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ABSTRACT

Bgee is a database to retrieve and compare gene expression patterns in multiple animal species, produced
by integrating multiple data types (RNA-Seq, Affymetrix, in situ hybridization, and EST data). It is based
exclusively on curated healthy wild-type expression data (e.g., no gene knock-out, no treatment, no disease),
to provide a comparable reference of normal gene expression. Curation includes very large datasets such
as GTEx (re-annotation of samples as ‘healthy’ or not) as well as many small ones. Data are integrated and
made comparable between species thanks to consistent data annotation and processing, and to calls of
presence/absence of expression, along with expression scores. As a result, Bgee is capable of detecting
the conditions of expression of any single gene, accommodating any data type and species. Bgee provides
several tools for analyses, allowing, e.g., automated comparisons of gene expression patterns within and
between species, retrieval of the prefered conditions of expression of any gene, or enrichment analyses of
conditions with expression of sets of genes. Bgee release 14.1 includes 29 animal species, and is available at
https://bgee.org/ and through its Bioconductor R package BgeeDB.
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INTRODUCTION

Gene expression is central to the relation between genes or genomes and their function. It mediates or indicates the in-
volvement of genes in functions, pathways, pathologies, differences between individuals, species or genes. Many of the fea-
tures which make expression so interesting also complicate its bioinformatics analysis, especially for multicellular organ-
isms such as animals. While databases of reference genomes, providing standardized annotations and comparative frame-
works within and between species, are well established (1–3), this is not the case for expression data. Both the concept
of a ‘reference expression’ for a species, and comparisons, are complicated by the need to define comparable samples and
conditions (4).

There are a few datasets which can play a role close to that of a reference expression pattern. Such ‘atlases’ cover typically
many anatomical structures (tissues or organs), and are often used to present expression in gene-centric databases, such as
NCBI Gene (5). Gene presents by default expression from the HPA set (6) for human genes, with the option of switching to
another of three RNA-seq atlases, covering 6–27 tissues. Because they are presented separately, it can be difficult to come to
a conclusion concerning the expression pattern of a gene. For example, human insulin (NCBI Gene ID: 3630) shows very
pancreas-specific expression from HPA, but the other proposed atlases lack pancreas samples, and show top expression in
the prostate, the spleen, or the stomach. Probably the most complete atlas so far is GTEx (7). While atlases are valuable, they
are dispersed in different databases, do not have common standards of annotation or quality-control, provide differently
processed values, and cover different limited subsets of anatomy and conditions.

There exist databases which specialize in providing expression pattern descriptions (8). The Expression Atlas (9) presents
curated and processed expression data from a diversity of species and sources. As of May 2020, it includes 3942 studies from
65 species, of which 214 are annotated as ‘baseline’, and are used to present an expression pattern of each gene. Expression is
presented per experiment. Tissues (10) presents expression patterns derived from UniProtKB annotations, selected atlases,
and text mining. The focus is on confidence in expression presence rather than levels of expression. Data from different
techniques is presented separately. An interesting feature is that tissues are ranked within each evidence type, allowing the
most important features of a complex expression pattern to emerge. Thus, for human insulin, the pancreas is one of two
tissues from UniProtKB and Pancreatic beta cell is the top tissue from text mining. Finally, Model Organism Databases
(MODs) (11,12) provide integration of many datasets for a given species (or a targeted set of species). They integrate many
small scale experiments such as in situ hybridization, thanks to curation and the pioneering use of ontologies. They do not
cover species outside of a small core of model organisms, and include expression data both from mutant strains and from
wild-type.

We have developed the Bgee database to answer questions about gene expression while avoiding limitations due to the
separation of data sets and species. We notably provide an integrated reference of gene expression patterns in animals.
We capture conditions of gene expression, i.e., the biological parameters for which a gene is expressed. Conditions are
combinations of sample features, which together are expected to define an expression state. As of Bgee 14, we cap-
ture conditions as unique combinations of species, anatomical structure, developmental stage, sex and strain (sex and
strain are not yet accessible to users in all views or tools). The data produced by Bgee allow: (i) to answer the ques-
tions ‘where and when this gene is expressed?’, and ‘what are the genes expressed in this condition?’; (ii) to identify the
conditions most relevant to the expression of each gene; (iii) to study gene expression evolution, by comparing expres-
sion patterns between species. Bgee provides a consistent vision over all species, and integrates data over a large number
of atlases and small-scale datasets. These currently include 29 species and four major types of expression experimental
data.

