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Abstract: The interface exciplex system is a promising technology for reaching organic light-emitting
diodes (OLEDs) with low turn-on voltages, high efficiencies and long lifetimes due to its unique
virtue of barrier-free charge transport, well-confined recombination region, and thermally activated
delayed fluorescence characteristics. In this review, we firstly illustrate the mechanism frameworks
and superiorities of the interface exciplex system. We then summarize the primary applications
of interface exciplex systems fabricated by doping and doping-free technologies. The operation
mechanisms of these OLEDs are emphasized briefly. In addition, various novel strategies for further
improving the performances of interface exciplex-based devices are demonstrated. We believe this
review will give a promising perspective and attract researchers to further develop this technology
in the future.
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1. Introduction

As global climate warming and energy shortages become aggravated, developing
lighting technology with energy conservation and environmental protection becomes
a significant world issue [1]. Organic light-emitting diodes (OLEDs) have caught the
attention of academia and industry due to their high performance, low power, and flexibility,
which exhibit great potential for display and lighting applications [2–6]. In order to
overcome the intrinsic low internal quantum efficiency (IQE) of fluorophores-based OLEDs,
phosphorescent OLEDs are proposed as a promising technology due to their singlet and
triplet harvesting properties [7]. These devices generate phosphorescence emission via the
radiative transition process from T1 excited state to ground state S0, which can be enhanced
by the intersystem crossing (ISC) process from S1 to T1 [8–10]. However, phosphorescent
dyes are mostly organometallic complexes that contain heavy metal elements of platinum
and iridium, increasing the manufacturing costs of commercialization [11].

In 2012, thermally activated delayed fluorescence (TADF) materials were first reported
by the Adachi group, and are regarded as new generation emitters by academia and
industry [12,13]. Such materials have a small singlet–triplet energy gap (∆EST), so that
triplet excitons can be upconverted into singlet excitons via reverse intersystem crossing
(RISC) at room temperature, thereby generating delayed fluorescence [14–16]. Unlike TADF
material based on intramolecular charge transfer, the TADF process in exciplex should
result from intermolecular charge transfer, which can noticeably improve the utilization
of triplet excitons and enhance device efficiency [17,18]. Therefore, exciplexes can be
employed as efficient TADF emitters or TADF hosts for dopants with satisfied charge
transport properties. In general, exciplex architecture can be constructed by two strategies:
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(i) mixing the donor material and the acceptor material into the same layer to form bulk
exciplex [19]; (ii) separating the donor layer and the acceptor layer to generate exciplex at
the interface [20]. Meanwhile, interface exciplex-type OLEDs exhibit many advantages,
such as simplified device architectures and lower driving voltages [21,22]. Nowadays,
efficient OLEDs based on exciplex are widely reported, and EQEs of over 20% are realized
in interface exciplex-based devices [23].

In this review, we emphatically describe the progress of interface exciplex-based
OLEDs. The operating mechanism of interface exciplex is first demonstrated, then the
design strategies and applications of interface exciplex fabricated by doping and doping-
free technologies are summarized, including monochromatic and white OLEDs. Finally, an
outlook for the improvement of interface exciplex-based OLED is proposed.

2. Basic Concept of Interface Exciplex
2.1. Interface Exciplex as Emitter

Exciplex emission is a product of electron transition from the lowest unoccupied molec-
ular orbital (LUMO) of acceptor (A) to the highest occupied molecular orbital (HOMO) of
the donor (D) [24,25]. The charge transfer (CT) excited state formed between the donor and
acceptor layer under photoexcitation can be described as follows [26]:

D + A + hν→ D* + A or D + A*→ (Dδ+Aδ−)*→ hνex + D + A (1)

The emission peak of exciplex always exhibits a red shift compared with those of pure
donor and acceptor [27–37], which can be expressed as follows [38]:

hνmax ∼= ID − AA − EC (2)

where ID is the ionization potential of the donor, AA is the electron affinity of the acceptor,
and EC is the coulombic attraction energy. Figure 1a shows the interface exciplex emission
process in the EL process. Spin statistics demonstrate that the proportion of 1:3 of singlet
excitons to triplet excitons can be generated by electron-hole recombination [39]. In general,
a significant energy-level bias between the HOMO of the donor and the LUMO of the
acceptor is more likely to provide a small ∆EST [40]. As for exciplex, the HOMO and
LUMO are separated between donor and acceptor molecules, resulting in a small energy
gap between singlet level and triplet level [40,41]. A small ∆EST is essential for exciplex
to obtain TADF properties, because minor ∆EST allows triplet excitons to be upconverted
into singlet excitons under thermal excitation via RISC, leading to the efficient radiative
transition of singlet excitons [42]. The RISC rate (kRISC) in the interface exciplex system can
be expressed by the Arrhenius equation [43]:

kRISC = Aexp
(
−∆EST

kT

)
(3)

where A is frequency factor, k is the boltzmann constant, and T is the temperature. It
should be noted that higher kRISC can be achieved when ∆EST is smaller than kT, which is
approximately 26 meV at 300 K [43]. One must note that, owing to large energy level bias
between HOMO of the donor and LUMO of the acceptor, the main recombination zone
of charge carriers can be confined at the heterojunction [44]. Moreover, for achieving an
efficient interface exciplex emitter, the triplet energy level (T1) of exciplex should be lower
than either the donor or the acceptor, so that the reverse energy transfer from exciplex to
constituent molecular can be prevented [45–48].
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2.2. Interface Exciplex as Host

