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Abstract 

Protein profiling studies of prostate cancer have been widely used to characterize molecular 
differences between diseased and non-diseased tissues. When combined with pathway analysis, 
profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients 
by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate 
cancer in very specific populations, such as African Americans who have higher rates of prostate 
cancer incidence and mortality than other racial groups in the United States. In this study, age-, 
stage-, and Gleason score-matched prostate tumor specimen from African American and 
Caucasian American men, along with non-malignant adjacent prostate tissue from these same 
patients, were compared. Protein expression changes and altered pathway associations were 
identified in prostate cancer generally and in African American prostate cancer specifically. In 
comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 
proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) 
and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer 
tissues, consistent with their known functions in prostate cancer progression. Aldehyde 
dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The 
Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples 
compared to non-malignant samples. While the current experiment was unable to detect 
statistically significant differences in protein expression between African American and Caucasian 
American samples, differences in overrepresentation and pathway enrichment were found. 
Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, 
and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African 
American but not Caucasian American tumors. Additionally, 5 pathways were enriched in African 
American prostate tumors: the Small Cell Lung Cancer, Platelet-Amyloid Precursor Protein, Agrin, 
Neuroactive Ligand-Receptor Interaction, and Intrinsic pathways. The protein components of 
these pathways were either basement membrane proteins or coagulation proteins. 

Key words: Differential protein expression profiles, pathway analysis, fatty acid metabolic process, cytoskeletal 
proteins, extracellular matrix, prostate cancer health disparity. 

Introduction 
Prostate cancer afflicts more American men than 

any other non-cutaneous cancer; only skin cancers are 
more frequently diagnosed [1]. Proteomic 

fingerprinting or profiling is frequently used to gain 
insight into prostate cancer development or to 
identify putative biomarkers, primarily through 
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differential expression analysis [2-9]. However, a 
potential deficiency of profiling studies is that they 
may be hampered by the heterogeneity of prostate 
cancer, namely the differing tumor biology within 
individual patients. This can lead to patient-specific 
variance in differential protein expression between 
tumor and matched controls [10]. The low 
reproducibility between profiling studies of 
differentially expressed molecular markers is also of 
concern [11, 12]. While a consensus cohort of 
significant differentially expressed genes can be 
elucidated from data collected by separate 
laboratories and across different platforms, the 
overlap is still low [13]. An alternative approach uses 
differential expression data to flag changes in 
biological pathways or groups of functionally-related 
proteins. Rather than focusing on expression changes 
of individual genes, this approach considers the 
cooperative nature of proteins and the co-regulation 
of proteins involved in the same process. Pathway 
approaches increase overlap between studies, provide 
more robust results, effectively classify disease, and 
highlight core mechanisms of disease that may have 
otherwise been obscured [14-18]. 

One area of prostate cancer investigation that 
may benefit from a pathway-based strategy is in racial 
health disparities. African ancestry is an established 
risk factor for developing prostate cancer [19]. 
Epidemiologic data shows increased prevalence of 
prostate cancer among African American (AA) men 
compared to non-Hispanic Caucasian American (CA), 
Hispanic/Latino, Asian American or Pacific Islander, 
and American Indian or Alaskan Native men in the 
United States [19]. A growing body of evidence 
presents differing pathological and clinical 
characteristics between tumors in AA and CA 
patients, including elevated prostate specific antigen 
levels in AA men [20-23], more high-grade and 
advanced stage tumors among AA men [24-26], 
increased tumor burden and volume [27, 28], and 
increased risk of recurrence in AA patients [29, 30]. 
Genetic studies have also highlighted differences in 
molecular biology between AA and CA or European 
American prostate cancer [31-37]. Prostate cancer 
health disparities are influenced by socioeconomic 
indicators (e.g., education, income, employment, 
marital status, neighborhood, etc.); yet even after 
controlling for socioeconomic status, treatment and 
care, age, stage, and grade, reduced survival was still 
seen in AA men [38-40]. It is hypothesized that 
pathway analysis may shed light onto the nature of 
biological variation between AA and CA prostate 
tumors and its contribution to racial health 
disparities.  

In this case study, we first characterized 

differential protein expression and differentially 
expressed pathways in prostate cancer generally. This 
builds upon previous work that examined differential 
gene expression and pathways in prostate cancer [41]. 
Second, because molecular markers differentially 
expressed between cancer and non-malignant 
samples may not be differentially expressed between 
races [37], we have attempted to identify differing 
patterns of protein expression and pathway activation 
in prostate cancer by race. While, proteomics-based 
profiling methods have been applied to examining 
racial differences and disparities in various cancers 
[42-44], to the best of our knowledge, very few studies 
have completed a global proteomic profile of AA 
prostate tumors. Fewer have taken an integrated 
profiling and pathway approach as presented herein.  