MATERIALS AND METHODS: DATA CURATION AND PROCESSING

Pipeline overview

We collect expression data from different sources, depending on their data type. Hereafter we define ‘data type’ to
cover data resulting from different types of assays for gene expression. We curate these data to retain only samples
from healthy wild-type individuals. We annotate them to anatomical and life stage ontologies, along with information
of population/strain and sex. We perform quality controls to remove low-quality and duplicated samples. We process
these data to produce present/absent expression calls, along with expression level information, represented by our ex-
pression ranks and expression scores. We propagate these calls along the anatomical and life stage ontologies, to allow
the integration of data generated with various granularities. We provide an overview of this pipeline in Figure 1, and
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Figure 1. Bgee pipeline overview. Expression data are retrieved from various databases; they are annotated by the Bgee team, or annotations from Model
Organism Databases are remapped by the Bgee team, to ontologies describing developmental stages, anatomy, taxa; quality controls are performed, using
for instance FastQC for RNA-Seq data, IQRray for Affymetrix data; data are then analyzed using specific tools, such as kallisto to produce TPM values
from RNA-Seq data, or limma to compute TMM normalization factors, and presence/absence expression calls are then produced; all the expression data
and analysis results are integrated into the MySQL Bgee database; these data are then leverated by the different tools offered by Bgee: Bgee web-interface,
Bioconductor packages, SPARQL endpoint, FTP server. Icons for tools and databases retrieved from their respective website.

detail some aspects in the following subsections; see the Supplementary Methods and the online documentation for fur-
ther details.

Ontologies and genome annotations are only updated for each major release (e.g., Bgee 13–14), while expression data can
be updated at minor releases (e.g. Bgee 14.0–14.1). Thus all expression data presented here concern Bgee 14.1 specifically,
while ontology and genome annotations concern Bgee 14, both 14.0 and 14.1.

Species information: taxonomy, genomes, gene orthology

We annotate species information using the NCBI taxonomy database (13), and integrate the taxonomy for species present in
Bgee. We retrieve gene models for each species in Bgee from Ensembl (3) (Ensembl 84 for Bgee 14) and Ensembl Metazoa (2)
(release 30 for Bgee 14) using the Perl Ensembl API. We also retrieve cross-references to other databases, gene biotypes and
annotations to Gene Ontology (14,15) terms, and gene orthology information from OMA (16), although our web and R
views and tools do not make use of GO annotations nor of orthology as of Bgee 14.1.

Uberon integration

To describe the anatomy of diverse animals, we use the Uberon ontology (17). Its integration into Bgee requires processing,
described in Supplementary Methods. Briefly, we refine taxon constraints; we simplify Uberon to keep only the knowledge
needed for Bgee, and simplify it for an easier browsing; we remove any cycles; and we correct mappings between model
organism databases (MODs) and Uberon.

Developmental stage integration

Each species in Bgee has a developmental stage ontology, available in the obophenotype developmental stage ontology
repository. We have developed all of the species-specific ontologies in this repository, except those from Model Organism
Databases (EMAPA for mouse (18); FBdv for fly (19); ZFA for zebrafish (20); XAO for Xenopus (21,22); WBls (23) for
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worm). We produce a composite stage ontology merging all of these species-specific ontologies, that we can insert into
Bgee. Having one common multi-species ontology, with high level terms merged between species (e.g. ‘gastrula’), allows
us to propagate expression data to comparable stages in different species, and thus take development into account when
automatically comparing expression patterns. The merge is performed by the Uberon maintainers.

We describe our strategy for insertion into Bgee in detail in the Supplementary Methods. Briefly, we merge terms from
species-specific ontologies into the structure of Uberon; we order stages using the relations ‘preceded by’ or ‘immedi-
ately preceded by’; and we ensure that each stage has at most one parent by a part of relation. Finally, we transform the
merged developmental stage ontology into a nested set model for integration into Bgee.

Curation of expression data

Our curation steps have the aim of selecting data: (i) produced from healthy wild-type animals in normal conditions; (ii)
that are of high quality; (iii) that are non-redundant. Because the amount of data available in public repositories is large, we
can be stringent regarding our criteria to accept data for inclusion.

Data sources. All data sources are detailed in Table 1. For SRA or GEO studies for which the corresponding publication is
missing at time of curation by Bgee, we determine the publication, and report missing PMIDs to GEO. We use the informa-
tion from these publications, as well as those which are already linked, for precise annotation of samples to anatomy, stage,
sex and/or strain. For example the SRP075519 study contains six RNA-seq libraries, with tissue information reported as
‘muscle’, while the related paper (24) reports that ‘RNA-Seq analysis was performed on six piglets representing two breeds:
Duroc and Ronghcang (three animals of each breed). RNA was extracted from the longissimus dorsi of each individual.’
We can thus annotate the libraries to the relevant term UBERON:0001401 ‘longissimus thoracis muscle’, and we can also
annotate each library to the corresponding breed (here ‘Duroc’ or ‘Ronghcang’).