It should be briefly pointed out that the energy-loss pathways in the interface exciplex
system can be attributed to the following: (i) owing to the narrow exciton distribution area
of the interface exciplex, the concentration quenching effect of triplet excitons is inevitable,
especially at high current density [49]; (ii) the RISC rate is always lower than the ISC rate in
the interface exciplex system, leading to the non-radiative transition processes of triplet
excitons [50–52]. It is generally believed that using interface exciplex as an energy transfer
host for dye is an effective way to improve the utilization of exciplex triplet excitons.
Because the energy transfer process from exciplex to dopant is competitive with the energy-
loss pathways [51], an efficient energy transfer process can effectively guard against the
waste of interface exciplex triplet excitons. For serving as a host, the T1 of the exciplex
should be higher than that of the dopants to prevent reverse energy transfer. Furthermore,
the emission spectrum of exciplex should overlap well with the absorption spectrum of
the emitter to achieve efficient energy transfer. The expression of energy transfer efficiency
(ΦET) is [52]:

ΦET =
kex-g

kr + knr + kex-g
=

kex-g

( 1
τ ) + kex-g

(4)

where kex-g is the energy transfer rate from the host of exciplex to the emitter, kr is the
radiative decay rate of exciplex, knr is the non-radiative decay rate of exciplex, and τ is the
delay time of exciplex. As can been seen, higher ΦET can be reached with improved τ.

The energy transfer process in OLEDs based on interface exciplex is shown in Figure 1b.
For doping-free OLEDs, the emission layer (EML) and the interface of exciplex are separated
by the interlayer so that the short-range Dexter excitation transfer (DET) from exciplex
to EML will be hindered. The unutilized triplet excitons can be upconverted into singlet
excitons via an effective RISC process, and then the long-range Förster resonance energy
transfer (FRET) can be enhanced, thereby improving the energy transfer to the EML [53,54].
As for doped OLEDs, the energy transfer from interface exciplex to dopant is greatly
affected by the doping concentration [46,55]. Increasing doping concentration can improve
the device efficiency in a reasonable concentration range [56]. However, with doping
concentration increasing, the distance between interface exciplex and dopant reduces
so that more triplet excitons can transfer energy to the dopant via DET, resulting in the
energy loss of triplet excitons [57]. Consequently, an accurate control doping level in the
preparation process is essential for efficient and stable energy transfer.

3. Doping-Free OLEDs Based on Interface Exciplex

As for reaching high-performance OLEDs based on exciplex, effective exciplex systems
are essential [58–60]. Meanwhile, bulk exciplex has been attested to be a useful emitter
and host for dyes that relies on an efficient and balanced charge transportation that can be
achieved by employing donor and acceptor materials with high charge mobilities [61–66],
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whereas multi-doping technology and precise control of doping concentration aggravate
manufacturing complexity [67–71]. Compared with bulk exciplex-based devices, interface
exciplex-based devices can be easily achieved using doping-free technology. In this case,
the ultrathin phosphorescent layer sandwiched between the donor and acceptor layers
has been widely used to further simplify the fabrication process of OLEDs based on
interface exciplex.

3.1. Doping-Free Monochrome OLEDs

Monochromatic OLEDs can be achieved by individual interface exciplex or an addi-
tional emitter. Although it was mentioned in earlier reports that exciplex formations are
unfavorable for the efficiency of devices [72], the EQEs of recently reported OLEDs based
on exciplex emission exceeded 5% due to the excellent TADF property of exciplexes [73–75].
Hung et al. first reported a simplified yellow exciplex OLED in 2013. As shown in Figure 2a,
by employing 4,4′,4′′-tri(N-carbazolyl)triphenylamine (TCTA) and 2,4,6-tris(3-(1H-pyrazol-
1-yl)phenyl)-1,3,5-triazine (3P-T2T) as donor and acceptor, respectively, a bilayer structure
EML is established, as shown in Figure 2b. Meanwhile, TCTA and 3P-T2T act as a hole
transport layer (HTL) and electron transport layer (ETL), respectively [76]. Owing to the
excellent charge transport mobilities of the two materials, charge carriers of holes and
electrons can reach the donor/acceptor interface without limitation, leading to efficient
exciton recombination [77]. The resulting device achieves a maximum CE, PE, and EQE
of 22.5 cd/A, 23.6 lm/W, and 7.7%, respectively, along with a low turn-on voltage of 2 V.
Because exciplex excitons are confined around the interface of the bilayer because of the rel-
ative higher T1s of the donor and acceptor, efficient triplet exciton harvest can occur via the
RICS process, which is the principal cause of the high performance of the device. This work
provides a simplified model of OLEDs based on interface exciplex, which suggests that the
interface exciplex could be formed by the befitting combination of donor-acceptor pairs.
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Figure 2. (a) Diagram of the TCTA and 3P-T2T molecular structures. (b) Diagram of the device
structure with TCTA/3P-T2T exciplex emission [76].

Furthermore, combining interface exciplex with ultrathin layer technology is another
promising approach to achieving doping-free OLED [78]. By using complete energy transfer
processes, which depend on the high overlapping between the absorption spectra of dyes
and the exciplexes emission spectra, efficient utilization of excitons can be anticipated in
ultrathin-layer-based devices [79,80].

In 2017, Xu et al. developed a green-emitting phosphorescent OLED based on an ultra-
thin emission layer (UEML) of 0.8 nm thick Bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)
iridium(III) (Ir(ppy)2acac). By inserting the UMEL into the interface of 1,1-Bis[(di-4-
tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-ylphenyl)benzene (TmPyPB),
a maximum EQE of 17.97% and CE of 66.2 cd/A were shown in the device. The PL spectra
of constituent molecules and exciplex are shown in Figure 3. By further introducing a
charge-generating unit (CGU) of Bathophenanthroline (Bphen): LiNH2/HAT-CN, a highly
efficient green OLED based on the tandem structure can be constructed, achieving an in-
creased CE of 135.74 cd/A and EQE of 36.85%. The superior performance can be attributed
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to the following: (i) exciplex formed at the TAPC/TmPyPB interface can transfer energy
to the ultrathin layer efficiently because the PL spectrum of exciplex overlaps well with
the absorption spectrum of the ultrathin layer; (ii) thanks to the higher T1s of TAPC and
TmPyPB compared to exciplex, the reverse energy transfer from exciplex to the constructed
molecules is well blocked, resulting in a sparkling green emission [81]. This OLED achieves
efficient exciton harvesting by employing an interface exciplex and a tandem structure,
which offers a basis for realizing efficient and simple OLEDs.
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3.2. Doping-Free WOLEDs

Generally, interface-exciplex WOLEDs with a doping-free structure can be achieved
by employing complementary emissions (blue and orange) or trichromatic emissions (blue,
green, red) [82,83]. It is well-known that the health lighting source should have a high-
color rendering index (CRI), which is easily improved by introducing an interface exciplex
emission due to its broad spectrum composition [84,85].