Materials and Methods 
Proteomics analysis  

Protein expression in prostate cancer was 
determined using freshly frozen human prostate 
tumor tissues obtained from the Cooperative Human 
Tissue Network (Midwestern Division, Ohio State 
University, Columbus, OH, USA; Mid-Atlantic 
Division, University of Virginia, Charlottesville, VA, 
USA; Southern Division, University of Alabama at 
Birmingham, Birmingham, AL, USA; Western 
Division, Vanderbilt University, Nashville, TN, USA) 
and Meharry Medical College (Nashville, TN, USA). 
According to pathologist recommendations, specimen 
were matched by age, stage, and Gleason score, 
resulting in a collection of fourteen patients, nine of 
which also had corresponding non-malignant tissue 
(Table 1). During processing, all tissue was kept cold 
and handled in an isolated environment. Proteins 
were extracted into lysis buffer (0.1 M Tris 
(hydroxymethyl)-aminomethane, pH 7.6 (Sigma, St. 
Louis, MO, USA), 0.1 M dithiothreitol (Promega, 
Madison, WI) and 10 µL/mL of HaltTM EDTA-free 
protease & phosphatase inhibitor cocktail 
(ThermoScientific, Waltham, MA, USA)) from minced 
and washed tissue using mechanical homogenization 
and vigorous mixing. Proteins were further 
solubilized by heating in the presence of sodium 
dodecyl sulfate (Sigma, St. Louis, MO, USA). Clarified 
lysate was desalted and proteins were 
trypsin-digested in a modified filter-aided sample 
preparation protocol [45]. In this method, the lysis 
buffer was exchanged with a series of buffers while 
simultaneously digesting with mass spectrometry 
(MS)-grade trypsin (Pierce-Thermo Scientific, 
Rockford, IL, USA) in a 30,000 molecular weight 
cutoff spin filter unit (VWR, Radnor, PA). The order of 
buffer exchange was a follows: 1) urea buffer (8 M 
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urea (Fisher Scientific, Waltham, MA, USA) in 0.1 M 
Tris, pH 8.5); 2) iodoacetamide buffer (0.05 M 
iodoacetamide (Amresco, Solon, OH, USA) in urea 
buffer); and 3) ammonium bicarbonate buffer (0.05 M 
ammonium bicarbonate (Fluka/Sigma, St. Louis, MO, 
USA) in water).  

 

Table 1. Patient clinical data for age-, stage-, and Gleason 
score-matched prostate tumor tissue samples. 

Characteristic Tumor (n=14) Non-malignant 
(n=9) 

Fisher’s Exact Test 
P-value 

Race/Ethnicity   0.669 
African-American 7 6  
Caucasian-American 7 3  
Age   0.657 
<65 10 5  
≥ 65 4 4  
Mean (Range) 58.7 (48-71) 60.9 (48-71)  
Stage   0.757 
pT2a 3 3  
pT2c 7 3  
pT3a 4 3  
Gleason Score   1 
2+3 1 1  
3+3 7 4  
3+4 4 2  
4+3 2 2  

 
 

Mass Spectrometry 
Peptides were detected through mass 

spectrometry using an externally calibrated 
high-resolution electrospray tandem Thermo LTQ 
Orbitrap Velos nLC-ESI-LIT-Orbitrap mass 
spectrometer. NanoLC-MS/MS was run in technical 
triplicate to enable normalization and statistical 
analysis. The nanoLC eluent (2-cm trap column plus 
10-cm analytical column in continuous, vented 
configuration with a 1-hour linear mobile phase 
gradient from 100% solution A (99.9% H2O and 0.1% 
formic acid) to 45% solution B (99.9% acetonitrile and 
0.1% formic acid)) was directly nanosprayed into an 
LTQ Orbitrap Velos mass spectrometer 
(ThermoScientific, Waltham, MA, USA). The mass 
spectrometry data were acquired using 10 
data-dependent collisional-induced-dissociation 
MS/MS scans per full scan under direct control of the 
Xcalibur software (ThermoScientific, Waltham, MA, 
USA). The peptide threshold was 95% confidence and 
the stringency for proteins was 99% confidence with 
at least 2 peptide matches. All measurements were 
performed at room temperature.  

Differential Expression Analysis 
Protein expression data were obtained from 

mass spectrometry analysis as spectral counts. The 
data were processed to sum isoforms for 1:1 matching 

in pathway analyses, round any non-integer values 
up to the nearest count, and calculate the magnitude 
of expression change as the base 2 logarithm (log2) of 
the ratio of mean spectral counts. To ensure that a log2 
ratio could be calculated for each protein, samples 
with zero expression counts were adjusted by adding 
one to both the tumor and non-malignant mean. To 
determine how this impacted the pathway results, the 
analysis was run multiple times either excluding data 
with mean expression of zero, transforming each 
entry, or transforming only those entries with no 
expression count. There was no real difference in the 
results, so only those entries with no expression count 
were transformed. Data processing, statistical 
calculations, differential expression analysis, and 
plotting were done in the R statistical programming 
environment [46]. To determine differential 
expression, the mean spectral counts between tumor 
and non-malignant samples for each protein were 
compared using a two-sided, unpaired Wilcoxon rank 
sum test. The resulting P-values were adjusted for 
multiple comparisons correction using the 
Benjamini-Hochberg false discovery rate (FDR) 
method. Differentially expressed proteins (DEPs) 
were defined as proteins differing between two 
patient groups (non-malignant and tumor, or AA and 
CA) with at least 90% confidence after FDR correction 
(Q < 0.1).  

Pathway Analyses 
The Protein ANalysis THrough Evolutionary 

Relationships (PANTHER) Classification System and 
analysis tools (version 10.0, released 2015-05-15, 
available from http://pantherdb.org) were used to 
categorize PANTHER Protein Class and Gene 
Ontology (GO) Molecular Function and Biological 
Process annotations among DEPs [47]. The PANTHER 
Overrepresentation Test (released 2015-04-30) was 
used to search the data against the PANTHER and 
GO databases (released 2015-05-09) to identify either 
protein classes or GO annotations that were 
overrepresented in the data by more than random 
chance after Bonferroni correction.  

