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Abstract: Calmodulin (CaM) and phosphatidylinositide-3 kinase (PI3Kα) are well known for their
multiple roles in a series of intracellular signaling pathways and in the progression of several
human cancers. Crosstalk between CaM and PI3Kα has been an area of intensive research. Recent
experiments have shown that in adenocarcinoma, K-Ras4B is involved in the CaM-PI3Kα crosstalk.
Based on experimental results, we have recently put forward a hypothesis that the coordination
of CaM and PI3Kα with K-Ras4B forms a CaM-PI3Kα-K-Ras4B ternary complex, which leads to
the formation of pancreatic ductal adenocarcinoma. However, the mechanism for the CaM-PI3Kα

crosstalk is unresolved. Based on molecular modeling and molecular dynamics simulations, here we
explored the potential interactions between CaM and the c/nSH2 domains of p85α subunit of PI3Kα.
We demonstrated that CaM can interact with the c/nSH2 domains and the interaction details were
unraveled. Moreover, the possible modes for the CaM-cSH2 and CaM-nSH2 interactions were
uncovered and we used them to construct a complete CaM-PI3Kα complex model. The structural
model of CaM-PI3Kα interaction not only offers a support for our previous ternary complex
hypothesis, but also is useful for drug design targeted at CaM-PI3Kα protein-protein interactions.

Keywords: calmodulin; PI3Kα; K-Ras4B; molecular dynamics simulations; molecular modeling;
adenocarcinoma; protein-protein interactions

1. Introduction

K-Ras4B is situated at the crossroad of several cellular signaling pathways, and it is involved
in cell growth and proliferation [1–6]. Mutations of K-Ras4B frequently occur in various kinds
of cancers [3,7–11], and one of the most deadly of them is pancreatic ductal adenocarcinoma
(PDAC) [9,12–14]. PDAC is known for its poor prognosis and high mortality and few patients
can survive for 5 years after operations [15]. Mutation rate of K-Ras4B in PDAC can be as
high as 95% [5,16,17] and accumulating evidence suggests that both calmodulin (CaM) and
phosphatidylinositide-3 kinase (PI3Kα) play key roles in the K-Ras4B-driven adenocarcinoma [18–21].

CaM is a calcium-binding protein [22–24] that consists of a pair of symmetric N-lobe and
C-lobe and the connecting linker [25]. Since the linker is relatively flexible, CaM can adopt two
conformational topologies, the extended and the collapsed shapes. In response to calcium binding,
CaM can interact with different targets [26] and it is thus involved in several intracellular signaling
pathways [22–24,27–30]. One of the major targets of CaM is K-Ras4B [18–20,27]. In adenocarcinoma,
GTP-bound activated K-Ras4B is specifically regulated by CaM [19,20,24], and such a finding is
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supported by the clinical observation that higher calcium concentration in serum can lead to the poor
prognosis of the K-Ras4B-driven PDAC [23]. Thus, it is widely accepted that CaM can modulate the
progression of K-Ras4B-driven cancer and one potential downstream target is the K-Ras4B-PI3K-Akt
pathway [19,21,24,28].

PI3Kα is a downstream target of K-Ras4B [31,32] and PI3Kα-Akt signaling pathway is one of the
key components in the K-Ras4B-driven tumorigenesis [21,32–34]. PI3Kα is a lipid kinase composed
of p110α catalytic and p85α regulatory domains [35–38]. Upon activation by the phosphorylated
epidermal growth factor receptor (pEGFR) and K-Ras4B, PI3Kα catalyzes the synthesis of the second
messenger phosphatidylinositol-3,4,5-triphosphate (PIP3) and further activates the following Akt
protein [34,39–45]. PI3Kα and mitogen-activated protein kinase (MAPK) signaling are both mediated
by K-Ras4B. However, Saur et al. have recently revealed that in K-Ras4B-driven adenocarcinoma,
PI3Kα signaling is abnormally stimulated by the mutated K-Ras4B while the MAPK pathway cannot be
activated [21]. Hence, both CaM and PI3Kα are regarded as important regulators in the K-Ras4B-driven
adenocarcinoma. Additionally, previous research has shown that CaM can directly interact with PI3Kα

through its p85α subunit and enhance its activity [46]. Thus, based on these results, we have recently
put forward a ternary complex model in which the coordination of CaM and PI3Kα with K-Ras4B
forms a CaM-PI3Kα-K-Ras4B ternary complex, which leads to PDAC [47–49]. According to this
hypothesis, CaM-PI3Kα-K-Ras4B interact with each other, which explains the above observation that
both CaM and PI3Kα modulate the K-Ras4B-driven carcinogenesis. However, the detailed interactions
between CaM and PI3Kα are still unknown.