Sych et al. fabricated an A/D–A/D type WOLEDs by using doping-free technol-
ogy with sandwich structures of m-MTDATA/pCzPPQ or mCzPPQ/PO-T2T, where m-
MTDATA is 4,4′,4′′-tris[3-methylphenyl(phenyl)amino]triphenylamine, pCzPPQ is 9-(4-(4-
Phenylquinolin-2-yl)phenyl)-9H-carbazole, mCzPPQ is 9-(3-(4-Phenylquinolin-2-yl)phenyl)-
9H-carbazole, and PO-T2T is 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine [86].
Meanwhile, D–A-type materials of pCzPPQ and mCzPPQ, which are the isomers of 9-
phenylcarbazole and quinolone, are synthesized by Friedlander condensation and then
the Ullmann cross-coupling reaction, as shown in Figure 4a. Therefore, blue and orange
emissions can be formed at the dual interfaces of m-MTDATA/pCzPPQ (mCzPPQ) and
pCzPPQ (mCzPPQ)/PO-T2T without extra donor layers, as shown in Figure 4b. Further-
more, color temperature can be easily recorded by modifying the thickness of the D–A
functional system. The optimized all-exciplex-based device achieves a maximum EQE of
3.15% and a high CRI of 76. Recently, Wei et al. adopted a novel approach to construct
an all-exciplex-based WOLEDs where white emission were formed from the same donor
interface by parallelly depositing acceptor materials of TPBi and PO-T2T on the same
donor layer of TAPC in a vertical direction. The device contains a unique interface exciplex
architecture of TAPC (40 nm)/ TBPi (10 nm)

PO-T2T (10 nm)
, achieving a maximum CE of 3.17 cd/A with

a high CRI of 71. By using this technology, simplified WOLEDs can be constructed by
exciplex emission without elaborate molecule design engineering, leading to a reduced
preparation complexity of WOLEDs [87].
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The further improvements of efficiency of doping-free WOLEDs can be reached by
introducing energy transfer processes from exciplexes to additional emission layers [88].
By employing high energy-state interface exciplex of 26DCzPPy/PO-T2T, Ying et al. real-
ized high-efficiency doping-free WOLEDs using UEML. The main architectures of those
WOLEDs are Ir(tptpy)2acac (0.1 nm)/26DczPPy (x nm)/FIrPic (0.3 nm)/PO-T2T, where
Ir(tptpy)2acac is Iridium(III) bis(4-(4-t-butyl-phenyl)thieno[3,2-c]pyridinato-N,C2)acetylace
tonate, bipolar 26DCzPPy is 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine, and FIrPic is Irid-
ium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2′]picolinate[89]. Under the scenario with-
out the 26DczPPy layer, a weak blue emission and an intense orange emission will be
generated from the FIrPic and Ir(tptpy)2acac, respectively, because the Ir(tptpy)2acac har-
vests most of the excitons of the low energy-state TCTA/PO-T2T interface exciplex. As
the thickness of 26DCzPPy increases to 2 nm, the TCTA/PO-T2T exciplex formation is
inhibited by the high energy-state 26DCzPPy/PO-T2T interface exciplex. The excitons
energy of exciplex can be effectively transferred to Ir(tptpy)2acac and FIrPic, resulting in an
EQE of 19.7%. Furthermore, devices achieve the correlated color temperature (CCT) with
an adjustable range of 2878~9895 K by changing the thickness of the 26DCzPPy layer, which
suggests that the energy transfer from interface exciplex to EMLs can be easily controlled.

However, full phosphorescent emitters always suffer from serious efficiency roll-off,
although high efficiencies can be realized [90]. Fluorescence/phosphorescence hybrid
WOLEDs have been proven to be a qualified approach to solve the problem. By introducing
blue interface exciplex emission, Liu’s group realized doping-free WOLED without using
additional blue emitters [91]. The m-MTDATA/3-(4-Biphenyl)-4-phenyl-5-tert-butylphenyl-
1,2,4-triazole (TAZ) exciplex generates blue emissions and can excites orange phosphor of
bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1Hbenzoimidazole-N,C3)iridium (acetylace-
tonate) [(fbi)2Ir(acac)] due to the higher T1. The energy transfer process from exciplex
to the (fbi)2Ir(acac) can be adjusted by controlling the thickness of m-MTDATA in the
m-MTDATA/TAZ interface exciplex forming system, and the balance between orange and
blue emissions is achieved with 6 nm thick m-MTDATA. The resulting device achieves
CRI of 81, which is one of the highest CRIs of the WOLEDs based on a single-emitter
structure. By replacing (fbi)2Ir(acac) with the yellow phosphor of Ir(dmppy)2(dpp), the
device achieves an EQE of 9.9%. Moreover, three-color WOLED is constructed by further
employing additional red phosphor, achieving CRI and CCT of 85 and 2376 K, respectively.