Gene Set Enrichment Analysis (GSEA) was used 
to identify proteins (grouped as gene sets) 
comparatively enriched between phenotypes of 
interest [48]. Curated gene sets compiled from 
BioCarta and Reactome databases were pulled from 
the GSEA’s Molecular Signatures Database. 
Additionally a custom Kyoto Encyclopedia of Genes 
and Genomes (KEGG) gene set was tailored from all 
available human KEGG pathways by removing those 
least likely to be relevant in human prostate cancer 
(Table S1). The GSEA analysis tool (version 2.2.0) was 
downloaded from 
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http://www.broadinstitute.org/gsea/index.jsp. The 
entire protein expression dataset was loaded into the 
GSEA application without filtering based on 
differential expression. Because mapping is done by 
Entrez ID, putative proteins without Entrez ID were 
excluded. Gene sets smaller than 5 proteins and gene 
sets larger than 500 proteins were also excluded from 
the analysis. The FDR cut-off was relaxed to 25%. 
Positive enrichment scores correspond to enrichment 
in the AA samples. Negative enrichment scores 
correspond to enrichment in the CA samples. 

Signaling pathway impact analysis (SPIA) was 
used to assess the importance of enriched proteins in 
terms of the impact and contribution to activation or 
inhibition of a pathway [49]. Pathway significance is 
derived from the probability that the number of DEPs 
observed in a pathway is larger than what would be 
observed at random. This is the probability of 
overrepresentation. Pathway significance is also 
derived from the position of DEPs at crucial junctions 
that can perturb the pathway. This is the probability 
of perturbation. The overrepresentation and 
perturbation probabilities are combined into a global 
probability metric which is adjusted by the FDR. SPIA 
analysis was accomplished using the R package 
“SPIA”, using a differential expression cut-off based 
on the FDR-adjusted Q-value. Before running the 
SPIA program, up to date KEGG files were 
downloaded (accessed 7/29/2015). The same relevant 

KEGG pathways used in GSEA analysis were used for 
SPIA (Table S1). Because mapping is done by Entrez 
ID, proteins without Entrez ID were excluded.  

Results 
Comparing protein expression between all 

tumor samples (n=14) and all non-malignant samples 
(n=9) generated a protein expression profile for 
prostate cancer. Mass spectrometry identified 1612 
proteins, with 1570 remaining after processing (Table 
S2). There were 48 DEPs (Q< 0.1), with 45 being 
cancer-associated (i.e., upregulated in tumor samples 
or detected only in tumor samples) and 3 being 
associated with the non-malignant condition (i.e., 
downregulated in tumor samples or detected only in 
non-malignant samples). More specifically, 41 
proteins were significantly upregulated, 4 proteins 
were uniquely detected in tumor samples, 3 proteins 
were significantly downregulated in tumor samples, 
and no proteins were uniquely detected in the 
non-malignant samples. The distribution of log2 fold 
changes for all proteins was plotted in a 1-D scatter 
plot (Figure 1). Fold-changes for both upregulated 
and downregulated proteins were approximately 
3-fold or greater (log2 ratio ≥ ± 1.5). A selection of 
these DEPs is presented in Table 2 and the full listing 
of DEPs can be found in the Supplementary Materials 
(Table S3).  

 

 
Figure 1. Magnitude of protein expression changes between matched tumor and non-malignant human prostate tissues. In this one-dimensional scatter plot, the 
magnitudes of protein expression changes are represented by log2 fold ratios. Red diamonds represent differentially expressed proteins at a false discovery rate of 
10%. Black squares denote other proteins detected that did not reach significance. 

 

Table 2. Selected differentially expressed proteins in human prostate tumors compared to non-malignant samples. 

Protein Gene Log2  P-value Q-value 
Upregulated in Tumor     
2,4-dienoyl-CoA reductase, mitochondrial DECR1 5.84 1.72E-03 6.28E-02 
Aldehyde dehydrogenase family 1 member A3 ALDH1A3 5.48 1.15E-03 5.00E-02 
Growth/differentiation factor 15 GDF15 5.27 8.81E-06 4.17E-03 
Fatty acid-binding protein, epidermal FABP5 4.82 2.35E-05 5.27E-03 
ADP-ribosylation factor-like protein 1 ARL1 4.55 6.35E-04 4.36E-02 
Nucleobindin-1 NUCB1 4.47 2.95E-04 2.90E-02 
T-complex protein 1 subunit theta CCT8 4.32 7.83E-04 4.36E-02 
T-complex protein 1 subunit gamma CCT3 4.29 9.08E-05 1.30E-02 
Lysosomal alpha-glucosidase GAA 4.07 1.26E-05 4.17E-03 
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Fatty acid synthase FASN 3.62 1.33E-05 4.17E-03 
Coatomer subunit epsilon COPE 3.53 1.50E-03 5.84E-02 
Transcription intermediary factor 1-beta TRIM28 3.52 8.18E-06 4.17E-03 
Complement component 1 Q subcomponent-binding protein, mitochondrial C1QBP 3.37 6.81E-04 4.36E-02 
T-complex protein 1 subunit delta CCT4 3.35 3.00E-03 9.82E-02 
Endoplasmic reticulum resident protein 29 ERP29 3.16 2.94E-04 2.90E-02 
T-complex protein 1 subunit zeta CCT6A 2.96 1.91E-03 6.65E-02 
Non-specific lipid-transfer protein SCP2 2.95 1.52E-03 5.84E-02 
Elongation factor 1-delta EEF1D 2.93 7.53E-04 4.36E-02 
Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial MCCC2 2.93 4.22E-06 4.17E-03 
Lysosome-associated membrane glycoprotein 1 LAMP1 2.92 6.71E-04 4.36E-02 
Downregulated in Tumor     
Keratin, type I cytoskeletal 17 KRT17 -1.33 1.21E-03 5.00E-02 
Keratin, type II cytoskeletal 7 KRT7 -1.50 1.91E-05 5.01E-03 
EGF-containing fibulin-like extracellular matrix protein 1 EFEMP1 -2.85 7.28E-04 4.36E-02 
Uniquely Detected in Tumor     
Golgi membrane protein 1 GOLM1 1.97 1.12E-04 1.47E-02 
Heme-binding protein 2 HEBP2 1.75 5.77E-04 4.36E-02 
Ribonuclease T2 RNASET2 1.61 9.70E-04 4.91E-02 
Protein transport protein Sec23B SEC23B 1.39 1.61E-03 6.01E-02 
Upregulated proteins with the largest fold change in expression are presented along with all downregulated and uniquely detected proteins. The Log2 fold change is the base 
2 logarithm of the ratio of mean tumor expression to mean non-malignant expression. 