Healthy wild-type samples in normal conditions. For inclusion into Bgee, we reject samples from animals with abnormal
genetic backgrounds (e.g. project SRX2751118, nono−/− mice), or subject to diseases, to gene knockouts, or to treatments
not expected in the wild (e.g. irradiated sample DRX012402). We manually review the information about each sample before
inclusion (see Supplementary Material for our criteria for inclusion). While we aim at being stringent regarding the quality
of the data we integrate, we also need our data to reflect the genetic diversity of wild-type animals, or the various expected
conditions encountered in the wild.

For in situ hybridization data that we retrieve from MODs, we coordinate with developers of these resources to find the
appropriate parameters to retrieve only wild-type healthy samples in normal conditions.

Removal of hidden redundancies. During our quality control procedure, we have identified duplicated content in the GEO
and ArrayExpress databases (identical arrays reused in different experiments, and submitted as distinct), affecting ∼14%
of our Affymetrix data (40). We have thus created a method to discard these duplicated samples, as well as to avoid this
problem appearing in our RNA-Seq dataset. This allows Bgee, despite the use of potentially overlapping multiple datasets,
to provide and use a clean reference of unique samples for downstream analyses.

Curation of GTEx dataset. We have curated the GTEx human dataset phs000424.v6.p1 (7). We apply a stringent re-
annotation process to the GTEx data to retain only healthy and non-contaminated samples, using the information available
under restricted-access. For instance, we reject all samples for 31% of subjects, deemed globally unhealthy from the pathol-
ogy report (e.g., drug abuse, diabetes, BMI > 35), as well as specific samples from another 28% of subjects who had local
pathologies (e.g., brain from Alzheimer patients). We also reject samples with contamination from other tissues according
to the pathologist report. In total, we have kept only 6008 of 11 983 samples (50%); these represent a high quality subset of
GTEx, restricted to only healthy and non-contaminated samples. We re-annotate some GTEx samples to Uberon ontology,
according to the original sampling sites. For instance, we map GTEx samples ‘Minor Salivary Gland - Inner surface of
lower lip’ to UBERON:0001830 minor salivary gland, while GTEx reports on UBERON:0006330 anterior lingual gland.
Note that both lip inner surface and tongue have minor salivary glands. The precise criteria for our curation of GTEx can
be found in Sup. Material. More information to use these data is available at https://bgee.org/?page=doc&action=data sets,
and is also provided in Sup. Material.

https://bgee.org/?page=doc&action=data_sets
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Table 1. Data sources of Bgee, with URLs, references, and descriptions

Data sources URL reference Description

Genomics databases
Ensembl http://www.ensembl.org/index.html (3) Source for gene annotations,

mappings to the Gene Ontology to
Affymetrix probeset IDs, and
cross-references to other databases

MiRBase http://www.mirbase.org/ (25) Source for miRNA families
OMA https://omabrowser.org/oma/home/ (16) Source of gene orthology information
EnsemblMetazoa http://metazoa.ensembl.org/index.html (2) Source for gene annotations,

mappings to the Gene Ontology to
Affymetrix probeset IDs, and
cross-references to other databases

RNA-Seq
GEO https://www.ncbi.nlm.nih.gov/geo/ (26) RNA-Seq data source for various

species
GTEx - dbGAP https://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study id=
phs000424.v8.p2

(27) GTEx RNA-Seq data

SRA https://www.ncbi.nlm.nih.gov/sra (28) RNA-Seq data source for various
species

Affymetrix
ArrayExpress https://www.ebi.ac.uk/arrayexpress/ (29) Affymetrix data source for various

species
GEO https://www.ncbi.nlm.nih.gov/geo/ (26) Affymetrix data source for various

species
In Situ
BDGP https:

//insitu.fruitfly.org/cgi-bin/ex/insitu.pl
(30–32) Drosophila in situ data source

FlyBase http://flybase.org/ (33) Drosophila in situ data source
MGI http://www.informatics.jax.org/

expression.shtml
(34) Mouse in situ data source

WormBase https://wormbase.org/#%23012-34-5 (23) Nematode Information Resource
Xenbase http://www.xenbase.org/entry/ (35) Xenopus in situ data source
ZFIN http://zfin.org/ (36) Zebrafish in situ data source
EST
smiRNAdb http:

//www.clipz.unibas.ch/cloningprofiles/
(37) EST data for miRNAs

UniGene https:
//www.ncbi.nlm.nih.gov/UniGene/

(38) EST data source for various species

Ontologies
CIO http:

//obofoundry.org/ontology/cio.html
(39) Confidence Information Ontology

Developmental stage ontologies https://github.com/obophenotype/
developmental-stage-ontologies/

Collection of developmental and life
stage ontologies in animals. Integrated
into Uberon

GO http://geneontology.org/GO.downloads.
ontology.shtml

(15) Filtered Gene Ontology

Uberon https://uberon.github.io/ (17) Integrated cross-species ontology
covering anatomical structures in
animals. Use of the subset
‘composite-metazoan’