Furthermore, the same group proposed another strategy to fabricate hybrid WOLEDs
constructed by an exciplex/electroplex system and ultrathin emission layers [92]. The blue
emission is generated by the combination of exciplex and electroplex, leading to broad EL
spectra. The TAPC/TmPyPB interface exciplex and electroplex show peaks of 425 nm and
468 nm simultaneously under electric excitation. Therefore, a broader peak width at half
maximum of the blue emissions can be furnished. As shown in Figure 5a, blue emissions
come from singlets of the exciplex/electroplex system due to the short diffusion ratio of
singlets. Meanwhile, red and yellow emissions can be attributed to multiple factors: (i)
the emission of the exciplex/electroplex system itself; (ii) the diffusion processes of triplet
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excitons from the exciplex/electroplex system to EMLs; (iii) direct charge recombination
due to the charge tunneling effect. Consequently, the hybrid WOLED obtains high efficiency
by manipulating the exciplex/electroplex system, achieving EQE and CRI of 15.1% and
92.1, respectively (shown in Figure 5b).
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By combining ultrathin emission layers with interface exciplex, Xu et al. developed
tandem WOLEDs, as shown in Figure 6 [93]. The yellow emission is generated by employ-
ing the phosphor of (acetylacetonato)bis[2-(thieno[3,2-c]pyridin-4-yl) phenyl]iridium(III)
(PO-01) as an ultrathin emission layer to harvest the singlet and triplet excitons formed by
TAPC/TmPyPB exciplex, and the reverse energy transfer from PO-01 to exciplex will be
blocked because the T1 of PO-01 is lower than that of exciplex. Similarly, this mechanism is
also applied to the blue emission unit, as shown in Figure 7. By connecting two emission
units with the CGU of Bphen: LiNH2/HAT-CN, enhanced injections of electrons and
holes into the emission units are achieved, with an EQE and CE of 18.59% and 41.5 cd/A,
respectively, along with the turn-on voltage of 6.89 V.
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Figure 6. (a) Device structure of yellow OLED based on the UEML of PO−01. (b) Device structure of
blue OLED based on the UEML of FIrPic. (c) Device structure of the tandem WOLED. (d) Diagram of
molecular structures. (e) Schematic diagram of carrier transport in the yellow and blue monochrome
OLEDs. (f) Schematic diagram of carrier transport in the tandem WOLED [93].
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4. Doped OLEDs Based on Interface Exciplex

The doping concentration is a significant factor determining doped device efficiency [94,95].
Within a reasonable concentration range, the device efficiency increases with the increase of the
doping concentration [57]. However, it should be noted that a severe efficiency decline occurs
under high doping concentrations owing to the increased possibility of direct electron-hole
recombination on the dopant, which can be well inhibited by introducing an interface exciplex
system. Thanks to the TADF properties of exciplex, the DET from interface exciplex to dopant
will be inhibited, leading to weakening triplet exciton loss in the host–guest system.

4.1. Doped Monochrome OLEDs

Understanding exciton behavior is beneficial for manipulating excitons due to the
different energy transfer paths between singlet and triplet excitons. For instance, the FRET
from S1 of exciplex to dopant can be enhanced by the RISC process, weakening the DET
between triplet excitons by augmenting the energy transfer distance; this means excitons
become easy to manipulate by using interface exciplex. In the second half of this section,
we will introduce several novel methods, including ternary exciplexes and applications of
phosphor/TADF sensitization effects in interface exciplex devices

Kim et al. fabricated green-emitting phosphorescent OLEDs by doping fac-tris(2-
phenyl-pyridine)iridium [Ir(ppy)3] into the donor layer of an N,N′-dicarbazolyl-4-4′-
biphenyl (CBP)/bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine (B3PYMPM) inter-
face exciplex system [56]. The device efficiency increased with the doping concentra-
tion of Ir(ppy)3, which can be ascribed to the enhanced energy transfer efficiency from
CBP/B3PYMPM exciplex to the Ir(ppy)3. The maximum EQE of the device was 20.1% with
an Ir(ppy)3 doping concentration of 6%. By inserting an undoped CBP layer between the
emission layer and the acceptor layer, the efficiency reduces as the thickness of the pure
CBP layer rises, suggesting that the exciplex triplet excitons transfer is hindered, which can
be explained by the fact that triplet exciton transferring is a short-range process.

By comparing the performance between an interface exciplex device and a bulk-
exciplex device, Wang et al. drew the following conclusions: (i) the interface exciplex-
based device shows a turn-on voltage of 2.36 V, which is lower than that of the bulk
exciplex-based device because of the barrier-free electron-hole recombination; (ii) the
interface exciplex-based device reaches a high PE of 97.2 lm/W, which is almost three
times than that of the bulk exciplex-based device due to the elimination of charge traps
of dye [96]. By employing a homemade material of 9-(4′-(4,6-diphenyl1,3,5-triazin-2-yl)-
[1,1′-biphenyl]-3-yl)-9H-carbazole (o-DTPPC) as an acceptor to form TADF exciplex with
TAPC, Duan et al. constructed a red-emitting phosphorescent OLED by interface exciplex
architecture of TAPC/o-DTPPC: Ir(mphmq)2tmd, where Ir(mphmq)2tmd is (bis(4-methyl-
2-(3,5-dimethylphenyl)quinoline))Ir(III)(tetramethylheptadionate) [53]. Owing to the small
∆EST, the up-conversion from the triplet excitons of TAPC/o-DTPPC exciplex to singlet
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excitons via RISC can occur, leading to the enhanced FRET process from exciplex to red
phosphor of Ir(mphmq)2tmd. Therefore, an efficient phosphorescent OLED is realized,
achieving an EQE of 21.01%.

Generally, the unrecombined holes accumulated at the donor/acceptor interface could
be a source of the degradation of the device [97]. By using a 5 nm thick emission layer,
Colella et al. fabricated a red OLED by interface exciplex architecture of 26DCzPPy: 4%
Ir(dmpq)2acac (5 nm)/PO-T2T, where Ir(dmpq)2acac is bis(2-(3,5-dimethylphenyl)quinoline-
C2,N′)(acetylacetonato)-iridium(III), achieving a maximum EQE of 28.6%, along with
increased lifetime [98]. The key reason for the superior performance is that the carrier
recombination region is restrained to the 5 nm thick EML due to efficient Förster and Dexter
energy transfer, resulting in a reduced concentration of excitons piled up at the heterojunc-
tion. By comparison, the devices without TADF systems exhibit declined performances
and additional emissions from host materials at high voltage, which can be attributed to
the broader exciton recombination regions in those devices.

