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Abstract

Pituitary adenylate cyclase–activating polypeptide (PACAP-38) is a common neuropep-

tide exerting a wide spectrum of functions in many fields, including immunology. In the

present study, 5-day post-fertilization (dpf) zebrafish larvae of three diverse genetic lines

[transgenic lines Tg(MPX:GFP) with GFP-labelled neutrophils and Tg(pou4f3:GAP-GFP)

with GFP-labelled hair cells and the wild-type Tuebingen] were used to investigate an

inhibitory role of PACAP-38 in inflammation associated with damaged hair cells of the lat-

eral line. Individuals of each genetic line were assigned to four groups: (1) control, and

those consisting of larvae exposed to (2) 10 µM CuSO4, (3) 10 µM CuSO4+100 nM

PACAP-38 and (4) 100 nM PACAP-38, respectively. Forty-minute exposure to CuSO4

solution was applied to evoke necrosis of hair cells and consequent inflammation. The

inhibitory role of PACAP-38 was investigated in vivo under a confocal microscope by

counting neutrophils migrating towards damaged hair cells in Tg(MPX:GFP) larvae. In

CuSO4-treated individuals, the number of neutrophils associated with hair cells was dra-

matically increased, while PACAP-38 co-treatment resulted in its over 2-fold decrease.

However, co-treatment with PACAP-38 did not prevent hair cells from extensive necrosis,

which was found in Tg(pou4f3:GAP-GFP) individuals. Real-Time PCR analysis per-

formed in wild-type larvae demonstrated differential expression pattern of stress and

inflammation inducible markers. The most significant findings showed that CuSO4 expo-

sure up-regulated the expression of IL-8, IL-1β, IL-6 and ATF3, while after PACAP-38 co-

treatment expression levels of these genes were significantly decreased. The presence

of transcripts for all PACAP receptors in neutrophils was also revealed. Adcyap1r1a and

vipr1b appeared to be predominant forms. The present results suggest that PACAP-38

should be considered as a factor playing an important regulatory role in inflammatory

response associated with pathological processes affecting zebrafish hair cells and it can-

not be excluded that this interesting property has more universal significance.
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Introduction

Pituitary adenylate cyclase–activating polypeptide (PACAP-38) is a pleiotropic neuropeptide,

with known protective and anti-apoptotic functions [1–6]. In recent decades, PACAP-38 has

been also classified as an anti-inflammatory factor which regulates inflammatory responses via

influencing both anti- and pro-inflammatory mediators. PACAP-38 exerts its role in the

inflammation process through three receptors, VPAC1, VPAC2 and PAC1. It has been already

demonstrated that PACAP-38 and its receptors are evolutionarily well-conserved among spe-

cies, including mammals or teleost fish and are present in their immune systems [7, 8]. The

anti-inflammatory action of PACAP-38 is multi-faceted. It regulates production of pro-inflam-

matory macrophage-derived mediators, such as TNF-α, IL-6, IL-12 [7] or anti-inflammatory

effectors like IL-10 [9,10]. It has also been demonstrated that PACAP-38 modulates many

macrophage functions, stimulating migration, adherence or phagocytosis [11,12]. Moreover,

the effects of PACAP-38 on lymphocyte function, survival and differentiation have been

broadly discussed [7]. Comparatively few studies have dealt with the influence of PACAP-38

on neutrophils. The only available contributions concerning humans and mice have, unfortu-

nately, reported the completely opposite effects. Kinhult et al. (2001) [13] and Martinez et al.

(2005) [14] found that administration of PACAP-38 inhibits neutrophil chemotaxis, while

Kim et al. (2006) [15] revealed that a shorter form of this peptide—PACAP-27 stimulates neu-

trophil migration. In contrast, neutrophils incubated with PACAP-38 exhibited a marked

increase in the expression of cell surface CD11b, CD63 and CD66b markers, indicating its role

in granulocyte activation [16]. This suggests that different pathways can mediate chemotaxis

and cellular activation and that further studies are needed.

The use of zebrafish (Danio rerio) in biomedical research is invaluable and in recent years

has gradually expanded into the field of immunology. The most preferable stage of the zebra-

fish lifetime in both medical [17] as well as veterinary studies [18], is the early life period.

Immunological studies on the individuals of early life stages have dealt with the only form of

immune system functioning in this phase of ontogenesis, the innate immune system, which

starts developing already at the 1st day post fertilization (dpf) [19,20], thus, much earlier before

the acquired immune system does. Several studies have proven the remarkable similarity of

zebrafish immune system to that in humans and have revealed that almost all cell types of the

human immune system have zebrafish counterparts [21]. Unfortunately, the role of PACAP-

38 and the molecular basis of its action in zebrafish immune system still remains to be

uncovered.

Our previous contributions have demonstrated that PACAP-38 plays an anti-apoptotic role

in oxidative stress-damaged zebrafish hair cells, which is very promising information in the

context of (as far as) working out suitable models for studying PACAP-38 properties in ototox-

icity screening assays [6]. The zebrafish lateral line (posterior and anterior) consists of individ-

ual sense organs called neuromasts, composed of hair cells. It has been proven that zebrafish

hair cells greatly resemble those in the mammalian inner ear [22], making the zebrafish an

ideal model for auditory system investigations. Many factors and signaling pathways activated

by inflammation are involved in the regulation of cell apoptosis [23]. Therefore, we have

assumed the hypothesis that PACAP-38 plays an anti-inflammatory role in inflammation

induced by copper damage to zebrafish hair cells.