Here, we explored the two regulatory components of the ternary complex, CaM and PI3Kα.
We employed the molecular modeling and molecular dynamics (MD) simulations to explore the
interactions between CaM and both the cSH2 and nSH2 domains of p85α regulatory subunit of
PI3Kα. We first demonstrated that CaM can replace pEGFR to bind to the cSH2 and nSH2 domains.
The potential models for the CaM-cSH2 and CaM-nSH2 interactions were unmasked. Detailed
interactions of the CaM-cSH2 and CaM-nSH2 complexes were further revealed, which was applied
to construct a complete CaM-PI3Kα complex. The obtained results not only offer a support for
our previous ternary complex hypothesis but also provide a structural basis for future drug design
targeting CaM-PI3Kα protein-protein interactions.

2. Results

2.1. Overview of the Complex Structures

200 ns MD simulations were performed for the ten complex systems, including C1-C4 for
CaM-cSH2, N1-N4 for CaM-nSH2, pEGFR-cSH2, and pEGFR-nSH2. We first had a brief overview
of the conformation of the complexes after simulations and found that CaM can bind to the c/nSH2
domains in different topologies. For the cSH2 systems, CaM is in a collapsed conformation in C1,
while in C2-C4 it adopts a stretched conformation (Figure 1). For the nSH2 systems, CaM presents a
collapsed conformation in N1, N3 and N4, while in N2 it takes on a stretched conformation which
enables it to wrap around nSH2 tightly (Figure 2).

The Cα atoms root-mean-square deviation (RMSD) of the trajectories with respect to the original
structures was calculated to reveal the dynamic conformational changes throughout the MD process.
A relatively unchanged RMSD reflects the equilibrium of the simulation system and the following
analysis of the trajectories only focuses on the trajectories that reach equilibrium. The equilibrium time
for C1–C4 and pEGFR-cSH2 is 60, 114, 10, 60 and 30 ns, respectively, (Figure 3A) and for N1–N4 and
pEGFR-nSH2, it is 20, 40, 10, 10 and 30 ns, respectively (Figure 3B).
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Figure 1. Structures of (C1–C4) complexes after 200 ns MD (molecular dynamics) simulations. Cyan 
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Figure 2. Structures of (N1–N4) complexes after 200 ns MD simulations. Pink structure represents 
CaM, and green for nSH2. 
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The RMSDs in C1 and N1 are relatively large and the influence of CaM topology on RMSD 
contradicted with previous study. Jang et al. reported that the stretched CaM structure would yield 
a large RMSD while the collapsed one was related to a small value [50]. However, in our simulations, 
such relationship is not obvious. In C1, the collapsed CaM produces a large RMSD, while in N2 the 
stretched CaM produces a relatively small RMSD. Such phenomena can be explained by different 
interaction modes of CaM-cSH2 and CaM-nSH2. During the simulation process, CaM underwent 
movement or rotation around its binding site on c/nSH2, which would lead to a large RMSD for the 
binary complexes of CaM-cSH2 and CaM-nSH2.  

2.2. MM/GBSA Free Energy Analysis 

To understand the energetics of the interaction between CaM or pEGFR and c/nSH2 domains, 
binding free energy (ΔGbinding) of CaM or pEGFR to cSH2 or nSH2 was calculated using MM/GBSA 
method. As shown in Table 1, C2, C3, N2, and N3 all underwent comparable free energy changes to 
the pEGFR systems during binding process and the binding free energy of N4 was even lower than 
the pEGFR system. Insights into the compositions of the interaction energy revealed that the major 
contribution originated from the electrostatic term. The similar or even lower binding free energy 
suggests that CaM can replace pEGFR and interact with c/nSH2 domains, which supports the ternary 
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Figure 3. The Cα atoms root-mean-square deviation (RMSD) of eight CaM-p85α and two pEGFR-p85α
systems along 200 ns MD simulations. (A) RMSD for CaM-cSH2 and pEGFR-cSH2 systems. (B) RMSD
for CaM-nSH2 and pEGFR-nSH2 systems.