Other sources
Anatomical similarity annotations https://github.com/BgeeDB/

anatomical-similarity-annotations/
Define evolutionary relations between
anatomical entities described in the
Uberon ontology

NCBI Taxonomy https:
//www.ncbi.nlm.nih.gov/taxonomy

(13) Source taxonomy used in Bgee

Annotation of expression data

We capture information about the anatomical localization of samples, their developmental and life stage, their sex,
and their strain or ethnicity. We either manually capture this information using ontologies and controlled vocabular-
ies (for Affymetrix, RNA-Seq and EST data), or we map existing annotations provided by MODs to these ontologies
and vocabularies (for all in situ hybridization data, and for some Affymetrix and RNA-Seq data annotations provided
by Wormbase for C. elegans). For Affymetrix and RNA-Seq data, we also capture whether replicates are technical or
biological.

http://www.ensembl.org/index.html
http://www.mirbase.org/
https://omabrowser.org/oma/home/
http://metazoa.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2
https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/
https://www.ncbi.nlm.nih.gov/geo/
https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
http://flybase.org/
http://www.informatics.jax.org/expression.shtml
https://wormbase.org/#%23012-34-5
http://www.xenbase.org/entry/
http://zfin.org/
http://www.clipz.unibas.ch/cloningprofiles/
https://www.ncbi.nlm.nih.gov/UniGene/
http://obofoundry.org/ontology/cio.html
https://github.com/obophenotype/developmental-stage-ontologies/
http://geneontology.org/GO.downloads.ontology.shtml
https://uberon.github.io/
https://github.com/BgeeDB/anatomical-similarity-annotations/
https://www.ncbi.nlm.nih.gov/taxonomy
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In addition to Uberon22 and developmental stage ontologies described above, sex is annotated to a simple controlled
vocabulary, and we maintain a naive controlled vocabulary of strains or breeds, based on the UniProt ‘strains.txt’ file
(https://www.uniprot.org/docs/strains) and completed with strain/breed names found in the literature, or from species spe-
cific resources (e.g. https://www.gov.uk/guidance/official-cattle-breeds-and-codes). We standardize strain information pro-
vided in free-text format, notably to remove most duplicates, resulting in 422 different strain and ethnicity terms used in Bgee
14.1. If strain or sex information are missing, they are mapped to one of the following: ‘NA’, not available from source infor-
mation; ‘not annotated’, information not captured by Bgee; ‘confidential restricted data’, information cannot be disclosed
publicly (e.g. GTEx).

Processing of expression data

We present key processing steps and software very briefly here. Details of expression data download and processing are in
Supplementary Methods, and in the online code documentation. For RNA-seq, we use Ensembl and Ensembl metazoa for
sequences and annotations of coding and non coding genes. We use Kallisto (41) to generate pseudo-counts per transcript,
which are then summed for each gene. All further analysis and reporting is done at the gene level as of Bgee 14. For Affymetrix
microarray data, we use CEL files when they are available, using IQRray (42) for quality control and gcRMA (43) for
normalization. Otherwise we use MAS5 (44) processed files. Mapping of probesets to genes is recovered from Ensembl. For
ESTs, we simply mapped by BLAST (45) to UniGene clusters then to Ensembl genes, and counted the number of ESTs per
gene.

Integration of in situ hybridization data from Model Organism Databases

We retrieve in situ hybridization data from the relevant MODs (Table 1), using InterMine (46) whenever possible. We filter out
the data from animals with abnormal genetic backgrounds, e.g., animals with transgenes or knockout. We remap species-
specific terms from the MOD ontology or controlled vocabulary to Uberon. When needed, we transform annotations to
separate anatomical localization and developmental stage. We provide details of this integration, and of specific issues and
their solutions, in Supplementary Methods.

Calls of presence/absence of expression

Bgee provides calls of presence or absence of expression for unique combinations of a gene in a condition. As of Bgee 14.1, a
condition is defined by five pieces of information: an anatomical entity, a life stage, a sex, a strain or ethnicity and a species.

Calls produced from RNA-Seq data. We use a new method to estimate for each RNA-Seq library independently the TPM
threshold to consider a gene as actively transcribed (Julien Roux, Marta Rosikiewicz, Julien Wollbrett, Sara S. Fonseca
Costa, Marc Robinson-Rechavi, Frederic B. Bastian; in preparation). While this method will be described elsewhere, the doc-
umentation of our pipeline describing its use in Bgee is available at https://github.com/BgeeDB/bgee pipeline/tree/master/
pipeline/RNA Seq (archived version for release Bgee 14.1: https://github.com/BgeeDB/bgee pipeline/tree/v14.1/pipeline/
RNA Seq). Briefly, we use all RNA-seq data from a species to identify a stringent set of intergenic regions, then use these
regions to define the background level of read mapping per library. Then, we call genes as expressed when their level of
mapped reads is significantly higher than this background, and as not expressed otherwise. As of Bgee 14.1, RNA-Seq calls
are all considered of high quality.