Considering the above-mentioned issues, the present study was designed to establish the

role of PACAP-38 in non-invasive inflammation induced by chemical damage to zebrafish

hair cells. Based on the previous information, it was assumed that the ongoing inflammatory

process is indicated by the migration of neutrophils from the caudal hematopoietic tissue

(CHT) or the posterior blood island (PBI) to the neuromasts [24]. The aim was to investigate
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how PACAP-38 influences neutrophil migration and whether it modulates the gene expression

profile of chosen immune and stress response markers [activating transcription factor 3

(ATF3), interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10),

Macrophage receptor MARCO (MARCO), tumor necrosis factor (TNFα)]. Because IL-8 is

known as a neutrophil chemotactic factor, more account of this chemokine was taken and it

was decided to focus on the gene expression of IL-8 receptors, C-X-C motif chemokine recep-

tor 1 (CXCR1) and C-X-C motif chemokine receptor 2 (CXCR2). It was also important to clar-

ify whether PACAP-38 exerts its effect indirectly by influencing the production of the

cytokines and transcription factors or by direct impact on immune cells. Therefore, the goal

was to demonstrate the presence of PACAP receptors on neutrophils to shed some additional

light on the mechanism involved in the investigated processes. The data obtained should pro-

vide new insights into toxicological and molecular mechanisms of PACAP-38 anti-inflamma-

tory effect and, thus, hopefully broaden the field of research on inflammation using zebrafish

as an animal model.

Materials and methods

Animals

The study involved 5-day post-fertilization (dpf) zebrafish larvae of three diverse genetic lines:

transgenic lines Tg(MPX:GFP) and Tg(pou4f3:GAP-GFP) and the wild-type Tuebingen, as

well as 9-month-old fish of Tg(MPX:GFP) line. Tg(MPX:GFP) zebrafish transgenic line

(kindly gifted from the Institute of Biology, Leiden University, Netherlands) was used for in
vivo investigation of neutrophil migration towards damaged neuromasts in larvae and to iso-

late neutrophils from kidneys from adult fish, respectively. The Tg(MPX:GFP) line carries

myeloperoxidase promoter, driving the expression of GFP in myeloid leukocytes (mostly neu-

trophils). Necrosis assessment was accomplished in the Tg(pou4f3:GAP-GFP) zebrafish trans-

genic line (kindly gifted from the University of Sheffield, United Kingdom) which carries

POU class 4 homeobox 3 promoter driving expression of green fluorescent protein (GFP) in

hair cells. To investigate changes in the expression profile of genes encoding chosen inflamma-

tory markers, the wild-type Tuebingen strain (kindly gifted from the Nüsslein-Volhard Lab,

Max-Planck-Institut für Entwicklungsbiologie in Tübingen, Germany) was used. The adult

fish were maintained in 8l tanks in a flow system at 28˚C with a 14h light:10h dark photope-

riod, and fed three times daily ad libitum with dry food and Artemia sp. naupli. The embryos

were maintained in an embryo solution (E3 medium) (5 mM NaCl, 0.17 mM KCl, 0.33 mM

CaCl2, 0.33 mM MgSO4) and kept in an incubator at 28.5˚C and 14h light:10h dark photope-

riod without feeding until 5 dpf. The individuals used in the study were anesthetized by placing

them in a tricaine methanesulfonate (MS-222) solution and euthanized by an overdose of MS-

222, respectively.

All fish are housed in the fish facility of the Laboratory of Genomics and Transcriptomics,

University of Warmia and Mazury in Olsztyn, Olsztyn, Poland, which was built according

with the local animal welfare standards. All animal procedures were performed in accordance

with Polish and European Union animal welfare guidelines. According to the European Direc-

tive 2010/63/EU and Polish law regulations O.J. of 2015, item 266, all procedures performed in

the present study include the use of early life-stage zebrafish and euthanasia for the purpose of

organ dissection do not require Ethic Committee permissions.

The study design

All experiments were performed on 5 dpf larvae. For this purpose, the individuals of each

genetic line were randomly assigned to 4 groups: (1) a control group including larvae which
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were incubated in embryo solution (E3 medium); (2) a group of larvae exposed to 10 µM

CuSO4 for 40 min; (3) to investigate the ameliorative role of PACAP-38, a group of larvae were

incubated with a mixture of 10 µM CuSO4 and 100 nM PACAP-38 for 40 min following 1 hour

pre-incubation with 100 nM PACAP-38 only; (4) to check if PACAP-38 has any influence on

the inflammatory process itself, a group of larvae were incubated with 100 nM PACAP-38 only.

PACAP-38 was synthesized by the solid-phase technique utilizing tBoc chemistry [25] as

described previously [26]. The sequence of PACAP-38 used in the current study referred to

mammalian PACAP-38 demonstrating 80% homology between the zebrafish and human pep-

tide sequence and the zebrafish receptor binding site sequence corresponded to that of humans

in almost 100% [6].

To demonstrate the presence of PACAP receptors in neutrophils we used 9-month-old fish.

For this purpose, we decided to acquire a clear neutrophil population from kidneys, because

this organ is commonly used as the source of neutrophils in the zebrafish. Fluorescence acti-

vated cell sorting (FACS) (details of the method are described in Materials and methods sec-

tion) allowed obtaining the cell suspension of 98% purity. Therefore, to establish which

receptors are specific for neutrophils and demonstrate their relative level of expression, we

compared the results obtained in neutrophils to those gained from unsorted kidney tissues as

well as whole 5 dpf larvae.

Assessment of chemically induced neutrophil migration to damaged hair

cells

5dpf Tg(MPX:GFP) zebrafish divided into four groups according to the above description

were used. Each group consisted of n = 15 individuals. The induction of inflammation in the

posterior lateral line (PLL) neuromasts was based on already established dynamics of this pro-

cess [24]. It was found that the resulting effects of the 40 min 10 µM CuSO4 exposure were not

intensified within the next 20 minutes, which enabled counting neutrophils in each experi-

mental group in vivo within a 10 minute period. Anesthetized (MS-222, Sigma Aldrich) larvae

were mounted on slices in 3% methyl cellulose and the remaining lateral line neutrophils were

counted under a LSM 700 confocal laser scanning microscope (Zeiss, Germany). The analysis

involved all trunk neuromasts (L1, LII.1, L2, LII.2, L3, L4, L5 and L6) excluding the 3 terminal

(ter) ones where migrated neutrophils were barely distinguishable from those in the caudal

hematopoietic tissue (CHT), which is a natural site of their occurrence at this developmental

stage. The quantification was restricted to the area defined by the notochord, excluding cells

located within the ventral and dorsal myotomes (Fig 1). Therefore, we counted fluorescent

neutrophils associated with each neuromast mentioned as well as those which did not adhere

directly to the neuromasts, but they were sparsely found in the area encircled by the noto-

chord. Following d’Alençon et al. (2010) [24] it was not necessary to label neuromasts, as their

localization is conservative, so they always appear along the notochord.