In the course of application studies of OLEDs, reaching high-efficiency blue phospho-
rescent OLEDs with low driving voltages is still a challenge because it is hard to develop
host materials with low singlet energy and high triplet energy [99–103]. Kido et al. demon-
strated high performance blue-emitting phosphorescent OLEDs by doping FIrPic into the
acceptor of 5′,5′ ′ ′ ′-sulfonyl-di-1,1′:3′,1′ ′-terphenyl (BTPS), giving a PE of 50.1 lm/W and
turn-on voltage of 2.5 V [77]. The excitons behavior is also studied by inserting an undoped
BTPS layer (0~10 nm) into the TAPC/BTPS interface. The singlet excitons of TAPC/BTPS
exciplex can be harvested by FIrPic via FRET when the thickness of the undoped BTPS is
less than 5 nm, which is the main reason for high efficiency. In contrast, as the thickness
of undoped BTPS increases to 10 nm, the device shows an efficiency decline, owing to the
decrease of FRET efficiency.

Full fluorescent OLEDs are reported for pursuing low-cost and high-stability OLEDs [40,104].
However, fluorescent OLEDs based on conventional hosts always suffer from low EQEs owing to
efficient DET from the T1 of hosts to the T1 of fluorophores [105,106]. The employment of interface
exciplex is proposed to break this bottleneck because the DET from exciplex to fluorescent dopant
is expected to be restricted due to the TADF properties of the interface exciplex. Moreover, direct
exciton recombination on fluorescent dopants could be suppressed in interface exciplex systems,
leading to decreased non-radiative transitions of triplet excitons.

Zhao et al. designed a fluorescent OLED by doping (5,6,11,12)-tetraphenyl-naphthacene
(rubrene) into the interface exciplex system [55]. The absorption spectrum of rubrene over-
laps well with the emission spectrum of the TCTA/3P-T2T exciplex, leading to an enhanced
FRET process from exciplex to rubrene. Thanks to the TADF properties of the TCTA/3P-T2T
interface exciplex, an efficient fluorescent OLED is realized, achieving an EQE of 8.1%. It
is noteworthy that the doping concentration of rubrene in the device is as low as 1.5%.
Thus, the DET process from triplet excitons of exciplex to triplet excitons of rubrene is
inhibited, significantly reducing the waste of triplet excitons. By doping TADF polymer
emitter PAPTC into the donor layer, Lin et al. developed a green-emitting OLED with
the interface exciplex of TAPC/TmPyPB, obtaining a higher PL quantum yield than pure
PAPTC, which can be attributed to the restrained aggregation effects of PAPTC polymer
chains because the doping into TAPC provides a broad distribution area for PAPTC. Fur-
thermore, thanks to the high kRISC of 1.48 × 107 s−1 of the TAPC: PAPTC/TmPyPB exciplex
system, a high-efficiency polymer electroluminescence OLED is constructed, achieving an
EQE of 14.7% [107].

After deep and extensive research into doping technology [108–113], various novel
strategies have been proposed to further improve the performances of interface exciplex-
based devices. By adopting the strategy of synergistic sensitization using phosphor and
interface exciplex, Chen et al. developed a green-emitting fluorescent OLED based on the
ultrathin fluorescent emission layer, as shown in Figure 8. The 2,3,6,7-tetrahydro-1,1,7,7,-
tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)quinolizino-[9,9a,1gh]coumarin (C545T) can
harvests excitons by two channels: Firstly, the N,N′-dicarbazolyl-3,5-benzene (mCP)/B3PY
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MPM exciplex possesses TADF properties, leading to the enhanced FRET process from
exciplex to C545T. On the other hand, the exciplex excitons can be harvested by Ir(ppy)3,
then the singlet and triplet excitons of Ir(ppy)3 transfer energy to C545T via FRET, as shown
in Figure 9, which is efficient due to the approximate T1 between Ir(ppy)3 (2.4 eV) and
C545T (2.34 eV). Moreover, the DET process from exciplex to C545T is well eliminated by
employing Ir(ppy)3 as a sensitizer. Because the exciton utilization of exciplex is improved
due to multiple efficient FRET processes, an efficient fluorescent device is constructed,
achieving an EQE of 8.1% [114].
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Duan et al. developed an efficient green-emitting fluorescent OLED by employ-
ing TADF sensitizer [115]. By using electronic inert terminal substituents to shield the
electronically active core of fluorophore of N9,N9,N10,N10-tetraphenylanthracene-9,10-
diamine (PAD), the N9,N9,N10,N10-tetrakis(4-(2-phenylpropan-2-yl)phenyl)anthracene-
9,10-diamine (PhtBuPAD) was synthesized. The PhtBuPAD exhibits reduced orbital over-
laps with neighboring molecules owing to the large steric effect of inert units, which can
inhibit the impact of the DET process. By introducing the TCTA/3-(3-(4,6-diphenyl-1,3,5-
triazin-2-yl)-phenyl)-9-phenyl-9H-carbazole (PhCzTrz) interface exciplex with TADF prop-
erty, the adverse direct electron-hole recombination on 10,10′-(sulfonylbis(4,1-phenylene))bis
(10H-phenoxazine) (PXZ-DPS) is suppressed. Meanwhile, triplet excitons that are not used
by the RISC process of the exciplex host can transfer energy to PXZ-DPS and further up-
convert it into singlet excitons via RISC, leading to efficient FRET from TADF sensitizer to
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PhtBuPAD, as shown in Figure 10. Therefore, PhtBuPAD harvests more singlet excitons via
two-fold RISC processes due to the TADF properties of exciplex and PXZ-DPS. As a result,
a very efficient device is constructed, achieving an EQE of 24%, along with an extremely
low efficiency roll-off.
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As discussed above, increasing the RISC channel has proven to be an efficient method
to improve the performance of exciplex-based OLEDs [116]. By employing 9-(4-(9-(4,6-
diphenyl-1,3,5-triazin-2-yl)-9H-fluoren-9-yl)phenyl)-9H-carbazole (9PhFDPhTz) and the
homemade small molecule material of 4-(9-(perfluoropyridin-4-yl)-9H-fluoren-9-yl)-N,N-
diphenylaniline (TPA-3) as donors to form ternary exciplexes with the acceptor of PO-T2T,
Zhang et al. fabricated a green-emitting OLED by employing multiple RISC technolo-
gies [117]. It should be noted that the 9PhFDPhTz/PO-T2T exciplex in this device does
not emit light but only acts as an assistant to enhance the RISC process of the ternary
exciplexes. Figure 11 shows that the excitons energy transfer from 9PhFDPhTz/PO-T2T to
TPA-3/PO-T2T can occur because the 9PhFDPhTz/PO-T2T exciplex exhibits higher T1 than
that of the TPA-3/PO-T2T exciplex. This energy transfer will be more effective because
the solution process method induces stronger intermolecular interactions. As a result, an
efficient exciplexes-based OLED is developed, achieving an EQE of 24%, which is one of the
best values among exciplex-emission devices. Furthermore, the ternary exciplexes device
shows a lower efficiency roll-off than the binary TPA-3/PO-T2T exciplex-based device
because of the additional RISC path.
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Various OLEDs based on interface exciplex have been introduced in the above para-
graphs. It is worth noting that the donor and acceptor molecules that form the interface
exciplex are aggregated in a narrow interface area in the D/A structure, resulting in acute in-
termolecular interactions and a concentration-quenching effect of triplet excitons [118,119].
Recently, a novel strategy that was constructed by employing spatially separated electron-
hole pairs has attracted the attention of researchers, and distributes excitons in a broad re-
gion to reduce exciton concentration. Adachi et al. first proposed the donor-spacer-acceptor
(D-S-A) structure with a spatially separated donor and acceptor [120]. In a device with a
substructure of m-MTDATA/3,3-di(9H-carbazol-9-yl)biphenyl(mCBP)/2,4,6-tris(biphenyl-
3-yl)-1,3,5-triazine (T2T), they designed a bipolar material of mCBP that acts as the electron
acceptor and electron donor simultaneously to form exciplexes with m-MTDATA and T2T,
respectively. Because the molecules of donor and acceptor are directly excited, a charge
transfer between Dδ+/Sδ−/A and D/Sδ+/Aδ− occurs to form exciplexes of Dδ+/S/Aδ−