 

 

 
Figure 2. Functional classification of differentially expressed proteins in 
matched tumor and non-malignant human prostate tissues. (A) Classification 
according to PANTHER Protein Class. (B) Classification according to Molecular 
Function Gene Ontology terms. (C) Classification according to Biological 
Process Gene Ontology terms. 

 
 
To further characterize molecular differences 

arising in prostate cancer, DEPs were sorted 
according to PANTHER database protein class and 
Gene Ontology (GO) Molecular Function and 
Biological Process annotations (Figure 2). Only one 
DEP, T-complex protein 1 subunit delta, had no 
annotations and was thus excluded from analysis. The 
protein classes “Oxidoreductase”, “Enzyme 
Modulator”, “Transferase”, “Membrane Traffic 
Protein”, and “Hydrolase” were the most abundant 
categories (Figure 2A). The label “Oxidoreductase” 
covered dehydrogenases, reductases, and oxidases. 
“Enzyme Modulator” includes G-protein modulators, 
phosphatase modulators, protease inhibitors, and 
G-proteins. “Transferase” covered glycosyltrans-
ferases, methyltransferases, acyltransferases, and 
acetyltransferases. “Membrane Traffic Protein” 
included vesicle coat proteins and membrane 
trafficking regulatory proteins, while “Hydrolase” 
included esterases, proteases, and glucosidases. 
“Catalytic Activity” and “Binding” were the 
predominant GO Molecular Function annotations 
(Figure 2B). The “Catalytic Activity” heading 
included oxidoreductase, hydrolase, transferase, 
enzyme regulation, ligase, and lyase activity. The 
“Binding” category encompassed protein binding, 
nucleic acid binding, calcium ion binding, and 
calcium-dependent phospholipid binding. Most 
proteins in this category were protein binding, which 
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was more than twice as common as nucleic acid 
binding. The other 6 molecular function annotation 
groups—enzyme regulator activity, nucleic acid 
binding transcription factor activity, protein binding 
transcription factor activity, receptor activity, 
structural molecule activity, and translation regulator 
activity—had no more than 4 assignments each. The 
largest GO Biological Process categories were 
“Metabolic Process”, “Cellular Process”, 
“Localization”, “Cellular Component Organization or 
Biogenesis”, and “Biological Regulation” (Figure 2C). 
The “Metabolic Process” annotations included 
primary metabolic processes such as carbohydrate, 
lipid, protein, amino acid, and 
nucloeobase-containing compound metabolism. 
Mitosis and cell communication proteins were 
included in the “Cellular Process” group. The 
“Localization” category contained RNA localization 
and transport proteins, while the “Biological 
Regulation” category contained proteins involved in 
homeostatic processes. To estimate the significance of 
these categories, the PANTHER overrepresentation 
test was used (Table 3). For PANTHER protein 
classes, the analysis showed that the abundance of 
oxidoreductase annotations represents an 
overrepresentation in the data.  

Next, the data were queried for the enrichment 
of gene sets and pathways. GSEA was used to 
determine if any pathways were expressly associated 
with either the tumor samples or non-malignant 
samples. GSEA revealed enrichment of the MTA3 

(metastasis associated 1 family member 3) pathway in 
prostate tumor samples (Q = 0.162). Of the 19 proteins 
comprising this gene set, 7 members were expressed 
in the dataset with cathepsin D and cadherin 
1/E-cadherin contributing to its enrichment. SPIA 
found no pathways to be significantly activated or 
inhibited in tumor samples after FDR-correction.  

The second aim of this study was to use the 
integrated profiling and pathway approach to look at 
racial differences in prostate cancer. No significant 
differences in protein expression between AA and CA 
tumors presented at a 10% FDR, but relaxing the 
threshold to 13% resulted in 22 proteins having 
significance (Table 4). There were also no significant 
differences between the non-malignant samples by 
race (Table S4).  

 

Table 3. Overrepresentation of PANTHER protein classes and 
Gene Ontology annotations among differentially expressed 
proteins in human prostate tumors. 

 Fold Enrichment Q-value 
PANTHER Protein Class 
Chaperonin  > 5 2.43E-03 
Dehydrogenase  > 5 4.59E-03 
Oxidoreductase  > 5 1.24E-02 
GO Molecular Function 
Oxidoreductase activity  > 5 1.25E-02 
Overrepresentation was determined by calculating the probability that the number 
of differentially expressed proteins belonging to a particular category is larger or 
smaller than what would be expected based on a reference human genome of 
20,814 genes. Q-values have been adjusted using a Bonferroni correction. 