Assessment of hair cells necrosis

For the purpose of this experiment, 5 dpf Tg(pou4f3:GAP-GFP) larvae were used. The experi-

mental conditions remained the same as described previously. Each group consisted of n = 15

individuals. After the treatments, the larvae were fixed in 4% paraformaldehyde (PFA) o/n in

4˚C. The next day, they were rinsed three times in phosphate-buffered saline (PBS) and

mounted on their side on slices in 50% and then in 80% glycerol. The visualization was accom-

plished using a LSM 700 confocal laser scanning microscope (Zeiss, Germany).

PACAP-38 inhibits inflammation of damaged hair cells
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Microscopy and visualization

The visualization and images were achieved using a LSM 700 confocal laser scanning micro-

scope (Zeiss, Germany). The GFP driven by myeloperoxidase promoter in Tg(MPX:GFP) line

and by POU class 4 homeobox 3 in Tg(pou4f3:GAP-GFP) was excited by a 488 nm laser. To

obtain desirable quality of images, ×10 and ×20, ×40 objectives, z-stack tool, as well as tile scan

tool (when necessary) were applied. Stacks of images were composed into one to obtain maxi-

mum intensity projection images with ZEN 2009 software (Zeiss, Germany).

Whole kidney extraction and preparation of cell suspension

Adult Tg(MPX:GFP) fish were euthanized with an overdose (500 mg/l) of MS-222. Kidneys

from 5 individual fish were carefully removed and collected into 1.5 ml Eppendorf tubes with

1X Ringer solution (116 mM NaCl, 2.6 mM KCl, 5 mM HEPES, pH 7.0). After dissection, the

tissues were transferred on falcon 40 µm cell strainer and entirely wiped into a 50 ml sterile fal-

con tube with 2 ml of suspension media (1% calf serum, 0.8 mM CaCl2, 50 U/mL penicillin,

0.05 mg/mL streptomycin, DMEM). The wiping procedure enabled separating a cell suspen-

sion containing neutrophils. As the Tg(MPX:GFP) line possesses GFP-labeled neutrophils,

with the use of the stereoscope it was possible to visually assess the quality of separation and

confirm the presence of neutrophils in the obtained suspension. The cell suspension was then

rapidly processed with fluorescence-activated cell sorter (FACS).

Isolation of GFP-positive cells using fluorescence-activated cell sorter

(FACS)

To separate and collect GFP-positive (GFP+) and GFP-negative (GFP-) fractions, the cell sus-

pension was passed through a MoFlo TM XDP fluorescence activated cell sorter (FACS)

(Beckam Coulter) equipped with a 488 nm air-cooled argon solid state laser and a standard fil-

ter setup. An IsoFlow™ solution (Beckman Coulter) was used as the sheath fluid; the pressure

of the sheath fluid was 60 psi, and the nozzle size was 70 μm. To minimize RNA degradation

and keep cells alive, the sorted cells were collected directly into sterile 5-mL polypropylene

tubes with Dulbecco0s Modified Eagle0s Medium (DMEM) (Merck). Moreover, after acquiring

100,000 events the tube was transferred on ice and replaced by a new one. Flow rate and the

concentration of samples were adjusted to keep the acquisition lower than 500 events/s. The

sorting procedure was stopped after acquiring 500,000 GFP+ cells. The settings used for the

sorting were determined empirically and are provided as supporting information (S1 File).

Immediately after the sorting procedure we isolated RNA from both GFP+ cells as well as

unsorted material derived from the kidney tissue.

Fig 1. A photograph illustrating the neutrophil counting area. 5 dpf Tg(MPX:GFP) transgenic zebrafish larvae after

40 min exposure to 10 µM CuSO4 presents the area were neutrophils were quantified (green dots; in the intact larvae

only single neutrophils were observed). Both neutrophils associated with investigated neuromasts (L1, LII.1, L2, LII.2,

L3, L4, L5 and L6) as well as those which did not adhere directly to the neuromasts (but were sparsely found within the

area encircled by the notochord [white arrow]) were counted. Dorsal and ventral myotomes marked with red arrows

and terminal neuromasts (ter) were excluded from the analysis. The larvae carried myeloperoxidase promoter driving

the expression of green fluorescent protein (GFP) in myeloid leukocytes (mostly neutrophils). The visualization was

accomplished using a Zeiss LSM-700 confocal microscope.

https://doi.org/10.1371/journal.pone.0198180.g001
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RNA extraction and reverse transcription

Gene expression analysis was performed in 5 dpf wild-type Tuebingen zebrafish strain, sorted

cells and unsorted kidney tissue. Immediately following the treatments, the larvae of the con-

trol and each experimental group were pooled (n = 30), frozen and stored in -80˚C. Total RNA

was extracted from pooled frozen larvae using Total RNA Mini isolation kit (AA Biotechnol-

ogy). All steps of isolation were assessed according to the respective manufacturer’s protocols.

Homogenization required for RNA isolation was made using TissueLyser II (Qiagen). With

regard to the sorted GFP+ cells and unsorted kidney tissue, just after FACS they were spun

and the DMEM (Merck) was drained off. Total RNA was extracted using RNeasy Mini Kit

(QIAGEN) according to the respective manufacturer’s protocols. The cDNA samples were

synthesized from respective high quality matrix samples with equal RNA concentration for

each sample using Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Scientific).

All steps of reverse transcription were assessed according to the manufacturer’s protocols.