by cascade electron transfer between the three molecules. Here, the up-conversion of
3(Dδ+Aδ−)* into 1(Dδ+Aδ−)* occurs via RISC due to the TADF properties of exciplex. It is
noteworthy that both the T1 of m-MTDATA and T2T is lower than that of mCBP, which
prevents the energy transfer process between exciplex and mCBP. By changing the thickness
of mCBP, the exciton energy and radiative decay lifetime of exciplex can be fine-tuned. Fur-
thermore, long-range coupling CT excited states under electrical excitation are examined,
and can be explained by the following expression: D+ + A−→ 1(Dδ+Aδ−)*→ hνex + D + A.
Finally, the feasibility of energy transfer from exciplex to fluorescent dopant is confirmed
without direct charge injection into the dopant.

In 2018, Su et al. reported efficient fluorescent OLEDs with high efficiency by adopting
a spatially separated exciplex system [121]. Devices with 1–4 nm-thick spacers of mCP
showed a higher brightness, increased efficiencies, and restrained efficiency roll-offs than
the device without spacer layers. By further doping 1% DBP into TAPC, the device with
3 nm-thick mCP reached the highest EQE of 14.8%, which can be ascribed to the follow-
ing: (i) the spacer layer provides a broad exciton distribution region that inhibits exciton
quenching; (ii) the direct charge trapping is suppressed due to separated hole-electron pairs;
(iii) the FRET efficiency from exciplex to DBP is enhanced by using a separated exciplex
system. Pu et al. further studied the mechanism of long-range coupling electron-hole
pairs. What is impressive is that, although the thickness of the spacer layer of (9,10-bis(3,5-
dimethoxyphenyl)anthracene) (DMA) increases to 70 nm in the device they studied, the
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weak long-range coupling CT excited states can still exist, which is beyond expectations
and worth further investigate [122]. The EL performances of monochrome OLEDs based
on interface exciplex are summarized in Table 1.

Table 1. Summary of EL performance of monochrome OLEDs based on interface exciplex.

Devices Turn-on
Voltage (V) EQEmax (%) PEmax

(lm W−1) CEmax (cd A−1) Emission Color

Ref [76] 2.0 7.7 – – Yellow
Ref [53] 4.35 21.01 17.95 31.36 Red
Ref [55] 2.37 8.1 22.6 25.3 Red
Ref [56] – 20.1 – – Green
Ref [75] 2.66 24.4 47.4 40.8 Orange-red
Ref [77] 2.5 21.7 50.1 46.1 Blue
Ref [78] 3.6 14.3 37.4 40.5 Yellow
Ref [81] 5.76 36.85 59.88 135.74 Green
Ref [96] 2.36 25.2 97.2 74.3 Yellow
Ref [98] 4.0 28.6 – – Red

Ref [107] 2.5 14.9 50.1 – Green
Ref [114] 3.4 8.1 25.7 27.9 Green
Ref [115] 2.55 24.0 71.4 – Green
Ref [117] 3.1 24.0 61.4 78.2 Green
Ref [119] 2.86 26.9 92.8 84.5 Green

EQEmax: The maximum external quantum efficiency. PEmax: The maximum power efficiency. CEmax: The
maximum current efficiency.