The RMSDs in C1 and N1 are relatively large and the influence of CaM topology on RMSD
contradicted with previous study. Jang et al. reported that the stretched CaM structure would yield a
large RMSD while the collapsed one was related to a small value [50]. However, in our simulations,
such relationship is not obvious. In C1, the collapsed CaM produces a large RMSD, while in N2 the
stretched CaM produces a relatively small RMSD. Such phenomena can be explained by different
interaction modes of CaM-cSH2 and CaM-nSH2. During the simulation process, CaM underwent
movement or rotation around its binding site on c/nSH2, which would lead to a large RMSD for the
binary complexes of CaM-cSH2 and CaM-nSH2.

2.2. MM/GBSA Free Energy Analysis

To understand the energetics of the interaction between CaM or pEGFR and c/nSH2 domains,
binding free energy (∆Gbinding) of CaM or pEGFR to cSH2 or nSH2 was calculated using MM/GBSA
method. As shown in Table 1, C2, C3, N2, and N3 all underwent comparable free energy changes to
the pEGFR systems during binding process and the binding free energy of N4 was even lower than
the pEGFR system. Insights into the compositions of the interaction energy revealed that the major
contribution originated from the electrostatic term. The similar or even lower binding free energy
suggests that CaM can replace pEGFR and interact with c/nSH2 domains, which supports the ternary
complex hypothesis.

To quantify the contributions of different residues to the binding free energy in details, the total
energy change was decomposed into each residue by weight. Residues with free energy contributions
lower than −0.3 kcal/mol were considered to be critical to the protein-protein interaction. Most of
these important residues are located at the interfaces of CaM-cSH2 and CaM-nSH2 or pEGFR-cSH2
and pEGFR-nSH2, implying their pivotal roles in the protein-protein interaction. These important
residues from the c/nSH2 domains reflect the effect exerted by CaM or pEGFR. We further aligned
the amino acids sequences to compare the different important residues in different systems (Table 2,
Figure S1). If the important residues in the CaM systems largely overlap with the ones in the pEGFR
systems, it indicates that the corresponding CaM may have a pEGFR-like mode. As is shown in Table 2,
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C2 and N2 have the most overlapping residues with the corresponding pEGFR-p85α complex systems.
In C2 there are 8 overlapping residues (Figure S1A), while in N2 there are 11 (Figure S1B). Most of these
important residues are located along the interface between CaM or pEGFR and c/nSH2, suggesting
that they are involved in the protein-protein interactions. More overlapping residues in the C2 and
N2 also implies that the CaM in these two systems imposes a similar influence as pEGFR. Hence, it is
likely that CaM can replace and mimic pEGFR’s role to interact with the c/nSH2 domains in the C2
and N2 styles, respectively.

Table 1. Free energy analysis (kcal/mol) for the CaM/pEGFR-p85α interactions a.

Systems C1 C2 C3 C4 pEGFR-cSH2

DEele −487.24 (72.84) −454.04 (56.60) −481.67 (72.71) −648.54 (67.12) −272.97 (176.16)
DEvdW −28.32 (8.80) −52.71 (5.67) −104.44 (9.22) −44.78 (8.30) −26.16 (18.75)

DGnonpolar −4.84 (1.46) −7.08 (0.98) −14.41 (1.35) −6.74 (1.05) −4.72 (3.31)
DGpolar 498.13 (73.12) 476.20 (53.19) 546.28 (67.34) 677.47 (67.24) 264.58 (170.14)

DGbinding −17.43 (11.54) −30.56 (10.19) −39.83 (10.46) −15.84 (7.87) −34.56 (24.51)

Systems N1 N2 N3 N4 pEGFR-nSH2

DEele −327.90 (66.64) −696.61 (78.38) −445.38 (102.15) −750.52 (89.50) −420.68 (242.11)
DEvdW −73.53 (9.76) −78.07 (13.17) −101.85 (11.04) −132.88 (10.91) −40.35 (23.74)

DGnonpolar −11.06 (1.25) −12.18 (1.79) −14.69 (1.73) −20.70 (1.41) −6.71 (3.88)
DGpolar 370.08 (62.20) 718.05 (75.83) 484.00 (98.17) 787.72 (86.24) 395.50 (226.89)

DGbinding −31.35 (10.49) −56.62 (10.88) −63.23 (12.84) −95.68 (11.78) −65.53 (38.63)
a Numbers in the parentheses present the standard deviations. The MM/GBSA binding free energy
(DGbinding = DEvdW + DEele + DGnonpolar + DGpolar).