Real-Time PCR

Real-time PCR was performed using SYBR Green in accordance with the manufacturer’s proto-

col (SYBR Select Master Mix, Applied Biosystems) on 7500 Fast Real-Time PCR System instru-

ment (Applied Biosystems). A single PCR reaction included a 1 μL portion of the reverse

transcription product. Oligonucleotide primers were selected to detect markers of the immune

system response [activating transcription factor 3 (ATF3), interleukin 8 (IL-8), interleukin 10

(IL-10), interleukin 1β (IL-1β), interleukin 6 (IL-6), macrophage receptor MARCO (MARCO)

and tumor necrosis factor (TNFα)]. Additionally, gene expression profiles of IL-8 receptors,

C-X-C motif chemokine receptor 1 (CXCR1) and C-X-C motif chemokine receptor 2 (CXCR2),

were investigated. The details are listed in Table 1. To demonstrate the presence of PACAP

receptors in zebrafish neutrophils, we have created specific oligonucleotide primers using

Primer-BLAST tool. PAC1 is encoded by adcyap1r1a and adcyap1r1b genes. VPAC1 is encoded

by vipr1a and vipr1b genes. VPAC2 is encoded by vipr2 gene. The details are listed in Table 1.

In both cases, β-actin was used as a house-keeping gene. Each sample of PCR product was ana-

lyzed against a β-actin control to standardize the results. The following PCR protocol was used

with a 7500 Fast Real-Time PCR System instrument (Applied Biosystems): denaturation for 10

min at 95˚C followed by 40 cycles of 15 s at 95˚C, 1 min at 60˚C and 15 s at 95˚C. The results

regarding markers of the immune system response are presented as relative quantities (RQ) of

mRNA which were analyzed using the comparative Ct method. The values of gene expression

of PACAP receptors were calculated in each group as a relative expression to β-actin. Each sam-

ple was analyzed in triplicate in three separate experiments.

Statistical analysis

The statistical analysis was performed using GraphPad Prism, version 5.0. Data with Gaussian

assumption were analyzed using a one-way ANOVA test and a one-way analysis of variance

with Tukey multiple comparisons tests as a post test. Data analyses not assuming Gaussian dis-

tribution were based on a one-way ANOVA test and a Kruskal–Wallis test with Dunn’s multi-

ple comparisons test as a post test. The error bars represent the mean ± SEM. The significance

level was set at α = 0.05 (95% confidence intervals).
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Results

Inhibitory effects of PACAP-38 on neutrophil migration towards damaged

hair cells

In the control larvae, most of the immune cells remained in the area of ventral myotomes (Fig

2A). In the animals treated with PACAP-38 only, the distribution of the cells was very similar to

that in the control group, suggesting that PACAP-38 itself had no visible influence on the

behavior of neutrophils (Fig 2D). In contrast, in the individuals exposed to 10 µM CuSO4 for 40

min, the immune cells were dispersed throughout the body, forming characteristic clusters in

the midline (Fig 2B). The distribution of the clusters matched that of neuromasts, suggesting

that the migration of neutrophils was associated with, and directed towards, damaged hair cells

(Fig 2B). In contrast to the copper exposure, co-treatment with PACAP-38 inhibited the migra-

tion of neutrophils and resulted in an over 2-fold decrease in the number of the immune cells,

both those associated with the neuromasts and single ones found in the area defined by noto-

chord borders (Fig 2C and 2E). Data are also provided as supporting information (S2 File).

Effects of PACAP-38 on mRNA expression level of pro-inflammatory and

stress-inducible genes

The effects of 100 nM PACAP-38, 10 µM CuSO4 and mixture of 100 nM PACAP-38 and 10

µM CuSO4 exposure on the mRNA levels of various genes (ATF3, IL-1β, IL-6, IL-8, IL-10,

TNFα, MARCO, CXCR1 and CXCR2) encoding pro- and anti-inflammatory factors were deter-

mined by RT-qPCR (Fig 3A–3I, S3 File). The expression profiles of all genes examined

remained statistically unchanged after PACAP-38 treatment only (p> 0.05) (Fig 3A–3I). Cop-

per treatment resulted in up-regulation of IL-1β, IL-6 IL-8, and ATF3 (p< 0.01) (Fig 3A, 3B,

3C and 3F), while the expression of IL-10, MARCO and TNFα remained statistically

unchanged (Fig 3D, 3E and 3G). In groups exposed to 10 µM CuSO4, co-treatment with 100

nM PACAP-38 resulted in a statistically significant decrease in the expression of previously

Table 1. Primers used in the study.

Gene Forward 5’-3’ Reverse 5’-3’ Source/Accession no.

ATF3 CCGTCAGAGATCAGTGCGTCAGCTTTG GTTCTGAGCGCGGACGATGCAGGTGG [27]

IL-1β GAACAGAATGAAGCACATCAAACC ACGGCACTGAATCCACCAC [28]

IL-6 TCAACTTCTCCAGCGTGATG TCTTTCCCTCTTTTCCTCCTG [28]

IL-8 TGTGTTATTGTTTTCCTGGCATTTC GCGACAGCGTGGATCTACAG [28]

IL-10 GGAGACCATTCTGCCAACAGC TCTTGCATTTCACCATATCCCG [28]

MARCO AGCCAAGGGGTAAAAGGAGAC TTGGTCCAGGTGAGCCTTTTC [29]

TNFα ACCAGGCCTTTTCTTCAGGT GCATGGCTCATAAGCACTTGTT [30]

CXCR1 TTCAGTTCGGCTGCACTATG GGAGCAACTGCAGAAACCTC [31]