Calls produced from Affymetrix data. When only the MAS5 files of an analysis are available, we use the flags provided
by the MAS5 software (47). Although MAS5 classification is efficient (48), the estimation of the background signal can
be biased depending on probe sequence affinity (49). For this reason, we use preferentially CEL files when available to
produce present/absent calls, and, when not available, we consider all calls produced from MAS5 files as low quality. MAS5
‘present’ and ‘marginal’ flags correspond in Bgee to a low quality present call; ‘absent’ flag to a low quality absent call.
For CEL data, we use the gcRMA algorithm (43) to normalize the signal taking into account probe sequences, and use a
subset of weakly expressed probesets for estimating the background, as described in (49). We then apply a Wilcoxon test to
compare the normalized signal of the probesets with the background signal, as implemented in the ‘mas5calls’ function of
the bioconductor package ‘affy’ (48): High quality present call corresponds to a P-value threshold of <0.03 (corresponding

https://www.uniprot.org/docs/strains
https://www.gov.uk/guidance/official-cattle-breeds-and-codes
https://github.com/BgeeDB/bgee_pipeline/tree/master/pipeline/RNA_Seq
https://github.com/BgeeDB/bgee_pipeline/tree/v14.1/pipeline/RNA_Seq
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to a FDR of ≈5%, see Schuster et al. (49)), low quality present call to a P-value ≥0.03 and ≤0.12, and high quality absent
call to a P-value >0.12 (<0.12 corresponds to a FDR ≈ 10%).

We then exclude all probesets that are never seen as MAS5 ‘present’ or CEL high quality present over the whole dataset.
Because a same gene can be covered by several probesets, we reconcile this information to produce one call per gene and per
chip, by retaining the best probeset signal, in this order: high quality present, low quality present, high quality absent, low
quality absent.

Calls produced from EST data. Based on the number of ESTs mapped to a gene for which the 95% confidence interval of
the EST count excludes 0 (50), we call presence of expression of high quality when an experiment has at least seven ESTs
mapped to a gene, and of low quality from one to six ESTs. We do not produce calls of absence of expression from EST data
because of the low sampling.

Remapping to more generalized conditions. We annotate and retrieve expression data with as much granularity as possi-
ble. But such a granularity can hamper call integration and comparison. Thus, we remap the granular annotations of the
data to more generalized conditions. For developmental stages, we have created in developmental stage ontologies a sub-
set named ‘granular stage’. For instance, HsapDv:0000150 ‘56-year-old human stage’ would be automatically remapped to
HsapDv:0000092 ‘human middle aged stage’. The highest granularity possible is still available when retrieving our annotated
and processed expression values.

Call propagation. After producing these calls from multiple techniques and experiments, we propagate them along the
graph of conditions (see Figure 2 for an overview). We produce the graph of conditions by: (i) using the graph of anatomical
entities (Uberon ontology) from is a (subClassOf in OWL) and part of relations (an object property in OWL); (ii) using the
graph of developmental stages (developmental stage ontology) from part of relations; (iii) adding a root parent to all sex
terms by is a relation; (iv) adding a root ‘wild type’ parent to all strain terms by is a relation (in the context of Bgee, all
strains have Wild-Type as parent).

We propagate calls of presence of expression along the graph of conditions to all parent conditions. The idea is that if a gene is
expressed, e.g. in the midbrain, it is expressed in the brain, the parent structure. We propagate calls of absence of expression
to direct anatomical sub-structures, keeping the same developmental stage, sex, and strain. We propagate only to direct
anatomical sub-structures, and not all sub-structures, because we consider that an experiment could miss the expression of
a gene in a very small part of a larger anatomical entity. We do not propagate to child terms for stages, sexes or strains.

Integration to produce one global call and confidence level per gene––condition combination. Multiple calls from multiple
data types and assays can be produced for a given gene in a given condition, from direct observation or from propagation
along the condition graph. We integrate all these individual calls to produce one global call of presence/absence of expression
per gene––condition, along with a confidence level.

Global calls of absence of expression are reported when all experiments consistently report an absence of expression for
a gene in a condition, with no conflicting presence of expression reported in the condition itself, or any sub-condition.
Otherwise, a global call of presence of expression is reported: presence of expression always ‘wins’ over absence of expression,
whatever the quality level and number of experiments producing the call of presence of expression, as of Bgee 14. This means
that Bgee is very stringent when reporting absence of expression.

