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Rheumatoid arthritis (RA) is a chronic synovial autoinflammatory disease that destructs 
the cartilage and bone, leading to disability. The functional regulation of major immunity-
related pathways like nuclear factor kappa B (NF-κB), which is involved in the chronic 
inflammatory reactions underlying the development of RA, remains to be explored. 
Therefore, this study has adopted statistical and knowledge-based systemic investigations 
(like gene correlation, semantic similarity, and topological parameters based on graph 
theory) to study the gene expression status of NF-κB protein family (NKPF) and its regulators 
in synovial tissues to trace the molecular pathways through which these regulators 
contribute to RA. A complex protein–protein interaction map (PPIM) of 2,742 genes and 
37,032 interactions was constructed from differentially expressed genes (p ≤ 0.05). PPIM 
was further decomposed into a Regulator Allied Protein Interaction Network (RAPIN) based 
on the interaction between genes (5 NKPF, 31 seeds, 131 hubs, and 652 bottlenecks). 
Pathway network analysis has shown the RA-specific disturbances in the functional 
connectivity between seed genes (RIPK1, ATG7, TLR4, TNFRSF1A, KPNA1, CFLAR, 
SNW1, FOSB, PARVA, CX3CL1, and TRPC6) and NKPF members (RELA, RELB, NFKB2, 
and REL). Interestingly, these genes are known for their involvement in inflammation and 
immune system (signaling by interleukins, cytokine signaling in immune system, NOD-
like receptor signaling, MAPK signaling, Toll-like receptor signaling, and TNF signaling) 
pathways connected to RA. This study, for the first time, reports that SNW1, along with 
other NK regulatory genes, plays an important role in RA pathogenesis and might act as 
potential biomarker for RA. Additionally, these genes might play important roles in RA 
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INTRODUCTION
Rheumatoid arthritis (RA) is a complex systemic autoinflammatory 
disorder causing chronic destructive inflammation in synovial 
joints resulting in severe physical disability in millions of patients 
worldwide (Dargham et al., 2018). Molecular basis of this disease 
is not well defined. But, genetic background (polymorphisms or 
inherited mutations), hormones, cytokines, and environmental 
factors are believed to be some of the contributing factors (Okada 
et al., 2019). Among the genetic factors, human leukocyte 
antigen (HLA) loci (HLA-DRB1) and non-HLA genes (PTPN22, 
PADI4, TRAF1/C5, TNFAIP3, CCR6, REL, etc.) are the main 
susceptibility risk factors for RA across multiple ethnic groups 
(Barton et al., 2008; Raychaudhuri et al., 2012; Kochi et al., 2014; 
Mcgonagle et al., 2018; Shaik and Banaganapalli, 2019). However, 
these genetic markers, whether single or as a group, are unable 
to fully explain complex pathogenic mechanisms underlying the 
disease and are also not robust in acting as systemic biomarkers 
for diagnosing or monitoring RA.

On the contrary, studying genome-wide gene expression 
provided a deeper insight into the molecular patterns of 
different autoimmune diseases (Pimentel-Santos et al., 2011; 
Rezaei Tavirani et al., 2018; Yin et al., 2019). Gene expression 
assays provide a quantitative measure of thousands of mRNA 
molecules in one single experiment. It can also generate a 
global picture of cell function and also contributes to a stratified 
medicine application (Smith et al., 2013). But understanding and 
interpreting the massive amount of genomics data (for around 
20,000 genes) generated by high-throughput technologies like 
microarray-based gene expression is complex and challenging. 
In recent decades, gene networking based on graph topological 
parameters and subsequent functional enrichment has 
revolutionized the disease-centric candidate gene approaches 
(Sabir et al., 2019). One such highly attractive gene set with 
strong influence on RA synovial tissues is nuclear factor kappa 
B (NF-κB) (Noort et al., 2015). Activated NF-κB is detected 
in human synovial tissues during the early and late stages of 
inflammation (Gilston et al., 1997).

The NF-κB belongs to a group of transcription factors 
(NF-κB1, NF-κB2, RelA, RelB, and c-Rel) which controls 
the expression of many genes involved in immunity and 
inflammatory processes (Liu et al., 2017). These genes mediate 
the target gene transcription by binding to NF-κB enhancer, 
a key DNA element either in hetero- or homo-dimeric form 
(Oeckinghaus and Ghosh, 2009). Molecular pathways related to 
the translocation of NF-κB from the nucleus and its function are 
often strongly regulated, but act in synergy with the activation 
of NF-κB-dependent gene expression (Makarov, 2001). NF-κB 
is activated by different pathogenic stimuli, including Toll-like 

receptors (TLR3, TLR7, TLR8, TL9, TLR1, TLR2, TLR4, and 
TLR6), growth factors, cytokines, radiation, and oxidative stress. 
Activated NF-κB is detected in human synovial tissues during 
both early and late stages of inflammation (Gilston et al., 1997).

In innate immunity, activation of the NF-κB pathway 
upregulates the expression of defensins, pro-inflammatory 
proteins like cytokines (IL-1, IL-6, and TNF-α), and proteins 
involved in leukocyte migration (VCAM1 and ICAM1). In 
adaptive immunity, NF-κB is involved in the proliferation 
of B- and T-cells as well as in the maturation of dendritic 
cells (Verma et  al., 2019). Although NF-κB is ubiquitous and 
rigorously studied, some questions about this pathway including 
transcription machinery, stimulus-specific gene expression, and 
cell types are yet to be explored. Keeping in view of the above-
described facts, this study has adopted statistical and knowledge-
based systemic investigations (like gene correlation, semantic 
similarity, and topological parameters based on graph theory) 
to study the expression status of NF-κB regulators in synovial 
tissues and to trace the molecular pathways through which these 
regulators contribute to RA.

MATERIAls AND METhODs

selection of NF-κb Regulators
The top 20 known NF-κB pathway regulators controlling the 
immune response to independent TNF-α and lipopolysaccharide 
(LPS) antigenic treatments were identified from a large-scale 
secondary RNAi screening on differentiated human THP-1 
monocyte cell lines (Verma et al., 2019). These top 40 NF-κB 
regulators were chosen based on the significant reductions in 
luciferase activity of their siRNAs upon both TNF-α and LPS 
treatments and did not cause significant loss of cell viability 
in vitro. For ease of description, regulators of NF-κB protein 
family are termed as “seed genes” and the NF-κB protein family 
as “NKPF.”

Microarray Gene Expression Data
The microarray gene expression profile of RA patients’ synovial 
tissues with series identifier GSE77298 was taken from the GEO 
database (www.ncbi.nlm.nih.gov/geo). Total number of samples 
in the dataset was 23 (Table S1). Gene expression data was 
generated with U133Plus 2.0 oligonucleotide array (Affymetrix, 
Santa Clara, CA, USA) from 16 end-stage RA synovial biopsies 
and seven synovial biopsies from healthy individuals without 
a joint disease (healthy control, HC) (Broeren et al., 2016). 
Genes with a fold change threshold of 1.2 (−1.2 ≥ FC ≥ +1.2) 
with P value  ≤  0.05 in RA vs. HC were selected from the 

pathogenesis, as well as facilitate the development of effective targeted therapies. Our 
integrative data analysis and network-based methods could accelerate the identification 
of novel drug targets for RA from high-throughput genomic data.

Keywords: rheumatoid arthritis, auto-inflammatory disease, NF-κB, GEO, gene expression

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1163

http://www.ncbi.nlm.nih.gov/geo
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Gene Expression Analysis on Rheumatoid ArthritisSabir et al.

3

analysis. Information about the patient samples are given in the 
supplementary file (Supplementary Table 1).

Data Normalization and Analysis
Analysis of microarray gene expression data was carried out by 
using R/Bioconductor (Carvalho and Irizarry, 2010; Ritchie et al., 
2015). For the standardization and noise reduction of the probe 
data, CEL files were loaded into R package-Affy and raw signal 
values for each probe sets were normalized. Normalization of 
the microarray dataset was performed using Robust Multiarray 
Average (RMA) algorithm (Carvalho and Irizarry, 2010). 
Statistically significant differentially expressed genes between 
normal and RA samples were computed by applying t-statistic. 
False discovery rate (FDR) of Benjamini and Hochberg with 
p value ≤ 0.05 was applied on the significant gene data to remove 
false positives (Benjamini and Hochberg, 2001).