Table 2. Comparison of the important residues for CaM/pEGFR-p85α interactions.

System C1 C2 * C3 C4

Overlap residues 5 8 4 3

System N1 N2 * N3 N4

Overlap residues 5 11 5 5

* Systems with asterisks are the ones with most overlapping residues important for interactions.

2.3. Superposition Analysis of the Candidate Structures

MM/GBSA analysis revealed that replacement of pEGFR by CaM is energetically favorable and
the decomposition results showed that CaM in the C2 and N2 may function in a similar manner to
pEGFR. To further validate these results, superposition analysis of ten complexes after simulations
was carried out. C1–C4 were superposed to the pEGFR-cSH2 complex (Figure 4A,C) and N1–N4 to
the pEGFR-nSH2 complex (Figure 4B,D). The results showed that CaM can bind to cSH2 or nSH2 at
different sites. However, only in C2 and N2 systems the binding sites of CaM overlap with those of
pEGFR (Figure 4A,B), which is in agreement with the previous energy decomposition results.

In C2, CaM takes on a stretched conformation, with part of its N-lobe, helix and random structure
(P44-G62) inserting into the pEGFR site (Figure 5). These structures interact with the cSH2 in a similar
topology to pEGFR, which can account for their similar effect. CaM binds to cSH2 near the pEGFR site
and therefore can mimic the effect induced by pEGFR. In N2, CaM is in an extended conformation
and it closely wraps around nSH2 and overlaps with the pEGFR binding site. The stretched linker of
CaM in this system hangs across the pEGFR binding pocket and the helices in C-lobe (Y139-A148) and
N-lobe (T45-D59) also interact with the pEGFR site (Figure 6).
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2.4. Insights into the Detailed CaM-cSH2 and CaM-nSH2 Interactions

Structural analysis showed that in C2 and N2, the binding modes of CaM are similar to the ones
of pEGFR. PISA (Proteins, Interfaces, Structures and Assemblies) [51] was then employed to explore
the detailed interactions of the two systems through analysis of their interfaces.

In C2, the binding interface of CaM and cSH2 is 539.1 Å2, deriving from 13 residues of CaM and
21 residues of cSH2. For N2, the interface is 1217.6 Å2, consisting of 34 residues of CaM and 35 residues
of nSH2. Similar to the free energy decomposition analysis, the interface residues on the c/nSH2
domains from the C1–C4 and N1–N4 were compared with those in pEGFR systems (Table 3, Figure S2).
The interface residues in C2 and N2 significantly overlap with those in pEGFR-cSH2 and pEGFR-nSH2,
which is consistent with the energy decomposition results. In addition, the interface residues detected
by PISA in C2 and N2 also overlaps with those obtained from the free energy decomposition analysis.

Table 3. Comparison of the interface residues of CaM/pEGFR-p85α interactions.

System C1 C2 * C3 C4

Overlap residues 2 14 0 0

System N1 N2 * N3 N4

Overlap residues 0 15 2 5

* Systems with asterisks are the ones with most overlapping interface residues.

In addition to interface areas and residues, PISA also uncovered the molecular interactions along
the binding interfaces. In C2, there are 5 inter-molecular hydrogen bonds and 4 salt bridges across the
interface (Table S1). D47 of CaM makes salt bridges with the protonated nitrogen in the guanidine
group of R37 of cSH2 and E79 of CaM forms another salt bridge with the amino group of K41 of cSH2.
G56 of CaM is hydrogen-bonded to R19 of cSH2 (Figure 7). In N2, there exist 15 hydrogen bonds and
10 salt bridges between CaM and nSH2 (Figure 8, Table S2). Hotspot residues on CaM such as D54 and
E41 form salt bridges with 3 neighboring residues from nSH2, revealing their critical roles within the
complex. The pivotal residues involved in multiple inter-protein interactions play central parts in the
binding of CaM to p85α subunit and may become potential targets for modulation of the CaM-PI3Kα
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Figure 8. Detailed interaction between CaM and nSH2 in N2 after 200 ns simulation. Hydrogen bonds
are depicted by green dashed lines. CaM structure is colored in pale yellow, and nSH2 structure is in gray.
CaM residues involved in hydrogen bonds formation are in cyan, and the nSH2 ones are in yellow.