 
 

 

Table 4. Differences in protein expression between African American and Caucasian American human prostate tumor tissues. 

Identified Proteins Gene Name Log2 P-value Q-value 
Phosphoacetylglucosamine mutase PGM3 -5.46 2.97E-04 1.07E-01 
Pyrroline-5-carboxylate reductase 1, mitochondrial PYCR1 -2.38 2.98E-04 1.07E-01 
Lysosomal alpha-glucosidase GAA -2.10 2.11E-04 1.07E-01 
Heterogeneous nuclear ribonucleoprotein M HNRNPM -1.63 2.81E-04 1.07E-01 
Transaldolase TALDO1 -1.17 3.52E-04 1.07E-01 
Heterogeneous nuclear ribonucleoprotein L HNRNPL -1.13 4.00E-04 1.07E-01 
Gamma-glutamylcyclotransferase GGCT -5.78 1.64E-03 1.26E-01 
Pro-cathepsin H CTSH -3.91 1.64E-03 1.26E-01 
Puromycin-sensitive aminopeptidase NPEPPS -3.70 1.66E-03 1.26E-01 
Ubiquitin carboxyl-terminal hydrolase 5 USP5 -3.29 1.23E-03 1.26E-01 
Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial SUCLG2 -3.08 1.32E-03 1.26E-01 
Beta-hexosaminidase subunit beta HEXB -2.97 9.89E-04 1.26E-01 
Protein NDRG1 NDRG1 -2.42 7.10E-04 1.26E-01 
Metalloreductase STEAP4 STEAP4 -2.36 7.12E-04 1.26E-01 
N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 DDAH2 -2.05 9.39E-04 1.26E-01 
Cathepsin D CTSD -1.89 7.01E-04 1.26E-01 
Coatomer subunit alpha COPA -1.85 1.71E-03 1.26E-01 
GDP-L-fucose synthase TSTA3 -1.84 1.64E-03 1.26E-01 
Proteasome subunit beta type-5 PSMB5 -1.72 1.65E-03 1.26E-01 
Elongation factor Tu, mitochondrial TUFM -1.37 1.23E-03 1.26E-01 
Endoplasmin HSP90B1 -1.00 1.72E-03 1.26E-01 
Lipoma-preferred partner LPP -0.04 1.59E-03 1.26E-01 
The significance threshold was set at 10% FDR, but proteins with Q < 0.13 are shown. The Log2 fold change is the base 2 logarithm of the ratio of mean tumor expression to 
mean non-malignant expression.  
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Because no proteins were significantly 
differentially expressed after FDR correction when 
AA and CA tumor samples were compared, 
overrepresentation analysis was used to highlight any 
qualitative differences between these groups (Figure 
3). Without regard for statistical differential 
expression, proteins with positive log2 fold changes in 
the tumor/non-malignant comparison were 
considered upregulated, while those with negative 

log2 fold changes were considered downregulated. 
Then, proteins in AA or CA samples were sorted 
separately. Altered expression of cytoskeletal proteins 
and nucleic acid binding proteins in AA tumors 
compared to CA tumors was suggested by the larger 
percentage of upregulated proteins in these classes in 
AA tumors coupled with greater downregulation of 
proteins in these classes in CA tumors (Figure 3A).  

 
Figure 3. Racial comparison of functional classifications of proteins expressed in matched tumor and non-malignant prostate tissue samples. (A & B) Classification 
according to PANTHER Protein Class. (C & D) Classification according to Molecular Function Gene Ontology terms. (E & F) Classification according to Biological 
Process Gene Ontology terms. The five most abundant categories are shown. Upregulated and downregulated refers to expression in tumor samples relative to 
non-malignant samples. AAT = African American tumor, CAT = Caucasian American tumor, AAN = African American non-malignant, CAN = Caucasian American 
non-malignant. 
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The label “Cytoskeletal Protein” included actin 
family cytoskeletal proteins, intermediate filament 
proteins, and microtubule family cytoskeletal 
proteins. The heading “Nucleic Acid Binding” 
included DNA-binding proteins, RNA-binding 
proteins, helicases, and nucleases. There were no 
striking differences in GO Molecular Function or 
Biological Process annotations between AA and CA 
tumors (Figures 3C and 3E). The percentages of 
upregulated and downregulated proteins in 
PANTHER Protein Class and GO Molecular Function 
and GO Biological Process were similar between AA 
and CA non-malignant samples (Figures 3B, 3D, and 
3F). The overrepresentation of particular PANTHER 
protein classes and GO annotations was assessed and 
compared between races, pulling out those protein 
classes and GO annotations that were not 
overrepresented in both AA and CA tumors. This list 
was further whittled down by removing protein 
classes and GO annotations that were 
overrepresented in both AA tumor and 
non-malignant samples, as these differences were 
likely due to race regardless of disease status. The 
results showed enrichment of structural components 
(“Cytoskeletal Proteins” and “Extracellular Matrix 
Protein” PANTHER protein classes, and “Biological 
Adhesion” GO Biological Process) and catalytic 
activity (“Hydro-lyase activity”, “Peroxidase 
activity”, and “Peptidase Inhibitor Activity”) in AA 
compared to CA tumors (Table 5). The complete 
overrepresentation results can be found in the 
Supplementary Materials (Table S5). 