Protein-Protein Interaction Mapping
An experimentally validated protein–protein interaction 
map (PPIM) was constructed using a Cytoscape plugin, 
Bisogenet, which extracts the interaction among queried 
genes from the data deposited in the Biomolecular Interaction 
Network Database (BIND), Biological General Repository for 
Interaction Datasets (BioGRID), The Molecular Interaction 
Database (MINT), Database of Interacting Proteins (DIP), 
Human Protein Reference Database (HPRD), and IntAct 
database (Xenarios et al., 2000; Bader et al., 2003; Chatr-
Aryamontri et al., 2007; Keshava Prasad et al., 2009; Aranda 
et  al., 2010; Chatr-Aryamontri et al., 2017). Selected 
differentially expressed genes (DEGs) from the microarray 
data are used as input in Bisogenet to generate PPIM (Sabir 
et al., 2019). Construction of the interactome was built from 
the DEGs. The output is in the form of graph, which represents 
gene as node and interaction between genes as edge (Martin 
et al., 2010; George et al., 2019).

Construction of sub-Network
A sub-network of Regulator Allied Protein Interaction Network 
(RAPIN) was constructed from PPIM by implementing well-
established theories like degree centrality (DC) and betweenness 
centrality (BC) in network biology. From the PPIM, we identified 
those genes that fit to: a) hubs which are dependent on DC, b) 
bottlenecks based on BC, and c) NF-κB proteins and regulators. 
The centrality parameters or network properties were scaled 
using ‘Network Analyzer’, a Cytoscape plugin (Shannon et al., 
2003; Assenov et al., 2008).

a) Identification of Hub Proteins
We used a method developed by Rakshit et al. (2014) to detect 

the hubs in the biological network. The formula for picking hubs 
is as follows:

 Hubs Avg DC SD DC= + ×( ) [   ( )]2  (Eq. 1)

where Avg is the mean DC of all genes in the biological network 
PPIM and SD denotes their standard deviation.

b) Identification of Bottlenecks
BC was introduced to scale the bottleneck genes in the 

interactome. The formula for calculating BC is as follows:
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where s and t are nodes in the network other than n, σst represents 
the number of shortest paths from s to t, and σst(n) is the number 
of shortest paths from s to t that n lies on. Genes located in the 
top 25% of betweenness were extracted as bottleneck genes.

Building of Weighted Correlation Map
Pearson’s correlation algorithm was applied to the genes of 
RAPIN to create a weighted gene correlation map. The Pearson’s 
correlation coefficient (PCC) of pairs of genes is measured using 
the following formula:
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where x and y are the averages of sample expression values in 
healthy and RA conditions of the two genes, respectively.

Functional similarity Between Gene Pairs
Functional resemblance among two genes is evaluated using 
prearranged data available in Gene Ontology. To evaluate the 
functional similarity between two genes, Wang’s measure of 
semantic similarity was applied to molecular function (MF) 
hierarchy as MF, which specifically defines a particular gene in 
terms of functional ontology. The semantic score of functional 
similarity between genes range from 0 to 1. Higher semantic 
score between genes represents a stronger functional relationship 
among the genes (Wang et al., 2007). The semantic score of 
functional similarity between gene pairs is measured as follows;
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where TX is the set of all its ancestor ontology as well as ontology 
X itself and SX(t) represents the contribution of a term t ∈ TX to 
the semantics of X based on the relative locations of t and X in the 
graph. A single gene can be annotated by multiple gene ontology 
(GO) relationships. Best-match average (BMA) approach was 
implemented integrating semantic similarity of multiple GO 
annotations and evaluates the mean of all maximum similarities. 
Based on this model, we used R package, GoSemSim (Yu et al., 2010), 
to quantify the semantic similarity between co-expressed gene pairs.

Functional Enrichment Analysis
Functional annotation is performed to gain insights into 
the high-throughput biological data. This method not only 
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authenticates the new genes found in biological experiment 
as functionally significant but also uncovers the biological 
interactions among them. We used ToppGene Suite to conduct 
functional enrichment analysis of the filtered gene sets (Chen 
et al., 2009). The input for ToppGene Suite is the list of 
DEGs that are identified from gene expression profiles. We 
applied parameters of gene limits ranging from 2 (minimum 
interaction) to maximum with statistical significance of p ≤ 
0.01 and FDR less than 0.05. This suite retrieves information 
from many public databases which identify key biological 
processes, cellular components, molecular functions, diseases, 
and biological pathways.

GWAs Comparative Analysis
Genome-wide association studies (GWAS) are a dominant and 
broadly used tool to map the susceptibility loci, genes, and 
genetic markers in complex traits and diseases. GWAS based on 
pathway analysis is extensively used to unravel novel multigenic 
functional relationships. In this study, an attempt was made to 
explore the pathways commonly enriched between RA-GWAS 
catalog (https://www.ebi.ac.uk/gwas/) and co-expressed seed 
genes in our dataset (Macarthur et al., 2017). The list of filtered 
co-expressed genes was mapped against the data in the GWAS 
database with p ≤ 0.01. Further, we extracted the reported traits 
of these co-expressed genes from GWAS catalog to identify their 
association to RA.

REsUlTs

selected NF-κb Regulators
We collected the top 20 hits each from TNF-α and LPS secondary 
screen analysis and the five genes from NF-κB family. We 
identified that eight genes are common to both TNF-α and LPS 
secondary screen analysis and gene RELA was part of all three 
categories (Figure 1). Hence, the collected genes for our analysis 
included 31 seed genes and five genes from NKPF without any 
redundancy. The list of the selected 36 genes for the analysis is 
in Table 1.

Pre-Processed Data and DEGs
High-throughput experimental gene expression profiles of 
synovial tissues, which are affected in RA, were retrieved 
from the GEO database. The raw signal intensities of 45,056 
probes were standardized by means of RMA algorithm, which 
bring about 3,573 non-redundant DEGs with a statistically 
significant p ≤ 0.05 and fold change of 1.2 (−1.2 ≥ FC ≥ +1.2). 
The normalization plot of standardized genes is given in 
Supplementary File 1 (Figure S1). The DEGs comprise 2,577 
upregulated and 996 downregulated genes. The volcano plot 
representing the separation of significant DEGs is depicted 
in Figure 2. Gene expression profiles of seed genes and NKPF 
extracted and depicted in Figure 3.

Analysis of extracted seed genes and NKPF profiles revealed 
that majority of the seed genes are downregulated. Overall, 
of 36 genes, 14 are upregulated and 22 are downregulated. 

Figure 4 shows the expression of each gene in the sample. 
Among the NKPF category, NFKB1, REL, and RELA are found 
to be upregulated, with FC ≥ 1.2 in the RA sample, whereas 
NFKB2 and RELB are downregulated, with FC ≤ −1.2. The 
most upregulated gene is REL, with FC of 3.04, and the 
most downregulated gene is KPNA1, with FC of −1.85. It is 
interesting to note that the most upregulated gene, REL, falls 
into the NKPF group, whereas most downregulated gene, 
KPNA1, comes from the seed gene category.

The Protein–Protein Interaction Map
Significant DEGs, 3,573 genes, from the microarray data 
were used in Bisogenet to build PPIM by extracting all 
relationships between the queried genes. The PPIM was 
made stable by eliminating self-loops and repeated edges to 
calculate the standardized centrality parameters of the whole 
interactome. Bisogenet produced a complex PPIM which 
included 2,742 genes and 37,032 interactions, with 13.51 
mean edge–node fraction, as given in the supplementary file 
(Supplementary File 2, Figure S1). The Cytoscape “Network 
Analyzer” plugin was employed to measure the DC and BC of 
the interactome.