We follow the principles of the Confidence Information Ontology (CIO) (39), and translate them into three confidence levels.
After call propagation and reconciliation of presence/absence calls, we assign gold confidence level to global calls supported
by at least two different experiments with a high quality call; silver to global calls supported by either only one experiment
with a high quality call, or at least two different experiments with a low quality call; and bronze level to global calls supported
by only one experiment with a low quality call. Because of call propagation, we also consider in support of a global call the
experiments which contribute to calls in sub-conditions (for calls of presence of expression) or in direct parent anatomical
entities (for calls of absence of expression).

Expression ranks and expression scores

We also provide a quantitative ranking of the conditions where a gene is expressed, also integrated over experiments and data
types. Briefly, these ranks are computed in each condition relative to other genes, which then allows to compare conditions
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Figure 2. propagation of calls of presence/absence of expression. Calls of presence/absence of expression are produced from the raw data (left table), for
instance: call of presence of expression for gene INS1 in exocrine pancreas at sexually immature developmental stage; call of presence of expression for
gene ARF6 in endocrine pancreas at sexually immature developmental stage; call of absence of expression for gene SRRM4 in pancreas at fully formed
developmental stage. A graph of conditions is generated by using the anatomical ontology and the developmental stage ontology, to allow propagation of
expression calls (top left box): for instance, the condition ‘endocrine pancreas (UBERON:0000016)––sexually immature (UBERON:0000112)’ is a child of
the condition ‘pancreas (UBERON:0001264)––fully formed (UBERON:0000066)’; the condition ‘endocrine pancreas (UBERON:0000016)––fully formed
(UBERON:0000066)’ is a parent of the condition ‘endocrine pancreas (UBERON:0000016)––sexually immature (UBERON:0000112)’. Calls of presence
of expression are propagated to all parent conditions; calls of absence of expression are propagated to direct child anatomical entities (top right box). The
bottom box shows the hierarchy of conditions, and how data are propagated. This propagation of calls allow the integration of data that were produced
and annotated with different granularity: for instance, while before propagation there was information in ‘pancreas (UBERON:0001264)––fully formed
(UBERON:0000066)’ only for the gene SRRM4, after propagation the expression of the three genes can be compared in this condition (bottom box).

for each gene (after normalization). The assumption is that if a gene has a lower rank (i.e. higher relative expression) in some
conditions than in others, then its expression is more important in these conditions. To compute expression ranks: (i) we
compute ranks using different methods per data type; (ii) we normalize ranks over all genes, conditions and data types for
each species; (iii) we compute a global weighted mean rank for each gene in each condition over all data types considered.
We also transform these ranks into expression scores, more easily understandable by users: higher gene expression translates
into lower rank but higher expression score, from 0 to 100.

We present briefly the principle of our rank computation. Detailed methods are available in Supplementary Methods and
online code documentation.

Rank computation for each data type. For RNA-Seq, we compute fractional ranks of genes in each library, based on their
TPM value. Then for each gene and each condition with RNA-Seq data in the condition itself, we compute a weighted
mean of the gene ranks over relevant libraries. We weigh the mean by the number of distinct ranks in each library, under the
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assumption that libraries with a higher number of distinct ranks have a higher power for ranking genes (see Equation 1).

weighted MeanFractRankgeneg, condc, dataType = rnaSeq

=
∑l

1(distinctRankCountcondc, librar yl × f ractRankgeneg, condc, librar yl )∑l
1 distinctRankCountcondc, librar yl

(1)

where distinctRankCount is the count of distinct ranks in a library, and f ractRank the fractional rank of a gene in a
library.

Similarly, for Affymetrix we compute fractional ranks for each chip based on signal intensity, considering the highest signal
intensity of the probesets for each gene. We normalize the fractional ranks between chip types, to correct for different
genomic coverages due to different probeset designs. First, for each chip type, we compute its max rank over all conditions.
Then, we normalize ranks of each chip, based on the max rank of this chip type, as compared to the max of the max ranks
of other chip types represented in the same condition (see Equation 2; note that we do not normalize based on the max rank
in a given condition, but on the max rank of the chip types represented in the condition). We then compute the weighted
mean of the normalized ranks per gene and condition, weighting by the number of distinct ranks in each chip (see Equation
3).

normFractRankgeneg, condc, chi pa = f ractRankgeneg, condc, chi pa

×
(

1 + maxChi pTypecondc

maxChi pType chi pTypechi pa

)
÷ 2 (2)

where f ractRank is the fractional rank of a gene in a chip, maxChi pTypechi pTypex =
max{ f ractRankgene1, cond1, chi p1, chi pTypex, . . . , f ractRankgenea , condb, chi pc, chi pTypex} (the max of the chip type over all
conditions) and maxChi pTypecondc is max{maxChi pTypecondc, chi pType1 , . . . , maxChi pTypecondc, chi pTypex} (the max of
the chip types represented in the condition)

weighted MeanNormFractRankgeneg, condc, dataType = a f f ymetri x

=
∑l

1(distinctRankCountcondc, chi pl × normFractRankgeneg, condc, chi pl )∑l
1 distinctRankCountcondc, chi pl

(3)

Since in situ hybridization data are not quantitative, we make the assumption that the more often an expression observation is
reported, the more biologically important this expression is likely to be. Thus the rank is computed on the number of calls and
their confidence pulling together all data available in each condition, using a dense ranking instead of a fractional ranking.
We thus directly obtain a rank for each gene and condition, without averaging values as for RNA-Seq and Affymetrix.