4.2. Doped WOLEDs

Combining interface exciplex with doping technology, doped WOLEDs can simulta-
neously reach high efficiencies and low driving voltages while maintaining simple device
structures. The EL performances of WOLEDs based on interface exciplex are summarized
in Table 2.

Recently, our group developed highly efficient phosphorescence WOLEDs by co-
doping a complementary emitter into an acceptor of 4,6-bis(3,5-di(pyridin-4-yl)phenyl)-
2-phenylpyrimidine (B4PyPPM) (shown in Figure 12a) [123]. A novel interfacial exciplex
system 26DCzPPy/B4PyPPM was used to build white OLEDs based on the single-emission-
layer structure, achieving efficiencies of 101.9 lm/W and 81.1 cd/A, along with a low
turn-on voltage of 2.4 V, which is one of the best values in WOLEDs based on simplified
architecture, as shown in Figure 12b. The enhanced performance could be attributed to
the reduced energy loss of triplet excitons in the host through efficient FRET between the
exciplex and the dopants, and the DET energy transfer process between the blue and orange
dopants is suppressed due to the low doping concentration of orange dye. Additionally,
a single-emission-layer white OLED based on an interface exciplex system only requires
the doping of three materials simultaneously, with no need for high-performance host
materials, providing a promising method to design simplified white OLEDs with high
performance for commercial solid-state lighting and display.

Gao et al. reported a high-efficiency and color-stable hybrid WOLED, as shown in
Figure 13 [124]. By investigating PL and charge transport properties, the author demon-
strates direct electron-hole recombination on a blue TADF fluorophore of 4,5-bis(carbazol-9-
yl)-1,2-dicyanobenzene (2CzPN), which was well restrained, so that the blue emission from
2CzPN was mainly generated from the energy transfer from the mCP/B3PYMPM interface
exciplex. On the other hand, the yellow phosphor Iridium(III) bis(4-(4-tert-butylphenyl)
thieno[3,2-c]pyridinato-N,C2′) acetylacetonate (PO-01-TB) inserted into mCP as the com-
plementary ultrathin emission layer was excited by the following two main paths: (i) the
HOMO level of PO-01-TB is shallower than that of TCTA, which means that PO-01-TB is a
trapping site for holes, causing direct electron-hole recombination on PO-01-TB; (ii) the T1
of 2CzPN is higher than that of PO-01-TB, leading to the DET from 2CzPN to PO-01-TB.
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Because the exciplex excitons can be efficiently utilized, a warm white device is realized
with an EQE of 22.3%.
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By manipulating excitons with CDBP/B4PyPPM interface exciplex, Wang et al. con-
structed color-stable solution-processed WOLED [125]. The triplet excitons can be well
confined to the exciplex because of the relatively low T1 of 4,4′-bis(9-carbazolyl)-2,2′-
dimethylbip-henyl (CDBP)/B4PyPPM exciplex, leading to efficient up-conversion from
triplet excitons to singlet excitons via RISC to enhance blue emission. The orange-red
emissions are generated from the TADF emitter of 2-[4-(diphenylamino) phenyl]-10,10-
dioxide-9H-thioxanthen-9-one (TXO-TPA). The energy transfer process from exciplex to
TXO-TPA is shown in Figure 14. Note that the CDBP/B4PyPPM exciplex and TXO-TAP
have no direct contact because of the 3.5 nm-thick CDBP, resulting in the DET process
from blue exciplex to TXO-TPA being well suppressed. Therefore, orange-red emission is
enhanced by transferring energy from the blue TADF exciplex to TXO-TPA via FRET, which
can be fine-tuned by changing the thickness of the CDBP. By contrast, bulk exciplex of the
CDBP: B4PyPP-based device suffers from the shift of the exciton recombination region with
increasing voltage or current density due to unfavorable exciton management, leading to
unstable spectra. The continuous spectra superimposed by blue emission and orange-red
emission spectrum covers the entire visible spectral region, achieving a CRI of 85 in the
resulting device, as shown in Figure 15.
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CDBP of 2.5, 3.5, 4.0, and 5.0 nm, corresponding to curves 1, 2, 3, and 4. (b) The current efficiency-
luminance-power efficiency characteristics. (c) The EQE-luminance characteristics. (d) The EL spectra
of the device with 3.5 nm-thick CDBP [125].
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Table 2. Summary of EL performance of WOLEDs based on interface exciplex.

Devices CIE (x, y) CRI
Turn-on Voltage

(V)

EQEmax/PEmax/CEmax

%/lm W−1/cd A−1

Ref [86] (0.21, 0.56) a 76 6.0 3.15/4.45/8.9
Ref [87] (0.385, 0.401) b 71 3.0 1.25/2.53/3.17
Ref [89] (0.46, 0.46) b 86 2.4 19.6/83.2/63.3
Ref [91] – 85 – 11.3/23.5/20.9
Ref [92] (0.48, 0.40) c 92.1 2.85 15.1/28.2/26.9
Ref [93] (0.36, 0.41) d – 6.89 18.59/18.92/41.5
Ref [123] (0.47, 0.50) c – 2.4 23.1/101.9/81.1
Ref [124] (0.44, 0.51) c – 2.6 22.3/79.2/65.9
Ref [125] (0.32, 0.33) c 85 3.2 10.02/20.71/21.10
Ref [126] (0.40, 0.44) c – 6.8 18.8/19.3/53.8
Ref [127] – – 2.3 5/–/15
Ref [128] (0.41, 0.40) e 77 – 20.0/31.7/40.0
Ref [129] (0.33, 0.39) c 75.7 4.1 20.8/31.3/–

EQEmax: The maximum external quantum efficiency. PEmax: The maximum power efficiency. CEmax: The
maximum current efficiency. a Measured at 12 V. b Measured at 4 V. c Measured at 1000 cd m−2. d Measured at 83
cd m−2. e Measured at 5 V.