Regulator Allied Protein Interaction 
Network
The DEGs in the PPIM were classified into bottlenecks and 
hubs based on centrality properties for the construction of 
RAPIN. The threshold cutoff value for bottlenecks (based on 
BC) and hubs (based on DC) were set based on Eqs. (2) and 

FIGURE 1 | Venn diagram showing the overlapping between NF-kB gene family 
and its regulatory genes identified from TNFα and LPS secondary screen analysis.
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(1), respectively. A total of 652 genes were categorized as 
bottlenecks and 131 genes as hubs. Interestingly, seed and NKPF 
genes like NFKB1, REL, RELA, TLR4, TNFRSF1A, and SNW1 
were in the category of hubs and GRIN2B, KPNA1, NFKB2, 
PRKCG, RELB, CX3CL1, RIPK1, CFLAR, CALCOCO2, ATG7, 
and ITCH were detected in the bottleneck group (Table 2). The 
hubs, bottlenecks, NKPF, and seed genes together constitute 
non-redundant 801 nodes. Interactions among those 801 
genes were extracted from the main PPIM to construct 
regulator specific subnetwork, RAPIN (Supplementary File 2, 
Figure S2). Subnetwork RAPIN encompasses 801 nodes and 
19,050 edges, with 23.75 average edge–node ratio.

Co-Expression Pattern Among the RAPIN 
Genes
The expression level similarity across 801 genes of RAPIN was 
created and ranked for both disease and sample data sets 
using Pearson’s correlation algorithm (Figure 5). Pearson’s 
correlation algorithm applied to the gene sets created PCC 
for 320,400 gene pairs from 801 genes belonging to both 
disease and control samples (Eq. 3). Here, we selected pairs 
of genes using the following well-established concepts. 1) 
Expression  of gene pairs with high positive correlation. 
2) Genes of similar patterns of expression are more likely 
to interact with one another. Gene pairs with r ≥ 0.8 from 
the correlation map were chosen for the analysis for both 
healthy and disease, as a higher r score represents stronger 
association (Rakshit et  al., 2014). Corresponding gene pairs 
were extracted from the  normal and RA correlation map to 
identify the variation  in  the co-expression from control to 
affected tissues.

In normal samples, 601 genes were found to have higher 
correlation and 461 were co-expressed in disease samples 
(Figure 6). Interestingly, all seed genes were co-expressed in 
the RA sample, whereas seed genes KDM4A and LIX1 were 
not co-expressed in normal samples. The total number of 
gene pairs with higher correlation in normal condition was 
28,350 and in RA was 8,747. The correlation loss from normal 

FIGURE 2 | Volcano plots depicting significant differentially expressing genes (DEGs). (A) Plot displaying the significant (red, p ≤ 0.05) and non-significant (black, p ≥ 
0.05) genes. (B) Plot displaying the DEGs (green, −1.2 ≥ FC ≥ +1.2) and non-significant (orange, −1.2 ≤ FC ≤ 1.2) genes.

TABlE 1 | List of seed and NKPF genes screened in RA samples.

s. no. Gene symbol Gene name

NKPF

1. NFKB1 Nuclear factor kappa B subunit 1
2. NFKB2 Nuclear factor kappa B subunit 2
3. REL Rel proto-oncogene, NF-κB subunit
4. RELA Rela proto-oncogene, NF-κB subunit
5. RELB Relb proto-oncogene, NF-κB subunit
Seed genes
6. CLCN2 Chloride voltage-gated channel 2
7. CRHR2 Corticotropin-releasing hormone receptor 2
8. FOSB Fosb proto-oncogene, Ap-1 transcription 

factor subunit
9. GHRH Growth hormone-releasing hormone
10. GRIN2B Glutamate ionotropic receptor NMDA type 

subunit 2B
11. KEL Kell metallo-endopeptidase
12. KPNA1 Karyopherin subunit alpha 1
13. NEFM Neurofilament medium
14. PRKCG Protein kinase C gamma
15. CX3CL1 C-X3-C motif chemokine ligand 1
16. TLR4 Toll-like receptor 4
17. TNFRSF1A TNF receptor superfamily member 1A
18. TRPC6 Transient receptor potential cation channel 

subfamily C member 6
19. UCHL3 Ubiquitin C-terminal hydrolase L3
20. RIPK1 Receptor interacting serine/threonine 

kinase 1
21. CFLAR Casp8 and FADD-like apoptosis regulator
22. KDM4A Lysine demethylase 4A
23. CALCOCO2 Calcium binding and coiled-coil domain 2
24. APC2 APC regulator of Wnt signaling pathway 2
25. ATG7 Autophagy related 7
26. SNW1 SNW domain containing 1
27. BHMT2 Betaine–homocysteine S-methyltransferase 2
28. BMP10 Bone morphogenetic protein 10
29. BFAR Bifunctional apoptosis regulator
30. CINP Cyclin-dependent kinase 2 interacting 

protein
31. PARVA Parvin alpha
32. HAPLN2 Hyaluronan and proteoglycan link protein 2
33. ITCH Itchy E3 ubiquitin protein ligase
34. DUSP15 Dual specificity phosphatase 15
35. LIX1 Limb and CNS expressed 1
36. LCE1B Late cornified envelope 1B
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FIGURE 3 | Heat map of NKPF and seed genes in individual sample. The darker the square, the higher the gene expression in that sample.

FIGURE 4 | Expression profile of NKPF and seed genes. Red and green colors are the up- and downregulated genes, respectively.
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to RA condition indicates a functional disruption at the 
genome level.

Highly co-expressed 28,350 gene pairs in normal samples 
were mapped to RA to extract the correlation of the same 
gene pairs to understand the critical variation from normal 
to RA. Similarly, 8,747 co-expressed gene pairs of RA samples 
were mapped to normal samples. The absolute difference of 
correlation was calculated for the gene pairs in both normal and 
RA conditions. The value of absolute difference ranged from 0 
to 2. As the difference value increases, distinction of these gene 
pairs also increases from one condition to another. Next, we 
focused on the genes interacting with seed genes and NKPF with 
distinct variation. We considered a cutoff absolute value of 0.5 
to select the gene pairs with distinct variations. We obtained 746 
gene pairs (476 genes) in the normal condition that have critical 
variation of expression from RA. Similarly, 453 gene pairs (318 
genes) in RA had distinct deviation from normal condition. 
Further, we extracted only the connectivity of seed genes and 
NKPF from the aforesaid interactome. We found 227 genes 
co-expressed with NKPF and seed genes in normal condition and 
171 co-expressed genes in RA condition (Figure 7). We observed 
a drastic change of connectivity among NF-κB family of proteins 
with NF-κB regulators (genes from TNF-α and LPS antigenic 
treatment) from normal to RA condition, which clearly indicates 
disruption of the NF-κB signaling pathway.

semantic similarity Between 
Co-Expressed Gene Pairs
The co-expressed gene pairs were selected from the RAPIN 
and semantic similarity of Wang’s measure was applied 
(Wang et al., 2007). Functional similarity was generated based on 
the semantic score for co-expressed gene pairs by implementing 
GoSemSim module in R. Figure 8 depicts the list of top 10 gene 
pairs with their corresponding correlation and semantic scores 
for both control and RA samples. Next, we filtered 203 gene 
pairs (156 genes) from normal condition and 115 gene pairs (101 
genes) from RA condition with robust functional relationship 
depending on a semantic score of ≥0.5.

In normal condition, the seed genes are directly or indirectly 
connected to NF-κB protein family with high correlation, whereas 
there is a serious disruption in the connectivity of NKPF with seed 
genes or vice versa in RA. To pinpoint the dysregulation among 
NKPF and seed genes, we performed functional enrichment of 
connected genes in the normal sample.