While EST data are in principle quantitative, their very low coverage leads us to treat them similarly to in situ hybridization
data, summing EST counts from all libraries in each condition, and using a dense ranking.

Integration over all data types and experiments. Different experiments and techniques might have different power and
resolution at ranking genes in a same condition. For instance, some in situ hybridization data might allow to rank 5 genes in
a condition; while RNA-Seq data in the same condition might allow to rank 30 000 genes. To correct for this, we normalize
the mean or dense ranks for each gene in each condition and for each data type, based on the max rank for this data type in
this condition, as compared to the max rank over all conditions and data types, independently for each species (see Equation
4). With the information normalized per data type we compute a global weighted mean rank for each gene and condition.
All data types are used for ranks shown on the Gene Page, although it is possible to use only some if needed. This mean
is computed by using the normalized mean ranks or normalized dense ranks for a gene in a condition, from each data
type considered, and as weights, the sum of distinct rank counts for RNA-Seq and Affymetrix data, the max rank in each
condition for EST and in situ hybridization data (see Equation 5).

normRankgeneg, condc, dataTyped = rankgeneg, condc, dataTyped

×
(

1 + max
{
rankgene1, cond1, dataType1 , . . . , rankgenex, condy, dataTypez

}
max

{
rankgene1, condc, dataTyped , . . . , rankgenex, condc, dataTyped

}
)

÷ 2 (4)
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meanNormRankgeneg, condc

= Ageneg, condc × Bgeneg, condc + Cgeneg, condc × Dgeneg, condc + Egeneg, condc × Fgeneg, condc + Ggeneg , condc × Hgeneg, condc

Ageneg , condc + Cgeneg, condc + Egeneg, condc + Ggeneg , condc

(5)

where Ageneg, condc is the sum of the counts of distinct ranks in the RNA-Seq libraries in condc studying geneg, 0 if there is no
RNA-Seq data for this gene in this condition; Bgeneg, condc is the mean normalized rank of geneg over the RNA-Seq libraries
in condc with data for geneg; Cgeneg, condc is the sum of the counts of distinct ranks in the Affymetrix chips in condc studying
geneg, 0 if there is no Affymetrix data for this gene in this condition; Dgeneg, condc is the mean normalized rank of geneg over
the Affymetrix chips in condc with data for geneg; Egeneg, condc is the max dense rank from in situ hybridization data in condc
over all genes, 0 if there is no in situ hybridization data for geneg in this condition; Fgeneg, condc is the normalized dense rank
of geneg from in situ hybridization data in condc; Ggeneg, condc is the max dense rank from EST data in condc over all genes,
0 if there is no EST data for genegin this condition; Hgeneg , condc is the normalized dense rank of geneg from EST data in
condc.

We transform global weighted mean ranks into expression scores. To compute the expression score of a gene in a condition,
we retrieve the max rank over all conditions and data types considered, for this species; and the global weighted mean rank
for a gene in a condition, computed over all data types considered and data available, as described above. The expression
score is computed according to Equation (6).

scoregeneg ,condc = (
max

{
rankgene1,cond1, ..., genex,condy

} + 1 − − rankgeneg,condc

)
× 100

max
{
rankgene1,cond1, ..., genex,condy

} (6)

RESULTS: USING THE BGEE RESOURCE

We describe here: (i) the data available in Bgee that we have produced; (ii) the web interfaces to leverage these data for
biological insights; (iii) the resources to access Bgee data (annotated and processed expression values, calls of expression).

Overview of Bgee

One of the advantages of the integrative approach of Bgee is to obtain data for as many conditions as possible, with as much
anatomical and developmental detail as possible. Moreover, new technologies do not require a new database, but allow
integration with historical data.

For developing Bgee, we have curated and reprocessed all expression data to the same standard, of high quality, non-
redundant, healthy wild-type data. This is a first level of data integration.

Bgee provides a single answer to the question ‘where and when is this gene expressed?’. For instance, for the insulin gene,
both human and mouse insulin have in Bgee top expression in islets of Langerhans and more generally pancreas; in human
the information is even more fine-grained, with top expression in the Beta cells. Users of this second level of integration
(calls) are free to ignore the complexity of the underlying data, to concentrate on the biological signal of interest, while we
also provide high quality processed data for downstream studies.