CXCR2 TGACCTGCTTTTTTCCCTCACT TGACCGGCGTGGAGGTA [31]

adcyap1r1a GAGTTGGACGGTGAACAGGT GGCTGGACATGCGTATCTGA NM_001142926.1

NM_001142925.1

NM_001013444.2

adcyap1r1b GATGATCCCAACAGTGAACCG ACAGGGCATCCAGACAACTTGA XM_677888.7

vipr1a CTGAAGGCGGTGGCAGTAAT TTGCAGCCCACAGATCCATAG XM_021467142.1

XM_002660797.4

vipr1b TGCACTCGCAACTACATCCA AGCCAACAGAACCAGTGGAG NM_001013353.1

vipr2 GGATCCTTTCAGGGCTTGGT GAGGAACTGTGCAGACGGTA NM_131779.1

β-actin CGAGCAGGAGATGGGAACC CAACGGAAACGCTCATTGC [32]

https://doi.org/10.1371/journal.pone.0198180.t001
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up-regulated IL-1β, IL-6 IL-8, and ATF3 (p< 0.05) (Fig 3A, 3B, 3C and 3F). Although expres-

sion levels of IL-10 and TNFα did not demonstrate any statistically significant differences

between the experimental groups, some tendency was clearly visible. They were raised after

administration of copper but decreased after co-treatment with 100 nM PACAP-38 (Fig 3D

and 3G). To ascertain the involvement of receptors for IL-8 in neutrophil migration towards

damaged lateral line hair cells during copper and PACAP-38 co-treatment, the expression lev-

els of CXCR1 and CXCR2 were determined. Although 40 min exposure to 10 µM copper solu-

tion was enough to increase the expression level of IL-8, it did not change the transcriptional

levels of both CXCR1 and CXCR2. The addition of 100 nM PACAP-38 also did not alter them.

(Fig 3H and 3I) (one-way ANOVA, Kruskal–Wallis test with Dunn’s posttest, GraphPad

Prism 5, p> 0.05).

Effects of PACAP-38 on hair cell necrosis

The control hair cells showed normal and regular pear-shaped morphology (Fig 4A). 10 µM

CuSO4 evoked rapid and acute necrosis of hair cells in PLL (Fig 4B). The hair cell rosette was

totally destroyed and nearly all of the cells demonstrated an abnormal shape. They became

round-shaped, swollen (Fig 4B, arrow heads) and presented far-reaching dilapidation. More-

over, the cell membrane was ruptured and released the cell content, thus the pictures taken

make an impression of being out of focus. Some hair cells appeared shrunken and fragmented,

presumably presenting other death pathways (Fig 4B, arrow). In turn, PACAP-38 did not pre-

vent hair cells from necrosis. In the 100 nM PACAP-38 co-treated group, hair cells remained

necrotic and demonstrated all the regressive features (Fig 4C).

Fig 2. A set of microphotographs and a graph documenting inhibition of neutrophil migration towards 10 µM CuSO4 exposed hair cells resulting from co-

treatment of 5 dpf Tg(MPX:GFP) zebrafish larvae (exhibiting green fluorescence in neutrophils) with 100 nM PACAP-38. (A) The control untreated larva presented

normal distribution of neutrophils which were found in the ventral myotomes of the trunk and tail. (B) 10 µM CuSO4 exposure evoked the migration of the immune cells

towards the midline of the body and the formation of characteristic concentrations very close to, and around, the neuromasts (arrows). (C) 100 nM PACAP-38 co-

treatment resulted in the inhibition of the neutrophil migration, which was reflected by a decreased number, or complete lack of, the green fluorescent cells in the area of

natural neuromast localization (arrows). (D) 100 nM PACAP-38 itself did not visibly alter the natural distribution of neutrophils. The visualization was accomplished

using a Zeiss LSM-700 confocal microscope. (E) The graph presenting the influence of 100 nM PACAP-38 on the number of the neutrophils concentrated around right

posterior lateral line neuromasts (PLL) (L1, LII.1, L2, LII.2, L3, L4, L5 and L6) after 10 µM CuSO4 exposure. The presented values refer to the average number of

neutrophils in each group. 100 nM PACAP-38 treatment resulted in a significant, over two-fold decrease in the number of the neutrophils found singly in the area defined

by notochord borders and those associated with neuromasts as compared to that determined in the 10 µM CuSO4-exposed group (one-way ANOVA, Kruskal–Wallis test

with Dunn’s post-test, GraphPad Prism 5, p< 0.001). N/group = 15.

https://doi.org/10.1371/journal.pone.0198180.g002
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Fig 3. Expression profiles of pro-inflammatory and stress-inducible genes. The graphs present the mRNA

expression of (A) interleukin 1β (IL-1β), (B) interleukin 6 (IL-6), (C) interleukin 8 (IL-8), (D) interleukin 10 (IL-10),
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Expression profile of genes encoding PACAP receptors on neutrophils

The expression level of genes for PACAP receptors was investigated quantitatively by Real-

Time PCR. In vertebrates, the molecular cloning of PACAP receptors has shown the existence

of three distinct receptors: one that recognizes PACAP specifically—PAC1, and two binding

PACAP and VIP equally firmly—VPAC1 and VPAC2 [33]. Since compared to other verte-

brates, the zebrafish genome is duplicated [34], we aimed to investigate the following genes

encoding PACAP receptors: adcyap1r1a, adcyap1r1b, vipr1a, vipr1b and vipr2. Basically, we

found the presence of mRNA for all types of PACAP receptors in the neutrophils. However,

adcyap1r1a appeared to be a predominant form for PAC1, while for VPAC family, the most

prevalent was vipr1b. The lowest expression levels were exhibited by adcyap1r1b and vipr1a
genes. In the larvae and kidney tissue, all genes encoding PACAP receptors showed significant,

but differentiated, expression. It was found that, as in neutrophils, the highest expression level

in the kidney tissue and larvae was exhibited by adcyap1r1a. However, unlike neutrophils, in

the kidney tissue and whole larvae, adcyap1r1b was also expressed at a relatively high level.