Functional Enrichment of Co-Expressed 
Genes
Gene set enrichment analysis of interconnected genes in the normal 
sample was performed using ToppGene Suite. The gene sets were 
enriched in few molecular functions, biological processes, cellular 
components, and pathways. Fifty-four genes fall into the category 
of “enzyme binding” (FDR = 8.57 × 10−18), 47 in the category of 
“protein-containing complex binding” (FDR  = 7.59 × 10−16), and 
nine in the category of “identical protein binding” (FDR = 1.82 × 
10−07), which were the top 3 terms of GO molecular function (MF). 
The top 10 MF among the enriched genes are listed in Table  3. 
GO cellular component (CC) enrichment showed that the gene 
products mainly are in “cytoskeletal part” (FDR = 9.60  × 10−09), 
with a count of 34 genes, followed by “cell junction” (FDR = 7.13 × 
10−09) and “neuron part” (FDR = 5.23 × 10−06), with gene counts of 
30 and 29, respectively. The top 10 CC among the enriched genes are 
represented in Table 4. As to the biological process (BP) enrichment, 
“programmed cell death” (FDR = 1.39 × 10−15), “positive regulation 
of gene expression” (FDR = 1.76 × 10−13), and “immune response” 
(FDR = 4.48 × 10−15) were the most annotated terms, with gene 
counts of 51, 47, and 45, respectively. The top 10 BP enriched terms 
are listed in Table 5.

Most of the gene sets are involved in immune- and 
inflammation-related pathways, like “innate immune system” 
(FDR = 3.21 × 10−07), “cytokine signaling in immune system” 
(FDR = 9.88 × 10−08), “adaptive immune system” (FDR = 4.84 × 
10−07), “signaling by interleukins” (FDR = 3.04 × 10−05), and “NF 
kappa B signaling pathway” (FDR = 2.78 × 10−12), with gene 
counts ranging from 14 to 36. Details of the top 10 pathways 
enriched by the gene sets are represented in Table 6.

By analyzing the pathway interaction network, we observed 
that seed genes like RIPK1, ATG7, TLR4, TNFRSF1A, KPNA1, 
CFLAR, SNW1, FOSB, PARVA, CX3CL1, and TRPC6 interact 
with NKPF category RELA, RELB, NFKB2, and REL in the normal 
condition and regulate the immune- and inflammatory-related 
pathways. But this connectivity among the genes are disrupted 
in the RA condition, leading to deregulation of the pathways. 

TABlE 2 | The NKPF and seed genes in the hub and bottleneck categories.

symbol Gene name BC DC

Hubs
1. SNW1 SNW domain containing 1 1.18 × 10−02 170
2. TLR4 Toll-like receptor 4 6.29 × 10−03 170
3. RELA* RELA proto-oncogene, 

NF-κB subunit
7.91 × 10−03 151

4. NFKB1* Nuclear factor kappa B 
subunit 1

4.86 × 10−03 142

5. TNFRSF1A TNF receptor superfamily 
member 1A

3.26 × 10−03 123

6. REL* REL proto-oncogene, 
NF-κB subunit

8.09 × 10−03 100

Bottlenecks
1. ATG7 Autophagy related 7 4.38 × 10−03 85
2. ITCH Itchy E3 ubiquitin protein 

ligase
3.81 × 10−03 83

3. RIPK1 Receptor interacting serine/
threonine kinase 1

1.18 × 10−03 68

4. NFKB2* Nuclear factor kappa B 
subunit 2

9.26 × 10−04 67

5. RELB* RELB proto-oncogene, 
NF-κB subunit

1.02 × 10−03 65

6. GRIN2B Glutamate ionotropic 
receptor NMDA type 
subunit 2B

1.23 × 10−03 56

7. CFLAR CASP8 and FADD-like 
apoptosis regulator

1.03 × 10−03 51

8. PRKCG Protein kinase C gamma 6.70 × 10−04 48
9. CX3CL1 C-X3-C motif chemokine 

ligand 1
2.23 × 10−04 48

10. CALCOCO2 Calcium binding and coiled-
coil domain 2

1.52 × 10−03 44

11. KPNA1 Karyopherin subunit alpha 1 8.64 × 10−04 39

*Genes from NKPF.
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For ease of description, we termed these genes as “driver genes,” 
which include the NKPF category as well. Notably, they are also 
involved in “signaling by interleukins,” “cytokine signaling 
in immune system,” “NOD-like receptor signaling pathway” 
(FDR = 4.93 × 10−07), “diseases of signal transduction” (FDR = 1 
× 10−04), “MAPK signaling pathway” (FDR = 6.4 × 10−05), “Toll-
like receptor signaling pathway” (FDR = 2.6 × 10−9), and “TNF 
signaling pathway” (FDR = 2.2 × 10−5). These pathways are also 
associated with inflammation and immune systems.

GWAs Comparative Analysis
Herein, an effort was made to relate susceptibility loci of 
inflammation-associated disease conditions in GWAS catalog 

to the driver genes of RA. We extracted the reported traits 
of these driver genes from GWAS catalog to detect their 
association to inflammatory conditions (Supplementary 
File  2, Table S2). There were 164 hits mapped to driver 
genes, but genes SNW1 and NFKB2 did not give any result. 
The GWAS-reported associations for genes of interest are 
presented in Table 7. We found a set of genes, TNFRSF1A, 
TLR4, NFKB1, REL, RELA, ATG7, FOSB, KPNA1, and TRPC6, 
significantly associated with RA. The GWAS overlap to these 
genes and their significant associated terms are represented 
in Figure 9. We also performed a literature survey for driver 
genes to understand whether they are previously linked to RA. 
This analysis by integrating GWAS studies also substantiates 
the role of identified genes have support from the genetic 

FIGURE 5 | Representation of gene–gene correlation plots for healthy and rheumatoid arthritis (RA) samples. (A) Correlation of gene pairs in control samples 
(normal). (B) Correlation of gene pairs in RA samples. (C) Gene–gene correlation of NKPF and seed genes in control samples. (D) Gene–gene correlation of NKPF and 
seed genes in RA samples.
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FIGURE 6 | Network of co-expressed RAPIN genes in healthy controls (A) and in RA (B).

FIGURE 7 | Gene–gene correlation of seed genes, NKPF, and their partners. (A) Co-expression of gene pairs in normal condition. (B) Corresponding correlation of 
same gene pairs (in A) in rheumatoid arthritis (RA). (C) Co-expression of gene pairs in RA. (D) Corresponding correlation of gene pairs (in C) in healthy controls.
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data. Outcome from this analysis provides new indications for 
clarifying the genetic mechanism of RA.

DIsCUssION
Classical gene expression techniques generally focus on 
identifying the single gene that shows a differential expression 
between two different conditions of interest. Although it is a 
valuable approach, it often fails to detect metabolic pathways, 
stress reactions, biological processes, and transcriptional 
regulations which arise from coordinated activities of a 
cluster of gene networks (Ghazalpour et al., 2005). Systems 
biology techniques try to unravel the multifaceted complex 
conditions or diseases, which usually will not develop due to 
the instabilities in a single gene function, but instead from 
changes in several pathways through various intra- and 
inter-relationships. In addition, different processes occurring 
inside the body are regulated by specific group of protein 
complexes. It is well known that in disease condition, protein 
interaction networks are often altered, stimulating diverse 
molecular events via a series of processes initiated by the 
dysregulated protein molecules in the biological network. 

Network biology provides a great platform to understand 
the biological mechanisms that can trigger a disease. Present 
study explores the ideas of correlation, co-expression, and 
semantic similarity integrated with network biology of genes 
to identify specific changes in RA condition. We used local 
and global parameters, DC and BC, respectively, to dissect the 
complex interactome—PPIM. The DC of a gene is the number 
of partners that are connected to that specific gene. On other 
hand, betweenness centrality, BC, of a node exerts control 
over other nodes which are functionally relevant in the 
network. The constructed network follows the characteristics 
of a scale-free network as the connectivity of nodes is in a 
heterogeneous distribution. The heterogeneous distribution 
of nodes represents a large number of nodes with few 
connectivities and few nodes have large number of interactions 
(Albert, 2005). An edge between the nodes can be a functional 
or physical connection, which can be a regulatory crosstalk, 
protein binding, or metabolic action (Barabasi et al., 2011). We 
observed significant variations in the expression of selected 
prioritized genes in both the healthy and affected tissues in 
RA. Initially, a complex network of significant genes from 
synovial tissue was created which was further disintegrated 
into a Regulator Allied Protein Interaction Network (RAPIN) 

FIGURE 8 | Top gene pairs with their corresponding correlation and semantic scores for both control and rheumatoid arthritis (RA) samples. The graph shows 
correlation and semantic scores for significantly correlated gene pairs in control (A) and RA samples (B).
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TABlE 3 | Top 10 molecular functions enriched with their respective gene ontology terms and genes.