GSEA analysis was run comparing AA and CA 
tumor samples, with 5 gene sets showing enrichment 

in AA tumor samples (Table 6). The Agrin in 
Postsynaptic Differentiation pathway gene set is 
composed of 36 members, 12 of which were expressed 
in the dataset studied. Laminin alpha 4, dystroglycan 
1, integrin beta 1, dystrophin, laminin alpha 2, cell 
division cycle 42, integrin alpha 1, p21 protein 
(Cdc42/Rac)-activated kinase 4, and utrophin 
contributed to the enrichment in AA tumor samples. 
Of the 14 members comprising the Platelet Amyloid 
Precursor Protein pathway, 8 were identified in the 
dataset and collagen type IV alpha 2, coagulation 
factor II/thrombin, plasminogen, and coagulation 
factor IX contributed to pathway enrichment. 
Enrichment of the Intrinsic pathway was due to the 
expression of collagen type IV alpha 2, thrombin, 
coagulation factor IX, coagulation factor X, fibrinogen 
beta chain, serpin peptidase inhibitor, clade G (C1 
inhibitor) member 1, and fibrinogen gamma chain. A 
total of 12 proteins belonging to this pathway of 23 
were expressed in the dataset. Both the Small Cell 
Lung Cancer pathway and the Neuroactive 
Ligand-Receptor Interaction pathways were enriched 
in AA tumors compared to CA tumors. 14 of 86 
proteins in the Small Cell Lung Cancer gene set were 
expressed in the dataset, with laminin subunit beta 2, 
laminin subunit alpha 4, fibronectin 1, collagen type 
IV alpha 2, laminin subunit alpha 5, laminin subunit 
beta 1, laminin subunit gamma 1, and integrin beta 1 
contributing to the enrichment in AA tumors. 5 of 275 
of the proteins in the Neuroactive Ligand-Receptor 
Interaction pathway gene set were detected in the 
dataset with only thrombin and plasminogen 
contributing to its association in AA tumors. 

 

 Table 5. Differences in overrepresented proteins between African-American and Caucasian American tumors. 

Protein Class, Gene Ontology Molecular Function, or Gene Ontology Biological Process Fold Enrichment Q-value 
*Actin binding motor protein (Cytoskeletal Protein) 4.63 1.51E-04 
*Extracellular matrix structural protein (Extracellular Matrix Protein) 3.42 1.07E-02 
*Complement component (Defense/Immunity Protein) 4.08 1.16E-02 
*mRNA processing factor (Nucleic Acid Binding) 2.4 3.04E-02 
*Ubiquitin-protein ligase (Ligase)  < 0.2 4.29E-02 
*Calcium ion binding (Binding) 2.16 2.27E-05 
*Calmodulin binding (Binding) 2.46 6.48E-05 
*Hydro-lyase activity (Catalytic Activity) 4.25 3.17E-03 
*Peroxidase activity (Catalytic Activity)  > 5 6.10E-03 
*mRNA binding (Binding) 2.69 7.29E-03 
*Extracellular matrix structural constituent (Structural Molecule Activity) 3.42 8.90E-03 
*Peptidase inhibitor activity (Catalytic Activity) 2.23 1.41E-02 
*Muscle contraction (Multicellular Organismal Process) 2.72 7.15E-05 
*Cell adhesion (Biological Adhesion) 1.77 6.48E-03 
*Regulation of liquid surface tension (Biological Regulation) 4.03 7.25E-03 
*Regulation of catalytic activity (Biological Regulation) 1.54 7.42E-03 
*RNA splicing, via transesterification reactions (Metabolic Process) 2.76 9.74E-03 
*RNA splicing (Metabolic Process) 2.7 1.33E-02 
*Regulation of molecular function (Biological Regulation) 1.5 1.59E-02 
*System process (Multicellular Organismal Process) 1.45 2.33E-02 
*Homeostatic process (Biological Regulation) 2.24 2.87E-02 
*Oxidative phosphorylation (Metabolic Process) 3.72 3.01E-02 
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*Segment specification (Developmental Process)  < 0.2 4.22E-02 
†Anion channel (Transporter)  > 5 4.63E-02 
†Oxidase (Oxidoreductase) 2.59 3.07E-02 
†Translation initiation factor (Nucleic Acid Binding) 3.76 6.94E-03 
†Translation initiation factor activity (Binding) 3.29 2.77E-03 
†Anion channel activity (Transporter Activity)  > 5 1.52E-02 
†Transferase activity, transferring acyl groups (Catalytic Activity) 2.38 2.13E-02 
†Aminoacyl-tRNA ligase activity (Catalytic Activity)  > 5 3.10E-02 
†Cellular amino acid metabolic process (Metabolic Process) 2.42 4.57E-04 
†Purine nucleobase metabolic process (Metabolic Process) 3.43 3.74E-03 
†Response to toxic substance (Response to Stimulus) 3.8 2.44E-02 

Q-values have been adjusted using a Bonferroni correction. *Overrepresented in AA but not CA tumors. † Overrepresented in CA but not AA tumors. 

 

Table 6. Gene sets enriched in African-American tumor samples compared to Caucasian-American tumor samples. 