Concerning VIP receptors, vipr1a showed the lowest expression level not only in neutrophils,

(E) macrophage receptor MARCO (MARCO), (F) activating transcription factor 3 (ATF3), (G) tumor necrosis factor

(TNFα), (H) C-X-C motif chemokine receptor 1 (CXCR1) and (I) C-X-C motif chemokine receptor 2 (CXCR2) from

pooled (n = 30) 5dpf wild-type zebrafish larvae in four experimental groups: 1) control, 2) exposed to 10µM CuSO4 for

40 min, 3) exposed to a mixture of 100 nM PACAP-38 + 10µM CuSO4 for 40 min preceded by one hour pre-

incubation with 100 nM PACAP-38 only, and 4) exposed to 100nM PACAP-38 only. Each group was covered by

samples analyzed in triplicate in three separate experiments. Data in the figure represent the average of the three

individual experiments. Gene expression values were normalized to housekeeping gene β-actin. To maintain image

clarity, only differences between CuSO4 exposed and PACAP-38 co-treated groups are marked on the graphs. Co-

treatment with PACAP-38 significantly reduced up-regulated by copper treatment IL-1β and IL-6, IL-8 and ATF3 gene

expressions (A, B, C and F) (one-way ANOVA, Kruskal–Wallis test with Dunn’s posttest, GraphPad Prism 5,

p< 0.05), while it had no significant influence on IL-10, MARCO or TNFα genes (D, E and G) (one-way ANOVA,

Kruskal–Wallis test with Dunn’s posttest, GraphPad Prism 5, p> 0.05). With regard to CXCR1 and CXCR2, 10 µM

copper chemical injury and 100 nM PACAP-38 treatment did not significantly change the expression level of the

receptors. (one-way ANOVA, Kruskal–Wallis test with Dunn’s post-test, GraphPad Prism 5, p> 0.05).

https://doi.org/10.1371/journal.pone.0198180.g003

Fig 4. Morphology of L2 neuromast hair cells in 5 dpf Tg(pou4f3:GAP-GFP) zebrafish larvae. (A) control, (B) exposed to 10 µM CuSO4 for 40 min, and (C) exposed

to the mixture of 10 µM CuSO4 and 100 nM PACAP-38 for 40 min, following 1 hour pre-incubation with 100 nM PACAP-38 only (n/group = 15). The visualization was

accomplished using a Zeiss LSM-700 confocal microscope. (A) Hair cells in the control group exhibited morphology without any necrosis features. (B) Copper exposure

evoked severe necrosis, resulting in hair cell rosette disintegration. Hair cells were round-shaped and swollen (arrowheads). Other groups of hair cells appeared shrunken

and fragmented (arrow), suggesting the involvement of other death pathways. (C) In the PACAP-38 co-treated group, the necrosis was comparably severe. The same

necrotic signs, i.e. round-shaped and swollen (arrow heads), as well as shrunken and fragmented (arrow) cells were also observed.

https://doi.org/10.1371/journal.pone.0198180.g004
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but also in the kidney tissue as well as the whole larvae. Interestingly, adcyap1r1a and vipr1b
were expressed at similar levels in each sample investigated, whereas for the remaining

PACAP receptor genes, the highest expression levels were found in whole larvae, lower in the

kidney tissue and the lowest was in neutrophils. The respective data are presented in Fig 5 and

S4 File.

Discussion

The present study provides, for the first time, clear evidence that PACAP-38 inhibits the migra-

tion of neutrophils towards inflamed hair cells in the zebrafish. In terms of the usage of zebrafish

in studies concerning the auditory system, it is extremely important that their inner ear resembles

that found in higher vertebrates developmentally and anatomically, although does not possess

structures corresponding with the mammalian outer and middle ear [35]. Besides the ability to

regenerate [36–39], hair cells in the zebrafish inner ear and lateral line are structurally, function-

ally and molecularly similar to mammalian ones [22]. It should be emphasized that these cells are

considered to be one of the most crucial elements for normal hearing and vestibular function.

The idea of using zebrafish for investigating typical anti-inflammatory drugs or immune

response in relation to hair cells has already been introduced [24]. However, no information is

available on the involvement of neuropeptides in these immune relationships. Previously, we

have demonstrated that 100 nM PACAP-38 prevents zebrafish hair cells from oxidative stress-

induced apoptosis [6]. Because many factors and signaling pathways that are activated by inflam-

mation are also involved in the regulation of cell apoptosis [23], we considered PACAP-38 to be

a promising candidate for ameliorating inflammation associated with oxidative stress-damaged

Fig 5. A graph illustrating expression profiles of genes encoding three PACAP receptors (PAC1, VPAC1 and

VPAC2) in samples from zebrafish 5 dpf larvae, kidney tissue and neutrophils. The material concerning larvae

consisted of pooled individuals (n = 30), the kidney tissue refers to a single cell suspension derived from kidneys of five

adult zebrafish and the neutrophil population consisting of 500,000 GFP+ sorted cells by FACS. Each collection was

covered by samples analyzed in triplicate. Data in the figure represent the average of the representative experiment.

Gene expression values were normalized to housekeeping gene β-actin. The existence of all types of PACAP receptor

transcripts was reported in each collection, however at a different levels. In neutrophils, adcyap1r1a appeared as a

predominant form for PAC1 and, for the VPAC family, the most prevalent was vipr1b. The lowest expression level was

exhibited by adcyap1r1b and vipr1a genes. Interestingly, adcyap1r1a and vipr1b were expressed at similar levels in each

studied sample, whereas for the remaining PACAP receptor genes, the highest expression levels were found in whole

larvae, lower in the kidney tissue and the lowest was in neutrophils.

https://doi.org/10.1371/journal.pone.0198180.g005
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zebrafish hair cells. PACAP-38 is well known for its involvement in inflammation and immunity

[7,40,41]. The majority of studies have reported that PACAP-38 reduces inflammatory changes,

however, there are some data revealing its reverse properties, such as vasodilation and edema for-

mation in the rabbit eye [42]. Although the anti-inflammatory effect of PACAP-38 has been

shown in several tissues and organs, such as airways [43], the central nervous system [44,45] or

joints [46], there is no evidence for its action in the auditory system.

In the present study, it was demonstrated that the administration of 100 nM PACAP-38

resulted in an over 2-fold decrease in the formerly increased number of neutrophils in the PLL.