No. GO ID Name p value Count Genes

1 GO:0019899 Enzyme binding 8.57 × 10−18 54 NPM1, NUP50, TCF3, ABL1, ANK1, RIPK1, CALR, ERC1, SPTBN1, TRPC6, BAD, 
BLNK, ETS1, U2AF2, XIAP, RPS19, NPC2, RELA, NCK1, BFAR, PRC1, SKI, CBL, 
CBLB, AR, STAT1, RBCK1, CCNB1, ARF6, CCND2, KIF20A, CUL5, CFLAR, LDB3, 
GTF2I, AGO1, CSF1R, FAF2, RNF4, AP1G1, EGR1, CBX5, PIK3R1, LRP1, BCL10, 
DMD, TNFRSF1A, CDC42, FKBP1A, MVP, HSPA6, NOTCH1, NLK, SMAD2

2 GO:0044877 Protein-containing 
complex binding

7.59 × 10−16 47 VAPA, NPM1, FLNC, TCF3, ABL1, RIPK1, MAP1B, CALR, DISC1, MAX, ICAM1, 
SPTBN1, REL, RPS19, RELA, RELB, LASP1, PRC1, SKI, AR, HNRNPU, CCNB1, 
CASK, MEN1, KIF20A, CFLAR, NEFM, IFIH1, AGO1, RNF4, AP1G1, EGR1, CBX5, 
PIK3R1, TLE1, NFKB2, LRP1, KMT2A, FGF13, TNFRSF1A, FKBP1A, CX3CL1, 
NOTCH1, SMAD2, CRTAP, KIF2C, NCKAP1L

3 GO:0042802 Identical protein binding 1.82 × 10−07 30 CALCOCO2, NPM1, MYD88, TCF3, RIPK1, ATG7, MAX, ETS1, IRF3, RPS19, RELA, 
PRC1, IFI16, IFIT3, STAT1, CSF1R, RNF4, CBX5, TLE1, KMT2A, BCL10, USP15, 
CDC42, FKBP1A, G6PD, PCM1, MAD2L1, SMAD2, COL1A1, MAF

4 GO:0005102 Signaling receptor 
binding

1.55 × 10−05 29 MYD88, ABL1, RPGRIP1L, RIPK1, CALR, CANX, ICAM1, BLNK, NCK1, CBL, AR, 
STAT1, CCNB1, CASK, CFLAR, SNW1, RNF4, CD86, PIK3R1, LRP1, FGF13, USP15, 
CDC42, FKBP1A, CX3CL1, HCK, NOTCH1, SMAD2, CXCL8

5 GO:0046983 Protein dimerization 
activity

1.07 × 10−06 28 CALCOCO2, VAPA, NPM1, TCF3, ATG7, MAX, BAD, ID2, IRF3, RPS19, RELA, AR, 
STAT1, CUL5, CFLAR, CSF1R, RNF4, CBX5, PIK3R1, KMT2A, BCL10, FKBP1A, 
G6PD, NOTCH1, MAD2L1, SMAD2, MAF, CYBA

6 GO:0043565 Sequence-specific DNA 
binding

4.31 × 10−06 24 TCF3, GATAD2A, FOSB, MAX, ETS1, IRF2, IRF3, REL, RELA, RELB, IFI16, AR, STAT1, 
NLRP3, MEN1, ORC2, AGO1, EGR1, NFKB2, KMT2A, NOTCH1, SMAD2, KIF2C, 
MAF

7 GO:0003700 DNA-binding 
transcription factor 
activity

1.26 × 10−04 23 TCF3, GATAD2A, FOSB, MAX, ETS1, IRF2, IRF3, REL, RELA, RELB, CBL, IFI16, AR, 
STAT1, RBCK1, GTF2I, RNF4, EGR1, NFKB2, KMT2A, NOTCH1, SMAD2, MAF

8 GO:0019900 Kinase binding 2.14 × 10−08 22 NPM1, TCF3, ABL1, BAD, BLNK, RPS19, RELA, NCK1, PRC1, SKI, CBL, CBLB, 
RBCK1, CCNB1, CCND2, KIF20A, LDB3, GTF2I, PIK3R1, BCL10, CDC42, MVP

9 GO:0008092 Cytoskeletal protein 
binding

5.56 × 10−06 21 VAPA, FLNC, ABL1, ANK1, MAP1B, DISC1, SPTBN1, TRPC6, SYNPO, RELA, NCK1, 
LASP1, PRC1, KIF20A, NEFM, LDB3, AP1G1, PARVA, FGF13, DMD, KIF2C

10 GO:0044212 Transcription regulatory 
region DNA binding

1.25 × 10−05 20 TCF3, GATAD2A, FOSB, MAX, IRF2, IRF3, REL, RELA, RELB, IFI16, AR, STAT1, 
HNRNPU, MEN1, AGO1, EGR1, NFKB2, KMT2A, NOTCH1, SMAD2

TABlE 4 | Top 10 cellular components enriched with their respective gene ontology terms and genes.

No. GO ID Name p value Count Genes

1 GO:0044430 Cytoskeletal part 9.60 × 10−09 34 NPM1, RPGRIP1L, MAP1B, DISC1, SPTBN1, HAUS5, CENPU, ID2, XIAP, SYNPO, 
RELB, LASP1, PRC1, SKI, CCNB1, KIF20A, NEFM, ORC2, RIF1, CEP120, AMOT, 
ATP6V1D, CEP135, FGF13, BCL10, ESPL1, CDC42, G6PD, HSPA6, HCK, PCM1, 
MAD2L1, KIF2C, CYBA

2 GO:0030054 Cell junction 7.13 × 10−09 30 VAPA, NPM1, FLNC, RPGRIP1L, MAP1B, CALR, DISC1, ICAM1, PECAM1, TRPC6, 
IRF2, RPS19, SYNPO, NCK1, LASP1, DDB2, CASK, ARF6, RHOG, AMOT, PIK3R1, 
PARVA, LRP1, FGF13, DMD, CDC42, HCK, NOTCH1, APBB1IP, CYBA

3 GO:0015630 Microtubule 
cytoskeleton

6.75 × 10−09 29 VAPA, NPM1, RPGRIP1L, MAP1B, DISC1, HAUS5, CENPU, ID2, XIAP, RELB, PRC1, 
SKI, CCNB1, KIF20A, ORC2, RIF1, CEP120, AP1G1, ATP6V1D, CEP135, FGF13, 
BCL10, ESPL1, CDC42, G6PD, HSPA6, PCM1, MAD2L1, KIF2C

4 GO:0097458 Neuron part 5.23 × 10−06 29 ABL1, ANK1, MAP1B, ERC1, DISC1, CANX, MAX, SPTBN1, SYNPO, CBL, AR, STAT1, 
ASAP1, KHSRP, CASK, NEFM, GTF2I, PIK3R1, LRP1, CCR1, FGF13, DMD, TNFRSF1A, 
RAB2A, CDC42, FKBP1A, ALOX5, KPNA1, CYBA

5 GO:0043005 Neuron projection 4.02 × 10−06 25 ABL1, ANK1, MAP1B, DISC1, CANX, MAX, SPTBN1, SYNPO, CBL, AR, STAT1, ASAP1, 
KHSRP, CASK, NEFM, PIK3R1, LRP1, FGF13, DMD, TNFRSF1A, CDC42, FKBP1A, 
ALOX5, KPNA1, CYBA

6 GO:0005783 Endoplasmic 
reticulum

1.19 × 10−03 25 VAPA, COL6A2, ABL1, ANK1, COPG1, CALR, DISC1, CANX, NPC2, NCK1, BFAR, 
MAGT1, IFIT2, NLRP3, RHOG, FAF2, PIK3R1, EDEM1, RAB2A, CDC42, FKBP1A, 
NOTCH1, CRTAP, COL1A1, CYBA

7 GO:0098589 Membrane region 9.52 × 10−05 23 ANK1, RIPK1, ERC1, DISC1, ICAM1, SPTBN1, PECAM1, SYNPO, CBL, CBLB, PGK1, 
CASK, ARF6, CFLAR, TLR4, LRP1, AP1S2, BCL10, DMD, TNFRSF1A, HCK, NOTCH1, 
CYBA