5. Conclusions and Outlook

In this review paper, the basic concepts and applications of interface exciplex are
demonstrated. Interface exciplex is the charge transfer state formed by donor and acceptor
molecules at the donor/acceptor interface, which can be used as an emitter or energy
transfer host. The success of interface exciplex as an emitter relies on an efficient RISC
process, which improves the fluorescence quantum yield. Therefore, the EQE of OLED
based on exciplex emission can exceed 5%. Moreover, introducing the energy transfer
process between exciplex and dopant is an effective approach to further improve the
efficiency of interface exciplex-based devices, achieving low turn-on voltage and inhibiting
direct electron-hole recombination on the dopant. However, the interface exciplex system
is still faced with problems such as serious triplet exciton quenching owing to a narrow
distribution area and unfavorable fluorescence quantum efficiency because of low RISC rate.
Despite providing a broad exciton recombination zone by adopting the long-range coupling
CT excited states strategy, the EQE of a device with a D/S/A structure is far below a device
with D/A interface exciplex. For now, improving the efficiency of the RISC is the most
feasible and practical solution to those problems. Therefore, further studies are necessary
to investigate the radiative transition process in interface exciplex, and novel interface
exciplex systems with a high-fluorescence quantum yield still need to be developed to
accelerate the commercialization process of interface exciplex-based devices.
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Findlay, N.J.; et al. A single emitting layer white OLED based on exciplex interface emission. J. Mater. Chem. C 2016, 4, 3851–3856.
[CrossRef]

34. Zhang, T.; Zhao, B.; Chu, B.; Li, W.; Su, Z.; Wang, L.; Wang, J.; Jin, F.; Yan, X.; Gao, Y.; et al. Blue exciplex emission and its role as a
host of phosphorescent emitter. Org. Electron. 2015, 24, 1–6. [CrossRef]

35. Jankus, V.; Chiang, C.J.; Dias, F.; Monkman, A.P. Deep blue exciplex organic light-emitting diodes with enhanced efficiency;
P-type or E-type triplet conversion to singlet excitons? Adv. Mater. 2013, 25, 1455–1459. [CrossRef] [PubMed]

36. Zhao, B.; Zhang, T.; Chu, B.; Li, W.; Su, Z.; Luo, Y.; Li, R.; Yan, X.; Jin, F.; Gao, Y.; et al. Highly efficient tandem full exciplex orange
and warm white OLEDs based on thermally activated delayed fluorescence mechanism. Org. Electron. 2015, 17, 15–21. [CrossRef]

37. Yuan, W.; Hu, D.; Zhu, M.; Shi, W.; Shi, C.; Sun, N.; Tao, Y. Simple peripheral modification for color tuning of thermally activated
delayed fluorescence emitters in OLEDs. Dyes. Pigm. 2021, 191, 109395. [CrossRef]

38. Kalinowski, J. Excimers and exciplexes in organic electroluminescence. Mater. Sci. Poland 2009, 27, 735–756.
39. Baldo, M.A.; O’Brien, D.F.; Thompson, M.E.; Forrest, S.R. Excitonic singlet-triplet ratio in a semiconducting organic thin film.

Phys. Rev. B 1999, 60, 14422–14428. [CrossRef]
40. Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for

triplet-to-singlet state conversion. Nat. Photonics 2012, 6, 253–258. [CrossRef]
41. Yuan, P.; Guo, X.; Qiao, X.; Yan, D.; Ma, D. Improvement of the Electroluminescence Performance of Exciplex-Based OLEDs by

Effective Utilization of Long-Range Coupled Electron–Hole Pairs. Adv. Optical Mater. 2019, 7, 1801648. [CrossRef]
42. Yang, D.; Kim, J.-M.; Huh, J.-S.; Kim, J.-J.; Hong, J.-I. The effect of the electron-donor ability on the OLED efficiency of twisted

donor-acceptor type emitters. Org. Electron. 2021, 95, 106187. [CrossRef]
43. Graves, D.; Vygintas, J.V.; Dias, F.B.; Monkman, A. Photophysical Investigation of the Thermally Activated Delayed Emission

from Films of m-MTDATA:PBD Exciplex. Adv. Funct. Mater. 2014, 24, 2343–2351. [CrossRef]
44. Wang, J.; Chen, J.; Qiao, X.; Alshehri, S.M.; Ahamad, T.; Ma, D. Simple-Structured Phosphorescent Warm White Organic

Light-Emitting Diodes with High Power Efficiency and Low Efficiency Roll-off. ACS Appl. Mater. Interfaces 2016, 8, 10093–10097.
[CrossRef] [PubMed]

45. Al Attar, H.A.; Monkman, A.P. Electric Field Induce Blue Shift and Intensity Enhancement in 2D Exciplex Organic Light Emitting
Diodes; Controlling Electron-Hole Separation. Adv. Mater. 2016, 28, 8014–8020. [CrossRef]

46. Sun, J.W.; Lee, J.H.; Moon, C.K.; Kim, K.H.; Shin, H.; Kim, J.J. A fluorescent organic light-emitting diode with 30% external
quantum efficiency. Adv. Mater. 2014, 26, 5684–5688. [CrossRef]

47. Seino, Y.; Inomata, S.; Sasabe, H.; Pu, Y.J.; Kido, J. High-Performance Green OLEDs Using Thermally Activated Delayed
Fluorescence with a Power Efficiency of over 100 lm W−1. Adv. Mater. 2016, 28, 2638–2643. [CrossRef]

48. Wang, Z.; Wang, C.; Zhang, H.; Liu, Z.; Zhao, B.; Li, W. The application of charge transfer host based exciplex and thermally
activated delayed fluorescence materials in organic light-emitting diodes. Org. Electron. 2019, 66, 227–241. [CrossRef]

49. Zhao, C.; Yan, D.; Ahamad, T.; Alshehri, S.M.; Ma, D. High efficiency and low roll-off hybrid white organic light emitting diodes
by strategically introducing multi-ultrathin phosphorescent layers in blue exciplex emitter. J. Appl. Phys. 2019, 125, 045501.
[CrossRef]
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