It was earlier found that the dose of CuSO4 applied in this study evoked severe necrosis to zebra-

fish hair cells after only a 5 minute exposure [47]. Necrotic cell death is typically connected with

some pathological events and stimulates a rapid inflammatory response. The question is

whether the reported inhibition of neutrophil migration in PACAP-38 co-treated animals

results from anti-necrotic ability of the peptide or its direct inhibitory influence on the inflam-

mation process. The anti-apoptotic properties of PACAP-38 are well known and are broadly

described in the literature [1,2,4,6,48,49], but its action against necrosis is poorly discussed. The

current studies revealed that PACAP-38 does not prevent hair cells from rapid or extensive

necrosis, despite the fact that there is some evidence for its ability to inhibit a specific type of

necrosis—oncosis in mice [50]. Thus, we can conclude that in the current study, PACAP-38

affected only the immune system cells. The next issue is exactly how PACAP-38 regulates the

immune response to the damaged hair cells. It is possible that the peptide inhibits the migration

of neutrophils, altering their behavior via direct or indirect mechanisms. It has been already

demonstrated that PACAP-38 differently modulates the behavior of immune cells. The current

results corroborate findings obtained by Kinhult et al. (2001) [13], who found that PACAP-38

inhibited fMLP-induced human neutrophil chemotaxis. Similarly, PACAP-38 has an inhibitory

effect on lymphocyte chemotaxis [51,52], but stimulates the chemotaxis of macrophages [52].

This is more evidence that PACAP-38 can both promote and inhibit immune responses. It is

also possible that PACAP-38 acts directly in the place where inflammation occurs. Based on the

fact that chemical inhibition of NADPH oxidase significantly decreased the leukocyte migration

towards neuromasts, it was concluded that for leukocyte recruitment, formation of a reactive

oxygen species (ROS) gradient upon copper-induced inflammation is a critical step [24]. The

relationship between PACAP-38 and NADPH oxidase has already been recognized, because

PACAP-38 neuroprotective effect was achieved by inhibition of NADPH oxidase and conse-

quent reduction of microglia-derived ROS [53]. Moreover, as PACAP-38 plays an anti-oxidant

role [54], it could be possible that it decreases ROS formation in the hair cells, thus leading to

restraining the inflammatory process.

If PACAP-38 inhibit the migration of neutrophils via a direct mechanism, this could be

accomplished through receptors on their surface. In the present study, the existence of all tran-

scripts for PACAP receptors in zebrafish neutrophils obtained from the renal tissue were com-

prehensively demonstrated for the first time. It should be mentioned, that in fish, the immune

organ constituting the main source for neutrophils is the kidney [55]. Our findings demon-

strate which receptors and which genes are expressed specifically in zebrafish neutrophils.

Considering the PACAP-specific receptor PAC1, we have found relatively high expression of

adcyap1r1a, at almost the same level as that in the kidney tissue and whole larvae, which sug-

gests its involvement in the studied process. Next to the adcyap1r1a, the most expressed was

vipr1b. Its expression level was also comparative with that in the kidney tissue and the whole

larvae. This interesting finding provides new insight into a role of VIP in the regulation of neu-

trophil behavior in the zebrafish. However, a study by Kinhult et al. (2002) [16] performed in

humans has revealed that only PACAP, not VIP, functions as an activator of neutrophils. The

remaining genes encoding PACAP receptors in neutrophils were expressed at relatively low
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levels compared to those found in the kidney tissue. Since the isolated fraction of neutrophils

was slightly (by 2%) contaminated with the renal tissue, the expression values determined in

this fraction might be due to other renal cellular elements, such as tubule cells [56] or vascula-

ture [57]. Nevertheless, the current in vivo results corroborate the in vitro findings of Kinhult

at al. (2002) [16] and demonstrate that PACAP-38 can directly affect neutrophils.

The current in vivo investigations were supplemented with Real-Time PCR analysis, which

clearly confirmed that the effects observed could have a molecular basis at the level of gene

expression. The copper treatment increased the expression of IL-1β, IL-6, ATF3 and IL-8. The

mRNA expression levels of four typical stress-inducible markers, IL-1β, IL-6, IL-8 and ATF3,

were significantly decreased after PACAP-38 treatment. This is the first evidence of PACAP-

38 regulation towards ATF3. ATF3 was considered because it was described recently as a novel

regulator of neutrophil migration in mice [58]. Earlier comprehensive studies [59] found that

ATF3 is an inducible adaptive response gene encoding the ATF/CREB family of transcription

factors. After copper exposure, its expression level increased over 4-fold. Although ATF3 is

generally thought to promote apoptosis and cell cycle arrest [59], its role in immune regulation

is also recognized [60]. On one hand, ATF3 is thought to be induced by signals such as pro-

inflammatory cytokines [60], whereas with the use of ATF3 null mice it was demonstrated that

ATF3 inhibits IL-6 and IL-12b transcription by altering chromatin structure [61]. Moreover,

in the present study, copper exposure also caused a significant upregulation of two pro-inflam-

matory cytokines, IL-1β and IL-6. At this stage, it is hard to conclude if there is any correlation

between ATF3 and the investigated cytokines. An inhibitory role towards IL-6 gene expression

is already well recognized [62], therefore, the results of the current study confirm this property

in other experimental conditions. Since the influence of a nanomolar dose of PACAP-38 on

the expression of IL-1β was observed for the first time, the functional basis of this process

needs to be further investigated. On the other hand, there is some interesting information on

the mutual relationship between PACAP-38 and IL-1β in rats. These substances have been

found to synergistically stimulate IL-6 secretion from astrocytes [63] and IL-1β intraperitoneal

injections stimulate PACAP mRNA expression in neurons [64]. IL-1β is a proinflammatory

cytokine facilitating the activation of neutrophils. Therefore, it can be speculated that its

down-regulation could be involved in the inhibition of neutrophil migration to damaged hair

cells observed in the present study. However, because IL-1β strongly upregulates IL-6 protein