8 GO:1902494 Catalytic complex 2.40 × 10−05 22 GATAD2A, RIPK1, CDK12, ERC1, DISC1, MAX, NCK1, MAGT1, DDB2, SAP30, RBCK1, 
MEN1, CCND2, CUL5, CFLAR, SNW1, AGO1, RNF4, CBX5, PIK3R1, KMT2A, CYBA

9 GO:0044427 Chromosomal 
part

1.71 × 10−06 21 PDS5B, TCF3, CENPL, CENPU, ID2, CENPK, AR, SAP30, STAT1, CCNB1, MEN1, 
ITGB3BP, CCND2, ORC2, RIF1, SNW1, CBX5, MAD2L1, SMAD2, KIF2C, MAF

10 GO:0005694 Chromosome 1.01 × 10−05 21 PDS5B, TCF3, CENPL, CENPU, ID2, CENPK, AR, SAP30, STAT1, CCNB1, MEN1, 
ITGB3BP, CCND2, ORC2, RIF1, SNW1, CBX5, MAD2L1, SMAD2, KIF2C, MAF

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1163

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Gene Expression Analysis on Rheumatoid ArthritisSabir et al.

12

based on hubs and bottlenecks. Hubs are considered as key 
features, and they point to crucial intersections among clusters 
of genes in a network such that the network is disordered 
when hub nodes are detached (Csermely et al., 2013). In the 
biological interactome RAPIN, essential genes are indicated 
as nodes with high connectivity or degree. Several research 
investigations have reported that genes involved in disease 
conditions have higher number of interactions or connectivity 
when compared to other genes not connected to the disease. 
We obtained 131 hubs with an average connectivity of 132.54 
edges. This supports the significance of hub genes in the 
biological interactome (Khosravi et al., 2014).

Interestingly, NFKB1, REL, and RELA of the NKPF group 
and genes like TLR4, TNFRSF1A, and SNW1 of the seed 
gene set were found in hubs. Functional enrichment and 
GWAS analysis revealed that the aforesaid hub genes except 

SNW1 were directly linked with RA. Thus, pinpointing hub 
genes in the biological interactome can provide improved 
understanding of disease pathogenesis. On other hand, 
betweenness centrality of a gene is the control of a gene that 
indicates the connectivity of other genes which are functionally 
significant in the interactome. Bottleneck genes show higher 
betweenness centrality and favor genes which are connected to 
compact networks instead of genes that are positioned inside 
the compact cluster (Yoon et al., 2006). GRIN2B, KPNA1, 
PRKCG, CX3CL1, RIPK1, CFLAR, CALCOCO2, ATG7, 
and ITCH of seed genes and NFKB2 and RELB of the NKPF 
category were present in the bottleneck group. The functional 
enrichment and GWAS analysis revealed that NFKB2, RELB, 
CX3CL1, RIPK1, and ATG7 are associated with RA. The gene 
list which emerged after all filtering methods was considered 
as  “driver genes.”

TABlE 5 | Top 10 biological processes enriched with their respective gene ontology terms and genes.

No GO ID Name p value Count Genes

1 GO:0012501 Programmed cell 
death

1.39 × 10−15 51 NPM1, MYD88, ABL1, GATAD2A, RIPK1, ATG7, CALR, MAX, ICAM1, BAD, ETS1, XIAP, 
IRF3, RELA, NCK1, BFAR, SKI, CBL, IFI16, IFIT2, IFIT3, AR, STAT1, NLRP3, RBCK1, 
MEN1, ITGB3BP, ARF6, CUL5, CFLAR, SNW1, CSF1R, EGR1, PIK3R1, TLE1, TLR4, 
LRP1, KMT2A, FGF13, BCL10, TNFRSF1A, QKI, ESPL1, CDC42, CX3CL1, G6PD, HCK, 
NOTCH1, MAD2L1, KPNA1, NCKAP1L

2 GO:0010628 Positive regulation 
of gene expression

1.76 × 10−13 47 NPM1, MYD88, TCF3, RIPK1, CALR, ERC1, FOSB, ICAM1, ETS1, ID2, U2AF2, IRF2, REL, 
RELA, NCK1, RELB, SKI, IFI16, CENPK, AR, STAT1, NLRP3, RBCK1, HNRNPU, CCNB1, 
CASK, MEN1, CFLAR, RHOG, SNW1, AGO1, RNF4, EGR1, CD86, PIK3R1, TLE1, NFKB2, 
TLR4, KMT2A, BCL10, TNFRSF1A, QKI, CDC42, NOTCH1, SMAD2, COL1A1, MAF

3 GO:0006955 Immune response 4.48 × 10−15 45 CALCOCO2, MYD88, ABL1, RIPK1, ICAM1, BLNK, ETS1, XIAP, IRF2, IRF3, REL, RPS19, 
RELA, NCK1, SAMHD1, RELB, CBLB, IFI16, IFIT2, IFIT3, STAT1, NLRP3, RBCK1, ARF6, 
IFIH1, CSF1R, AP1G1, EGR1, CD86, PIK3R1, NFKB2, TLR4, CCR1, BCL10, TNFRSF1A, 
CDC42, FKBP1A, CX3CL1, HCK, NOTCH1, APBB1IP, CXCL8, COL1A1, NCKAP1L, 
CYBA

4 GO:0065003 Protein-containing 
complex assembly

9.44 × 10−13 45 NPM1, COL6A2, ABL1, RIPK1, MAP1B, CENPL, CALR, MAX, ICAM1, SPTBN1, PECAM1, 
HAUS5, BAD, CENPU, XIAP, RPS19, NCK1, SAMHD1, SKI, CENPK, DDB2, AR, 
NLRP3, CCNB1, MEN1, ITGB3BP, ARF6, AGO1, RNF4, TLE1, TLR4, PARVA, KMT2A, 
FGF13, BCL10, DMD, TNFRSF1A, CDC42, FKBP1A, CX3CL1, HCK, SMAD2, COL1A1, 
NCKAP1L, CYBA

5 GO:0002682 Regulation of 
immune system 
process

1.19 × 10−13 42 MYD88, TCF3, ABL1, RIPK1, ATG7, CALR, ICAM1, PECAM1, BAD, ETS1, ID2, XIAP, 
IRF3, RPS19, RELA, NCK1, SAMHD1, RELB, CBLB, IFI16, STAT1, NLRP3, RBCK1, ARF6, 
IFIH1, CSF1R, AP1G1, CD86, PIK3R1, TLR4, AP1S2, CCR1, BCL10, CDC42, FKBP1A, 
CX3CL1, HCK, NOTCH1, CXCL8, COL1A1, NCKAP1L, CYBA

6 GO:0051254 Positive regulation 
of RNA metabolic 
process

7.81 × 10−13 42 NPM1, MYD88, TCF3, RIPK1, ERC1, FOSB, ICAM1, ETS1, ID2, U2AF2, IRF2, REL, RELA, 
NCK1, RELB, SKI, IFI16, CENPK, AR, STAT1, NLRP3, RBCK1, CCNB1, CASK, MEN1, 
CFLAR, RHOG, SNW1, AGO1, RNF4, EGR1, CD86, PIK3R1, NFKB2, TLR4, KMT2A, 
BCL10, TNFRSF1A, NOTCH1, SMAD2, COL1A1, MAF

7 GO:0080134 Regulation of 
response to stress

4.76 × 10−11 39 CALCOCO2, NPM1, MYD88, NUP50, ABL1, RIPK1, ATG7, ETS1, U2AF2, XIAP, IRF3, 
RPS19, RELA, NCK1, SAMHD1, RELB, BFAR, IFI16, STAT1, NLRP3, CASK, MEN1, ARF6, 
IFIH1, RIF1, AP1G1, CD86, PIK3R1, ATP6V1D, TLR4, AP1S2, CCR1, BCL10, TNFRSF1A, 
EDEM1, CDC42, CX3CL1, HCK, CYBA