2.5. Construction of CaM-PI3Kα Complex Model

The binding modes of CaM-cSH2 and CaM-nSH2 shed light on the detailed interactions between
CaM and the p85α regulatory subunit of PI3Kα. To have a view of the complete CaM-PI3Kα interaction,
we constructed the full-length CaM-PI3Kα complex model. According to previous analysis, C2 and N2
are regarded as the ideal modes for CaM to interact with c/nSH2 in the p85α subunit of PI3Kα, so their
protein complexes before 200 ns simulations were used to assemble our model. Crystal structure of
PI3Kα (PDB ID: 4OVV) [52] was extracted from the PDB and the C2 and N2 complexes were aligned to
it via structural superimposition on the c/nSH2 domains. After constructing the primary CaM-PI3Kα

complex model, energy optimization of the overall systems was performed.
As shown in Figure 9, CaM takes on an extended conformation to interact with p85α in PI3Kα at

the cSH2 domain. CaM places its N-lobe on the cSH2 surface and exerts a pEGFR-like effect. However,
both the stretched linker and C-lobe of CaM project away, without any contact with other parts of
PI3Kα. Also, in our model there exists limited space on cSH2 for CaM binding, which results in the
narrow interface between CaM and cSH2. The relatively small interface may be one of the reasons for
the movement of CaM throughout the interaction process and more importantly, it explains why an
allosteric mechanism may be involved in the activation of PI3Kα by CaM through cSH2 [18]. Given the
narrow interface between CaM and cSH2, direct protein-protein contact may not be able to exert
effects strong enough and hence, allosteric signaling may play a role in the activation of PI3Kα by
CaM through cSH2. As for the nSH2 domain, previous comparison of N2 structures before and after
simulation shows that CaM moved along the nSH2 interface during simulation and this observation
can find its origin in our assembly. In our model, the structures near nSH2 are relatively flexible and
the inserting CaM does not have much conformational hindrance around its binding site. Hence, it is
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very likely that when interacting with full-length PI3Kα CaM will also move across the nSH2 interface,
inserting towards the inner part of PI3Kα and impose its activating effect. Moreover, nSH2 situates
near iSH2 domain (part of p85α subunit that connects nSH2 to cSH2) and p110α subunit of PI3Kα

and the CaM binding site locates adjacent to the interface between p110α and nSH2. Since there are
relatively fewer conformational constraints around the interfaces, these observations support our
simulation results, in which CaM gradually “crawls” across nSH2 and inserts into the whole protein
assembly to exert its influence.
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Figure 9. Predicted CaM-PI3Kα complex model constructed with CaM in C2 and N2 and full-length
Phosphatidylinositol 3-Kinase α (PI3Kα). Complex system in cartoon mode from the front (A) and
back (B); and complex system in surface mode from the front (C) and back (D). CaM is in cyan, and p110α
subunit of PI3Kα is in gray, and p85α subunit, including cSH2, nSH2 and iSH2 are in pale yellow.

3. Discussion

CaM and PI3Kα are known to regulate several cellular events [22–24,53]. In addition, there exists
crosstalk between them and their related intracellular pathways. Under normal circumstances,
PI3Kα is activated by pEGFR and K-Ras4B together. pEGFR binds to c/nSH2 domains of the p85α
regulatory subunit of PI3Kα, which can relieve the inhibitory effect of p85α on its p110α catalytic
subunit. After that, K-Ras4B binds to PI3Kα and allosterically stimulates the production of PIP3 [47,48].
Previously, CaM has been reported to be able to activate PI3Kα through p85α subunit independent
of K-Ras4B [45,46], and recent research suggests that CaM can replace pEGFR and activate PI3Kα

aberrantly [47–49]. However, details behind this interaction still remain elusive. Unraveling the
mechanisms underlying CaM-PI3Kα crosstalk through which CaM abnormally replaces pEGFR and
activates PI3Kα is expected to contribute to future research and clinical application.