secretion [65], the effect of PACAP-38 on IL-6 found in the current study could be indirect

and may be mediated by IL-1β. Moreover, with the use of Real-Time analysis, strong evidence

was gained that PACAP-38 decreased the expression of IL-8 gene formerly upregulated by

copper exposure. It should be noted that some previous data (agreeing with the current data)

also reveal PACAP-38 inhibitory properties towards IL-8 [62]. IL-8 is known for its involve-

ment in neutrophil attraction and activation. Based on the current investigations, it could be

stated that one of the possibilities of PACAP-38 action towards inhibiting neutrophil migra-

tion is modulation of the production of chemotactic factors, in this case IL-8. However, the

gene expression levels of IL-8 receptors CXCR1 and CXCR2 remained unchanged after both

copper exposure and PACAP-38 treatment. Although the expression level of IL-10 did not

demonstrate statistically significant differences between the groups, its fluctuations revealed a

certain characteristic tendency. In general, it could be said that it was raised after the adminis-

tration of copper and was decreased after co-treatment with PACAP-38. Conversely, previous

data have revealed a PACAP-38 stimulatory effect towards IL-10 [66]. The gene expression of

another investigated cytokine, TNFα, was significantly increased after copper treatment, but it

was insignificantly inhibited by PACAP-38. Nevertheless, it can be concluded that the current

observations fully correspond with common data presenting PACAP-38 as an inhibitory factor

in TNFα production [67–69]. MARCO is a macrophage receptor belonging to the class A of
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the scavenger receptor family and is an element of the innate antimicrobial immune system. In

the present study, the expression level of MARCO remained unchanged after PACAP-38 treat-

ment and its role as an antimicrobial agent has been investigated and revealed only by Hanni-

bal et al. (1999) [64]. These authors found that administration to rat of bacterial

lipopolysaccharide (LPS) resulted in a marked increase in both PACAP-38 immunoreactivity

and its gene expression. Furthermore, Bik et al. (2006) [70] revealed that in LPS-induced acute

inflammation PACAP-38 exerted a short-term modulation of immune and endocrine

response.

The inner ear, including structures covered with the sensory epithelium, was previously

assumed to be a putative “immune-privileged” organ, like the brain or eye, due to the existence

of its tight junction-based blood-labyrinth barrier [71] which blocks immune cells, inner ear

antigens and antibodies. However, recent studies have demonstrated that the cochlea is a com-

mon site of inflammation and, under pathological conditions, contains a characteristic “mono-

nuclear phagocyte system” in the spiral ligament [72] and “perivascular macrophage-like

melanocytes (PVM/Ms)” distributed in the stria vascularis [73]. Additionally, the murine

inner ear systemically immunized with LPS antigen revealed enhanced leukocyte infiltration

and cochlear IL-1β expression [74]. Furthermore, in vivo production of TNF-α, IL-1β, and IL-

6 in the murine cochlea was reported after immunization with keyhole limpet hemocyanin

(KLH) [75]. These observations seem to be a clear confirmation that the inner ear is prone to

immune-mediated disorders and, together with the current results, suggest the presence of a

local immune system in the inner ear structures.

Unequivocal interpretation of the physiological significance of the present results is difficult

or even impossible. Generally, this is due to potential ambiguities regarding the biological

implications of inflammatory responses. It is well known that inflammation is an integral part

of the majority of pathological processes. Depending on numerous external and internal fac-

tors, such as the type of affected tissue, nature of pathological stimuli or even the type of species

of the host, inflammatory response can have beneficial (for instance, reparative), or, con-

versely, harmful consequences (if it lasts too long). Therefore, anti-inflammatory drugs should

be applied with particular care. Considering the above explanations, it seems to be inappropri-

ate to consider the present results in “beneficial/detrimental” perspective. We can only say that

PACAP-38 is able to inhibit migration of neutrophils and decreases the gene expression of

some cytokines, which is an important phenomenon occurring in the course of inflammatory

response. Accordingly, it should be taken into consideration as a substance through which

modulatory actions towards the intensity of inflammation affecting structures of the inner ear

(also mammalian) could be accomplished.

In conclusion, the present study has revealed that a nanomolar dose of PACAP-38 inhibits

neutrophil migration towards damaged zebrafish hair cells undergoing chemically induced

necrosis and consequent inflammation. As neutrophils are critically involved in the inflamma-

tion process, their decreased number (or complete lack) around the damaged neuromasts in

the presence of PACAP-38 seem to be a clear evidence that this substance has an anti-inflam-

matory role in at least tissues investigated. Moreover, PACAP-38 co-treatment resulted in a

considerable decrease in the expression level of ATF3, IL-8, IL-1β and IL-6 upregulated after

copper exposure. This hopefully provides new insights into the molecular mechanisms of the

PACAP-38 anti-inflammatory effect. It seems that studies considering the structures of the

auditory system carried out on zebrafish may be fully related to those performed in mammals.

The present findings seem to support this statement and suggest that PACAP-38 plays an

important regulatory role in the inflammatory response associated with pathological processes

affecting hair cells and it cannot be excluded that this property of the peptide has a more uni-

versal significance, not only limited to lower vertebrate species.
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Supporting information

S1 File. Illustrations of the settings used on FACS. (A) Forward (FSC) and side scatter (SSC)

plot. This measurement is related to designating and identifying cells according to their size

and internal granularity or complexity of a particle, respectively. The R5 gate was set so as to

exclude cellular debris and imperfectly isolated cells. (B) A histogram was prepared illustrating

kidney tissue cells separated according to the GFP fluorescence intensity (GFP FITC-A). The

histogram demonstrates two peaks demarcating GFP- and GFP+ cells. GFP-positive cells con-

stituted 16% of the cell suspension.

(TIF)

S2 File. Raw data of neutrophil counting.

(XLSX)

S3 File. Raw data of Real-Time PCR results respecting pro-inflammatory and stress-induc-

ible genes.

(XLSX)

S4 File. Raw data of Real-Time PCR results respecting PACAP receptors.

(XLSX)
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