing strategy to
derive mechanistic information to better inform human health
risk assessment in a higher-throughput manner.
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