8 GO:0051247 Positive regulation 
of protein metabolic 
process

8.67 × 10−11 39 NPM1, MYD88, ABL1, RIPK1, ATG7, DISC1, ICAM1, PECAM1, TRPC6, BAD, XIAP, REL, 
RELA, NCK1, CBLB, IFI16, AR, STAT1, NLRP3, CCNB1, MEN1, CCND2, SNW1, CSF1R, 
CD86, PIK3R1, TLR4, KMT2A, CCR1, FGF13, BCL10, TNFRSF1A, EDEM1, ESPL1, 
CDC42, FKBP1A, CX3CL1, MAD2L1, NCKAP1L

9 GO:0006952 Defence response 1.79 × 10−10 39 CALCOCO2, MYD88, ABL1, RIPK1, ATG7, ICAM1, BLNK, ETS1, XIAP, IRF2, IRF3, REL, 
RPS19, RELA, SAMHD1, RELB, IFI16, IFIT2, IFIT3, STAT1, NLRP3, ARF6, IFIH1, CSF1R, 
AP1G1, EGR1, CD86, NFKB2, TLR4, AP1S2, CCR1, BCL10, TNFRSF1A, CX3CL1, HCK, 
ALOX5, NOTCH1, CXCL8, CYBA

10 GO:1902531 Regulation of 
intracellular signal 
transduction

1.62 × 10−09 39 VAPA, NPM1, MYD88, ABL1, RIPK1, CALR, CDK12, ICAM1, PECAM1, BAD, XIAP, IRF3, 
REL, RELA, NCK1, CBL, AR, STAT1, NLRP3, RBCK1, MEN1, ARF6, CFLAR, RHOG, 
CSF1R, AMOT, CD86, PIK3R1, TLE1, TLR4, CCR1, BCL10, DMD, TNFRSF1A, CDC42, 
FKBP1A, CX3CL1, NOTCH1, NLK
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The established theory of network medicine is that primary 
interacting partners of disease-causing genes may play a role in 
related diseases. In addition, in a network of disease genes, the 
non-disease genes tend to have a higher tendency to interact 
with other disease genes (Csermely et al., 2013). We explored 
this hypothesis with diseases and pathways related to the 
driver genes.

NFKB1, REL, RELA, TLR4, TNFRSF1A, and SNW1 act as 
a central hub in the network with high number functional 
partners. In the functional enrichment analysis and literature 
survey, NFKB1, REL, RELA, TLR4, and TNFRSF1A are 
functionally contributing to RA These genes are also involved 
in pathways of innate immune system, cytokine signaling in 
immune system, NF kappa B signaling pathway, osteoclast 
differentiation, TNF signaling pathway, etc. The role of NF-κB 
in RA and its potential to become a therapeutic target is 
extensively reported. Earlier study reveals the role of NF-κB 
and its significance to RA and inflammation (Simmonds and 
Foxwell, 2008). Other studies support the hypothesis that 
NF-κB triggers the pathogenesis of RA and plays a dominant 
role in eliciting chronic inflammation (Noort et al., 2015; Liu 
et al., 2017). The molecular stimulating event that initiates 
this process is not known, but may possibly contain molecules 
on the surface of T cell receptors and/or Toll-like receptor 
family ligands. These stimulate macrophage molecules in the 
synovium, resulting in the phosphorylation of the inhibitor of 
κB by the complex of IκB kinase that leads to destruction by 
the proteasome. This discharges NF-κB dimers such as p50/
p65 that bring the expression of several pro-inflammatory 
chemokines and cytokines and results in inflammation and 
penetration of high amount of immune-related elements 
into the synovium. Inflammatory mediators, mainly TNF-α, 
stimulate cells in the synovium in a paracrine and autocrine 
manner, which is NF-κB-dependent. Fibroblasts trigger 

various NF-κB-induced genes by reacting to TNF-α or IL-1, 
together with chemokines, which results in more inflammatory 
infiltrates and matrix metalloproteinases that initiate joint 
destruction. Genes of NKPF (family of NF-κB proteins) have 
a critical role in RA by regulating inflammation and immune 
system (Makarov, 2001; Feldmann et al., 2002; Roman-Blas 
and Jimenez, 2006; Noort et al., 2015).

Evidence for the role of another hub gene, TNFRSF1A in 
RA is extensive. Four GWAS in RA have strongly identified 
12p13 as a susceptibility locus, where TNFRSF1A is mapped 
(Cornelis et al., 1998; Shiozawa et al., 1998; Jawaheer et al., 
2001; Osorio et al., 2004). Mutations in the TNFRSF1A gene are 
dominantly inherited in TRAP syndrome (TRAPS), signifying 
the association of TNFRSF1A to auto‐inflammatory diseases. The 
R92Q mutation in TNFRSF1A could be involved in RA, as was 
seen in 5.2% of 135 patients with early arthritis (Aksentijevich 
et al., 2001; Nowlan et al., 2006; Dieude et al., 2007; Mewar and 
Wilson, 2011).

Next, we considered the involvement of bottleneck genes 
(RIPK1, ATG7, NFKB2, RELB, KPNA1, CFLAR, and CX3CL1) 
in RA. More interestingly, two genes of the NKPF category, 
NFKB2 and RELB, are found in the bottleneck group. This 
implies that both hubs and bottlenecks comprised NKPF 
gene category.

We identified SNW1, a hub gene, and RIPK1 and ATG7, 
bottleneck genes, which are part of the NKPF group. RIPK1 and 
ATG7 are also seen in RA pathways. RIPK1 is co-expressed 
with RELA and is also connected to another RA-associated 
gene, TLR4 (Figure 7). Recent study reveals that inhibition of 
RIPK1 reduces the severity of the experimental autoimmune 
arthritis through osteoclastogenesis suppression (Jhun et al., 
2019). The process of osteoclastogenesis is linked to the NF-κB 
activity. Activation of NF-κB is essential for the formation of 
osteoclasts (Boyce et al., 2015). There is supporting evidence 

TABlE 6 | Top 10 pathways enriched and number of genes.

No. Pathway name p value Count hit in query list

1 Innate immune system 3.21E−07 36 VAPA, MYD88, ABL1, RIPK1, ATG7, SPTBN1, PECAM1, BAD, IRF2, IRF3, NPC2, RELA, NCK1, RELB, 
MAGT1, IFI16, NLRP3, RHOG, IFIH1, AGO1, FAF2, CD86, PIK3R1, ATP6V1D, NFKB2, TLR4, BCL10, 
CDC42, MVP, HSPA6, HCK, GNS, ALOX5, APBB1IP, NCKAP1L, CYBA

2 Cytokine signaling in 
immune system

9.88E−08 27 IL10RA, MYD88, NUP50, ICAM1, SPTBN1, BLNK, IRF2, IRF3, RELA, SAMHD1, RELB, CBL, IFIT2, IFIT3, 
STAT1, CSF1R, EGR1, CD86, PIK3R1, NFKB2, CCR1, TNFRSF1A, HCK, ALOX5, APBB1IP, CXCL8, 
KPNA1

3 Adaptive immune 
system

4.84E−07 27 MYD88, ATG7, CALR, CANX, ICAM1, BAD, BLNK, REL, RELA, NCK1, DTX3L, CBL, CBLB, RBCK1, 
KIF20A, CUL5, AGO1, RNF4, AP1G1, CD86, PIK3R1, TLR4, AP1S2, BCL10, CDC42, KIF2C, CYBA

4 Signaling by 
interleukins

3.04E−05 18 IL10RA, MYD88, ICAM1, SPTBN1, BLNK, RELA, CBL, STAT1, CSF1R, CD86, PIK3R1, NFKB2, CCR1, 
TNFRSF1A, HCK, ALOX5, APBB1IP, CXCL8