Here, by MD simulations we found that CaM can bind to c/nSH2 domains with comparable
reaction free energy to pEGFR, implying that the replacement of pEGFR by CaM is feasible. Through
structure superposition and interface analysis, C2 complex and N2 complex were predicted to be
the ideal models for CaM-cSH2 and CaM-nSH2 interactions, in which CaM adopts similar acting
modes to pEGFR. The details of the interactions in these two systems including hydrogen bonds
and salt bridges were unmasked, and they are the origin of the tight binding of CaM and its ability
to induce the pEGFR-like effect. The hotspot residues for CaM-cSH2 and CaM-nSH2 interactions
were identified, which will be instructive to future related study. Moreover, based on these findings
we constructed a CaM-PI3Kα complex assembly, which provides guidance for further exploration.
Similarly, Zhang et al. also explored the crosstalk between CaM and PI3K lately, but they focus on
phosphorylated CaM at Y99 [45]. Both of our studies produce similar results supporting each other,
in which the CaM takes on similar topologies to interact with PI3Kα and exerts the activating effect.
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Our research supplies in-depth insights into the CaM-PI3Kα crosstalk, and will be of great significance
to future relevant research and application.

Recently, we put forward a novel theory about the CaM-PI3Kα interaction where K-Ras4B is also
involved and they form a ternary complex together, especially in carcinogenesis [47–49]. Details of
this hypothesis remain unresolved and this gap can be partly filled by our research, which provides
underlying mechanisms of the CaM-cSH2 and CaM-nSH2 interactions. Moreover, our findings not
only supply solid support for this hypothesis, but also provide instructions for therapies towards
the K-Ras4B-driven adenocarcinoma regulated by CaM and PI3Kα. Modulations of protein-protein
interaction (PPI) have already become a promising idea in drug development [13,47,54,55], and PPIs
inhibitors as well as related drugs can be designed based on the interaction modes and hotspot residues
uncovered here. Very recently, we have found some potential allosteric targets on Ras [47,56–59].
Combining our previous findings and the discovery here, we will be able to target the ternary complex,
which can prevent the oncogenesis of the K-Ras4B-driven adenocarcinoma. Hence, our study here
provides crucial theoretical basis for further research on CaM and PI3Kα as well as sheds light on
future clinical adenocarcinoma therapy and drug development.

4. Materials and Methods

4.1. Construction of Simulation Systems

For the pEGFR-nSH2 system, the crystal structure of nSH2 domain of the p85α regulatory subunit
of PI3Kα and platelet-derived growth factor receptor (PDGFR) peptide (PDB ID: 2IUI), which can
mimic the domain of pEGFR that interacts with the nSH2 domain of PI3Kα [60], was extracted from
the RCSB Protein Data Bank (PDB). For the PDGFR peptide and PI3Kα cSH2 system, 1H9O was chosen
from the PDB [61].

As for the CaM-cSH2 and CaM-nSH2 systems, no structures are available currently. PRISM [62–64]
was employed to carry out the inter-protein interaction prediction to set up the complex systems for
further MD simulations. PRISM compared patches along the surfaces of the two interacting proteins,
and if they had similar structural features to two complementary sides of a template interface, and the
“hot spot” residues on both the proteins and templates were evolutionarily conserved, these two
proteins would be regarded to be likely to interact with each other. Such comparison not only
considered the rigid structure similarity, but also took the backbone and side-chain flexibility into
account [63,64]. Finally, such kind of interaction would be graded according to the binding free energy
and the different contribution terms of it, including desolvation energy, van der Waals interactions,
partial electrostatics and so on [65,66]. We first downloaded all the available structures of CaM, cSH2,
and nSH2 from PDB, and PRISM prediction was then carried out based on these structural data.
CaM was docked to cSH2 and nSH2 respectively, and the top four complexes with highest PRISM
scores in these two systems were chosen, and would be further simulated and analyzed [67–69].
These eight complexes structures were denoted as the C1 to C4 and N1 to N4 for the cSH2 and nSH2
systems, respectively. The compositions of these systems are shown in Table 4 and MD simulations
were then performed.

Table 4. Compositions of the predicted CaM-cSH2 and CaM-nSH2 complexes by PRISM.

System C1 C2 C3 C4

CaM 1CDL * 1CLL 1CLL 1CLL
cSH2 1H9O 1H9O 1H9O 1H9O

System N1 N2 N3 N4

CaM 2BE6 1S26 2BE6 2BE6
nSH2 2IUG 2IUH 2IUG 2IUH

* The PDB ID of the protein structure.
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4.2. MD Simulations