Gene Set Size ES NES P-value Q-value 
KEGG: Small Cell Lung Cancer 14 0.733 1.722 2.16E-02 1.67E-01 
BioCarta: Platelet-Amyloid Precursor Protein Pathway 8 0.684 1.638 1.36E-02 1.82E-01 
BioCarta: Agrin Pathway 12 0.503 1.505 5.63E-02 2.02E-01 
KEGG: Neuroactive Ligand-Receptor Interaction 5 0.988 1.573 4.03E-03 2.18E-01 
BioCarta: Intrinsic Pathway 12 0.619 1.537 4.70E-02 2.36E-01 
Size = total number of genes in pathway, ES = enrichment score, NES = normalized enrichment score, P-value = probability of significance after permutation, Q-value = false 
discovery rate-adjusted P-value. 

 

Discussion 
In prostate cancer, pathway analysis based on 

gene expression data has been important for 
understanding molecular mechanisms of the disease 
[17, 41, 50-52]. By combining profiling and pathway 
approaches, the current study moves beyond 
detecting differences in the expression of individual 
proteins to detecting pathways associated with 
cancer. Through proteomic analysis, 48 DEPs between 
malignant and non-malignant prostate tissue were 
identified: 45 of them associated with cancer and 3 
associated with non-malignant samples. Of particular 
interest were the upregulation and enrichment of fatty 
acid metabolism proteins fatty acid synthase and 
epidermal fatty acid binding protein, both of which 
have oncogenic potential.  

Overexpression of fatty acid synthase in prostate 
cancer has been well documented [53-56] and was 
confirmed in this report. Fatty acid synthase catalyzes 
the reaction producing palmitate from acetyl-CoA 
and malonyl Co-A [57]. Fatty acids are important for 
building membranes and regulating genes through 
post-translational modification, and the synthesis of 
fatty acids generates second messengers used in 
signaling pathways [57]. Inhibition of fatty acid 
synthase suppressed the growth of multiple prostate 
cancer cell lines, including castration-resistant 
prostate cancer cells, via both androgen 
receptor-dependent and independent mechanisms 
[58]. The oncogenic potential of fatty acid synthase 
has also been demonstrated. Injection of prostate 
epithelial cells expressing both fatty acid synthase and 
androgen receptor into immunodeficient mice 
resulted in tumor growth, partially through 

suppression of apoptosis [59]. Theories to explain the 
role of fatty acid synthase in tumor survival include 1) 
the synthesis of fatty acid chains generates oxidative 
power in an anaerobic environment to balance redox 
conditions; 2) the activation of some oncogenes occurs 
by palmitoylation; 3) fatty acid synthase alters 
membrane phospholipid composition and thus affects 
signaling; and 4) fatty acid synthase may help 
preserve function of the endoplasmic reticulum 
(reviewed in [57, 60]).  

Epidermal fatty acid binding protein gene 
transcripts and protein expression were upregulated 
in prostate cancer [61-63]. The roles of fatty acid 
binding proteins include uptake and transport of 
long-chain fatty acids, gene regulation, 
differentiation, and cell growth [64]. Epidermal fatty 
acid binding protein affects cell proliferation by 
delivering ligands to the nuclear peroxisome 
proliferator activated receptor β/δ (PPARβ/δ), which 
regulates cell survival and proliferation genes [65, 66]. 
The association of epidermal fatty acid binding 
protein and PPARγ also has prognostic significance, 
namely reduced patient survival [67]. 
Downregulation of epidermal fatty acid binding 
protein inhibited the growth of prostate cancer cells 
[68], and tumorigenicity [62, 63]. Furthermore, 
epidermal fatty acid binding protein expression was 
associated with metastasis and may also be a 
contributing factor to its development [69, 70].  

Other interesting observations were the 
downregulation of cytokeratins 7 and 17 and the 
upregulation of aldehyde dehydrogenase family 1 
member A3 (ALDH1A3) in human prostate cancer 
tissues compared to the non-malignant samples. 
Expression of cytokeratin 7 is not frequent in prostate 
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adenocarcinomas; several immunohistochemical 
analyses showed positive staining in 0% to 25% of 
prostate cancer cases [71-75]. Furthermore, the 
percentage of cytokeratin 7-positive cases increased 
with increasing Gleason score [76], but a separate 
review found no significant differences between the 
number of cytokeratin 7-positive primary and 
metastatic tumors [77]. Considering the patients in 
this study all had Gleason score ≤ 7, the 
downregulation of cytokeratin 7 in tumor samples is 
consistent with previous observations. While 
cytokeratin 7 immunoreactivity is typically negative 
in tumor samples, luminal cells of non-malignant 
tissue, rather than basal cells, stained positive for 
cytokeratin 7 [78]. Similarly, cytokeratin 17 
immunoreactivity is also negative in prostate cancer 
[76, 79]. As an epithelial marker, the loss of 
cytokeratin expression is suggestive of 
epithelial-mesenchymal transition in other cancers 
[80-82]. ALDH1A3 is important in the production of 
retinoic acid and the metabolism of acetaldehyde 
produced from oxidation of ethanol, of amino acids, 
and lipid peroxidation products, the detoxification of 
exogenous molecules, and the regulation of apoptosis 
[83]. Similar to this study, ALDH1A3 expression was 
increased in prostate cancer tumors [84]. ALDH1A3 is 
androgen regulated in LNCaP cell lines [85]. 
ALDH1A3 may be a cancer stem cell marker in breast 
cancer, lung cancer, and melanoma, as cells 
expressing aldehyde dehydrogenase family 1 member 
A3 also displayed other cancer stem cell 
characteristics or were more tumorigenic [86-88].  