5 Signaling by Rho 
GTPases

1.06E−04 15 ABL1, CENPL, CENPU, NCK1, PRC1, CENPK, AR, MEN1, ITGB3BP, RHOG, CDC42, MAD2L1, KIF2C, 
NCKAP1L, CYBA

6 NF-κB signaling 
pathway

2.78E−12 14 MYD88, RIPK1, ERC1, ICAM1, BLNK, XIAP, RELA, RELB, CFLAR, NFKB2, TLR4, BCL10, TNFRSF1A, 
CXCL8

7 Neutrophil 
degranulation

1.37E−03 14 VAPA, ATG7, PECAM1, NPC2, MAGT1, RHOG, FAF2, ATP6V1D, MVP, HSPA6, GNS, ALOX5, NCKAP1L, 
CYBA

8 NOD-like receptor 
signaling pathway

4.94E−07 12 MYD88, RIPK1, XIAP, IRF3, RELA, IFI16, STAT1, NLRP3, RBCK1, TLR4, CXCL8, CYBA

9 Transcriptional mis-
regulation in cancer

9.11E−07 12 TCF3, MAX, ID2, REL, RELA, MEN1, CCND2, CSF1R, CD86, KMT2A, CXCL8, MAF

10 Diseases of signal 
transduction

1.08E−03 12 ATG7, BAD, CBL, STAT1, SNW1, CD86, PIK3R1, QKI, FKBP1A, NOTCH1, APBB1IP, SMAD2
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for inactivating RIPK1 to develop inflammatory response and 
reduce death of necroptotic cell in vitro and in vivo. A recent 
study reported RIPK1 as a promising therapeutic target for 
the treatment of a wide range of human autoimmune and 
inflammatory diseases (Degterev et  al., 2019). They also 
revealed that RIPK1 is a significant mediator of inflammatory 
pathways (Degterev et al., 2019). This provides significant 
support to the network medicine theory that the primary 
interacting partners of disease genes are contributing to 
related diseases as well.

The ATG7 gene is co-expressed with RELB, another NKPF gene. 
This gene codes for E1-like stimulating enzyme that is essential 

for autophagy and to vacuole transport. Autophagy is a process 
of degradation whereby cells reutilize cytoplasmic constituents to 
produce energy. Dysregulation of autophagy pathway is implicated 
in the pathogenesis of RA. Autophagy controls apoptosis resistance, 
increases cell division in synovial fibroblasts, and endorses 
osteoclastogenesis leading to RA (Dai and Hu, 2016). Autophagy 
may contribute to RA development through multiple processes, 
e.g., in continuing autoimmune response by cytokine production, 
survival of inflammatory and autoreactive cells, and presentation 
of citrullinated antigens to the major histocompatibility complex 
(Foulquier et al., 2007; Vomero et al., 2018). Also, autophagy inhibits 
the development of autoimmunity process by removing intracellular 
pathogens and preserves immune cell homeostasis, with the 
regulation of immunological tolerance processes. In experimental 
mouse models of RA, autophagy inhibition decreased symptoms 
of bone destruction and the quantity of osteoclasts. In this context, 
drugs that can downregulate autophagy can be used to inhibit 
resorption of bone in RA patients (Lin et al., 2013).

One of the important findings in our study is the novel 
association of SNW1 with REL. Till date, the role SNW1 in RA is not 
reported. This gene becomes significant as it is a hub gene with more 
functional partners and a strong correlation with REL. Hubs specify 
significant connectivity among clusters in the biological interactome 
such that the biological interactions are disordered when hub nodes 
are detached (Khosravi et al., 2014). Genes involved in disease 
conditions have higher number of interactions or connectivity 
when compared to non-diseased genes (Csermely et al., 2013). More 
interestingly, a recent study has described the critical role of SNW1 
in the NF-κB pathway and reports SNW1 as a novel transcriptional 
regulator of the NF-κB pathway. They also demonstrate that SNW1 
is indispensable for the transcriptional elongation of NF-κB target 
genes like interleukin 8 and tumor necrosis factor genes (Verma et 
al., 2019). Hence, SNW1’s role in RA can be considered as a novel 
finding which may act as potential biomarker or drug target for RA 
as they are found together with other key genes of RA.

Our approach, however, has certain limitations. First, as 
experimentally proven protein interactions are extracted 
using Bisogenet plugin, which utilizes interactions from 
various protein interaction databases, any interactions that 
are not included in the databases are missing in our work. 
Furthermore, there are insufficient evidences for few genes 
engaged in molecular functions or biological processes in gene 
ontology (GO). In order to overcome these limitations, we 
tried to include protein interaction based on co-expression. 
Overall, our research analysis has presented the effectiveness of 
linking gene expression with their functional relationships in 
the identification of RA candidate genes. Future experimental 
validation is required to demonstrate the direct or indirect 
involvement of the novel candidate genes uncovered in the 
current study in RA.

CONClUsION
This work systematically and scientifically outlines 
an integrated bioinformatics pipeline to find the most 

TABlE 7 | The hits from GWAS analysis showing associations to inflammatory 
conditions.

No Traits Gene P-value

1. Ankylosing spondylitis TNFRSF1A 3 x 10−17

2. Crohn's disease TNFRSF1A 3 x 10−17

3. Ulcerative colitis TNFRSF1A 3 x 10−17

4. Sclerosing cholangitis TNFRSF1A 3 x 10−17

5. Psoriasis TNFRSF1A 3 x 10−17

6. Ankylosing spondylitis TLR4 3 x 10−17

7. Crohn's disease TLR4 1 x 10−8

8. Ulcerative colitis TLR4 1 x 10−8

9. Sclerosing cholangitis TLR4 1 x 10−8

10. Psoriasis TLR4 1 x 10−8

11. Ankylosing spondylitis NFKB1 2 x 10−18

12. Crohn's disease NFKB1 2 x 10−18

13. Ulcerative colitis NFKB1 2 x 10−18

14. Sclerosing cholangitis NFKB1 2 x 10−18

15. Psoriasis NFKB1 2 x 10−18

16. Atopic eczema, psoriasis REL 7 x 10−9

17. Chronic inflammatory diseases TNFRSF1A 3 x 10−17

18. Chronic inflammatory diseases TLR4 1 x 10−8

19. Chronic inflammatory diseases NFKB1 2 x 10−18

20. Eosinophil count TNFRSF1A 1 x 10−20

21. Eosinophil count RELA 2 x 10−12

22. Eosinophil count NFKB1 9 x 10−12

23. Eosinophil count, basophil count NFKB1 9 x 10−11

24. Eosinophil counts TNFRSF1A 1 x 10−20

25. Eosinophil counts RELA 2 x 10−12

26. Eosinophil counts NFKB1 9 x 10−12

27. Erythrocyte count NFKB1 3 x 10−11

28. HDL cholesterol ATG7 5 x 10−8

29. Heel bone mineral density ATG7 3 x 10−12

30. Heel bone mineral density FOSB 3 x 10−12

31. Inflammatory bowel disease RELA 4 x 10−6

32. Inflammatory skin disease REL 7 x 10−9

33. LDL cholesterol KPNA1 1 x 10−8

34. LDL cholesterol levels KPNA1 3 x 10−8

35. Leukocyte count NFKB1 7 x 10−11

36. lymphocyte count TNFRSF1A 1 x 10−9

37. Lymphocyte counts TNFRSF1A 1 x 10−9

38. Monocyte count TNFRSF1A 1 x 10−16

39. Multiple sclerosis TNFRSF1A 5 x 10−6

40. Multiple sclerosis NFKB1 1 x 10−8

41. Platelet count TNFRSF1A 5 x 10−9

42. Red blood cell count NFKB1 3 x 10−11

43. Rheumatoid arthritis REL 8 x 10−7

44. Systemic sclerosis TRPC6 4 x 10−6

45. Systemic sclerosis NFKB1 3 x 10−7

46. White blood cell count NFKB1 7 x 10−11
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indispensable key signatures from the interactome Regulators 
Allied Protein Interaction Network (RAPIN). A detailed 
parametric downstream analysis based on biological insights 
highlights 11 candidate genes that can act as potential 
biomarkers or drug targets for RA. One of the remarkable 
highlights of this analysis is the identification of SNW1 as 
potential biomarker for RA. Overall, our research analysis 
has presented the effectiveness of linking genetic expression 
with their functional relationship in the identification of 
RA candidate genes. By experimentally authenticating 
the results using in vitro and in vivo experiments, this can 
be further extended in order to pinpoint more selective 
therapeutic agents.
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