MD simulations for the ten systems described above (C1-C4, N1-N4, pEGFR-cSH2,
and pEGFR-nSH2) were carried out using Amber 14 (San Francisco, CA, USA) [70]. The modified ff03
force field [71] was applied to the calculation of the force field parameters of the complex systems.
All the complexes above first underwent solvation using the TIP3P water model, and Na+ counterions
were added to neutralize the whole systems. The energy of the systems was minimized after the
preparation process. The energy minimization could be divided into two parts, and in the first part,
the proteins structures were held in place, and 5000 steps of minimization cycles were carried out
to minimize the energy of the water molecules and the counter ions. After that, complexes were
relaxed and the second round of minimization without restriction followed. Once the system energy
had been minimized, they were heated from 0 to 300 K within 300 ps, under 10 kcal/(mol × Å2)
positional restraint in a canonical ensemble (NVT), and then equilibration of the system was carried
out at the target temperature, 300 K, under the same conditions for 700 ps. Finally, all the complexes
underwent 200 ns MD simulations in isothermal and isobaric ensemble with periodic boundary
conditions. Long-range electrostatic interactions were solved with the help of the particle mesh Ewald
method, and a 10 Å cut-off was employed to deal with the short-range electrostatics and van der Waals
interactions. Within systems, all hydrogen-involved covalent bonds were restricted by the SHAKE
method, and the final trajectories were written out every 20 ps.

4.3. Molecular Mechanics Generalized Born Surface Area Calculations

In Amber 14 [70], plugin MMPBSA.py was used to carry out the Molecular Mechanics Generalized
Born Surface Area (MM/GBSA) calculations. Free energy was calculated for the whole complex,
receptor (CaM), and ligand (nSH2, cSH2 or pEGFR) correspondingly. The free energy of the binding
reaction came as a result of the following Equation (1):

∆G = Gcomplex − Greceptor − Gligand (1)

In Equation (1), free energy (G) was calculated according to Equation (2):

∆G = ∆Egas + ∆Gsolvation − T∆S (2)

In which, ∆Egas represented the gas phase molecular mechanical energy, ∆Gsolvation stood for the
solvation free energy, and −T∆S for the entropy term. ∆Egas could be further divided into three parts,
as is shown in Equation (3), and it equaled to the sum of the van der Waals energy (∆EvdW), electrostatic
energy (∆Eele) and gas phase internal energy (∆Eint):

∆Egas = ∆EvdW + ∆Eele + ∆Eint (3)

Continuum solvent methods were employed to calculate ∆Gsolvation, which consisted of polar
contribution (∆GPB/) and non-polar contribution (∆Gnonpolar), given as Equation (4):

∆Gsolvation = ∆GPB + ∆Gnonpolar (4)

Calculation of the electrostatic solvation energy was based on the finite difference PB model,
in which the solute and water dielectric constants were chosen to be 1 and 80 respectively. Equation (5)
was used to work out the non-polar contribution (∆Gnonpolar) to the solvation free energy (∆Gsolvation):

∆Gsolvation = γSASA + b (5)

In Equation (5), solvent-accessible surface-area was abbreviated as SASA, solvation parameter γ
equaled 0.00542 kcal (mol−1·Å−2) and the other solvation parameter, b, was 0.92 kcal/mol.
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The conformation entropy (−T∆S) was omitted in our calculations. This term is usually estimated
with quasi harmonic analysis of the simulation trajectories using normal mode analysis, which
demands a lot of computational time. Since in our study, we only focused on the relative ordering
of binding free energy, and throughout the interaction process, the interaction modes and the
overall root-mean-square deviation (RMSD) of the Cα atoms with respect to the original structures
during simulations did not change significantly. Taking all these into consideration, we left out the
conformation entropy term in our free energy calculation. The overall free energy difference ∆G was
distributed to every residue within the system by weight with the help of the MM/GBSA method in
Amber 14.

5. Conclusions

CaM-PI3Kα crosstalk is a common and central process within series of cellular activities and
human physiological or pathological conditions. Here in our study, using MD simulations and
molecular modeling, we explored into the detailed interaction modes between CaM and the cSH2
and nSH2 domains of the p85α regulatory subunit in PI3Kα. We first demonstrated that CaM can
interact with these two domains from an energetic view and by structural superposition we found out
the potential ideal binding poses for CaM to interact with cSH2 and nSH2. Detailed inter-molecular
interactions such as salt bridges and hydrogen bonds were revealed and the corresponding hotspot
residues for protein-protein interactions were also unmasked. With these finding, we also assembled
the full-length CaM-PI3Kα complex, which is the first report for this interaction system. Our study
not only provides solid theoretical basis for relevant research but also shed light on related targeting
drug discovery.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/1/151/s1.
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