The results of this study also suggest that the 
proteins of the MTA3 pathway may be of significance 
in prostate cancer. The MTA3 pathway, which is 
based on experimental evidence in breast cancer, 
describes the silencing of estrogen receptor-regulated 
genes through MTA1/3 activity. Cadherin-1 and 
cathepsin D contributed to the enrichment of this 
pathway in tumor samples, although neither was 
differentially expressed (Table S2). Cadherins such as 
cadherin-1 are involved in stabilizing cell adhesion, 
epithelial-to-mesenchymal transition, and signaling 
[89]. The loss of cadherin-1 mRNA and protein in 
prostate cancer and bone metastases has been 
demonstrated [90-92]. Cathepsin D is a lysosomal 
proteinase whose expression and activity were greater 
in prostate cancer compared to normal samples 
[93-95]. Cathepsin D overexpression in cancer 
associated fibroblasts promoted the motility and 
invasive growth of prostate epithelial cells [96]. Both 
cadherin-1 and cathepsin D are regulated by 
estrogen/estrogen receptor [97, 98] indicating a 
possible role of these two proteins in 
androgen-independent prostate cancer that may still 

respond to estrogens. It must be clarified that none of 
the regulatory elements of the MTA3 pathway (e.g., 
MTA1, MTA3 or Snail) were detected in the dataset, 
only targets of the estrogen receptor. This raises the 
possibility that another pathway with overlapping 
components may be active and responsible for the 
expression of cadherin-1 and cathepsin D. Further, 
there is very little literature establishing the 
mechanism of MTA3 in prostate cancer, although 
MTA1 is well-studied [99]. The relevance of this 
MTA3 pathway in prostate cancer requires additional 
study.  

Because of racial disparities in prostate cancer 
incidence and mortality, interracial comparisons of 
the specimen were also performed. There were no 
statistically significant differences in protein 
expression of tumor samples or non-malignant 
samples of AA and CA patients at the 10% FDR 
threshold. Relaxing the stringency to 13% FDR, 
however, resulted in 22 proteins being differentially 
expressed. In this particular study, it is likely that the 
small sample size was not sufficiently powered to 
detect differences. However, this case study provides 
an opportunity to evaluate whether the pathway 
approach may be informative even in a small sample 
size. Despite not identifying racial differences in 
protein expression among AA and CA prostate cancer 
samples, five pathways were identified as 
significantly enriched in AA tumors. These pathways 
were the Small Cell Lung Cancer, Platelet-Amyloid 
Precursor Protein, Agrin, Neuroactive 
Ligand-Receptor Interaction, and Intrinsic pathways. 
The Platelet-Amyloid Precursor Protein, Intrinsic, and 
Neuroactive-Ligand receptor pathways were linked 
by clotting proteins (coagulation factor IX, 
coagulation factor X, fibrinogen beta chain, fibrinogen 
gamma chain) and proteases/protease inhibitors 
(thrombin, plasminogen, serpin peptidase inhibitor, 
clade G (C1 inhibitor) member 1). The Small Cell Lung 
Cancer and Agrin pathways were heavily populated 
by type IV collagens (alpha 1, alpha 2, alpha 6), 
laminins (alpha 4, alpha 2, beta 2, alpha 5, gamma 2, 
alpha 1, beta 1), and integrins (beta 1, alpha 1, alpha 
2). Collagens and laminins are important components 
of the basement membrane, while integrins bind to 
basement membrane components with 
substrate-specific preference and link the extracellular 
matrix and actin cytoskeleton [100-102]. Together 
these molecules regulate cell adhesion, 
anchorage-independent growth, proliferation, 
migration, differentiation, signaling survival, and 
chemoresistance [103-105].  

Type IV collagen, laminin alpha 1, laminin beta 
1, and laminin beta 2, and integrin beta 1 proteins can 
be found in the basement membrane of prostate 
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tumors [106, 107], and increasing expression of 
collagen type IV alpha 1 and laminin beta 1 genes was 
detected in high-grade and metastatic prostate lesions 
[108]. While collagen type IV alpha 1 and type IV 
alpha 2 are expressed in normal basement membrane 
of many tissues and maintained in prostate cancer, 
collagen type IV alpha 6 is lost from the basement 
membrane of invasive prostate carcinomas [109, 110]. 
Decreased expression of collagen type IV alpha 6 also 
correlated with metastasis and death [111]. Altered 
integrin expression is well-documented in prostate 
cancer and includes not only downregulation, but 
aberrant expression patterns [103]. Integrin alpha 2 
was lost in prostate adenocarcinomas but upregulated 
in metastatic lesions [106, 112], whereas integrin beta 
1 was associated with prostate cancer [107, 113-115]. 
Laminin gamma 2 expression was also lost in prostate 
carcinoma tissue [114]. The increase in collagen 
expression, decrease in laminin expression (all but 
laminin alpha 2), and increase in integrin expression 
(all but integrin alpha 1) among tumor samples was 
not statistically significant (Table S2). However, 
finding the enrichment of pathways containing 
basement membrane, cytoskeletal, and extracellular 
matrix components reflects the qualitative 
overrepresentation results for AA and CA tumors. 
Differences in stromal expression of collagen, laminin, 
and integrin genes were prominent between AA and 
CA prostate cancer in other studies [32].  

Overall, this study confirmed the up-regulation 
of FASN and FABP5 in prostate cancer. This study 
demonstrated that pathway approaches may be 
useful in studying racial disparities in small patient 
cohorts. However, these results must be viewed 
cautiously as there were no true statistical differences 
in individual proteins between racial groups.  
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