Data provided by Bgee

In this section we describe the Bgee release 14.1 datasets of: (i) annotated and processed expression values; (ii) calls of
presence/absence of expression and expression ranks; (iii) anatomical and developmental stage similarity information. All
original data sources used to build Bgee release 14.1 are in Table 1. All data are published under the Creative Commons
Zero license (CC0).
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Table 2. Data statistics for release Bgee 14.1 per species for the 29 species included in this version

EST In situ Affymetrix RNA-Seq

Species Libraries Evidence Experiments Chips Experiments Libraries Experiments

Anolis carolinensis - - - - - 31 5
Bos taurus - - - - - 121 8
Caenorhabditi selegans - 360 141 177 34 41 6
Canis lupus familiaris - - - - - 141 21
Cavia porcellus - - - - - 28 4
Danio rerio 108 42153 4674 186 33 147 16
Drosophila ananassae - - - - - 4 1
Drosophila melanogaster 62 92227 5468 965 92 253 11
Drosophila mojavensis - - - - - 8 1
Drosophila pseudoobscura - - - - - 10 1
Drosophila simulans - - - - - 15 2
Drosophila virilis - - - - - 4 1
Drosophila yakuba - - - - - 4 1
Equus caballus - - - - - 232 22
Erinaceus europaeus - - - - - 6 1
Felis catus - - - - - 32 5
Gallus gallus - - - - - 48 6
Gorilla gorilla - - - - - 13 2
Homo sapiens 2393 - - 5452 323 5676 36
Macaca mulatta - - - 14 1 238 18
Monodelphis domestica - - - - - 108 15
Mus musculus 706 223513 37654 6095 698 330 30
Ornithorhynchus anatinus - - - - - 21 4
Oryctolagus cuniculus - - - - - 55 13
Pan paniscus - - - - - 13 2
Pan troglodytes - - - - - 250 18
Rattus norvegicus - - - 107 2 106 8
Sus scrofa - - - - - 169 14
Xenopus tropicalis 66 2400 1304 - - 259 5

This table provides the number of EST libraries integrated, number of in situ hybridization experiments and evidence (e.g. the image of a staining) counts,
number of Affymetrix chips and experiments, number of RNA-Seq libraries and experiments.

Annotated and processed expression values. Bgee 14 includes 29 animal species. Anatomical localization is annotated to the
multi-species anatomical ontology Uberon (17), and developmental stages to a multi-species ontology (Supplementary Table
S1), which integrates existing ontologies when available. Sex and strain are annotated with a basic controlled vocabulary,
and species with the NCBI taxonomy (13). We have curated all data to retain only healthy, wild-type data: no treatment,
no gene knockout, etc. Since we have annotated and remapped all these data in a consistent framework using ontologies,
and reprocessed all of them, it allows a complete integration of all data. Bgee thus allows users to retrieve a dataset of
expression data consistently curated, annotated, and processed, usable in their own downstream analyses. Statistics about
the data integrated per species are presented in Table 2.

RNA-Seq data. For RNA-Seq data, we have remapped all raw data to transcriptome to produce counts at the transcript
level, then aggregated them per gene. These aggregated counts are used to compute FPKMs and TPMs per gene. We have
notably re-curated the GTEx human dataset phs000424.v6.p1 (7). Only 50% of samples were kept, to discard unhealthy
or contaminated samples (see Supplementary Table S1 for link to GTEx criteria), representing a high quality subset of
GTEx. For each RNA-Seq library, we provide detailed information, including annotations, library information, and relevant
statistics (see online documentation). For each gene in each library, we provide several measures of expression level, and calls
of presence/absence of expression (available in download TSV files).

Affymetrix data. For Affymetrix data, we have processed raw CEL files when available, or used MAS5 processed files
when raw CEL files were not available. Similar to RNA-Seq libraries, for each Affymetrix chip, we provide annotations,
chip information, and relevant statistics. In Affymetrix, expression is measured per probeset rather than per gene; several
probesets can map to one gene, and provide different measures. For each probeset in each chip, we provide the gene the
probeset maps to, the signal intensity, and the call of presence/absence of expression (see online documentation) (available
in download TSV files).
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In situ hybridization data. We have retrieved in situ hybridization data from relevant Model Organism Databases (MODs;
Table 1). For each evidence, we do not store the original image, or paper figure, but we provide a link to the original data.
For each evidence and each spot, meaning the report of an area with staining from expression of a gene, or lack of staining
from absence of expression of a gene, we provide annotations, mapping to gene, call of presence/absence of expression and
quality of the call for this spot. At present, these data are not available for direct download, but are used in integrated calls
and scores.

Expressed sequence tags. Both EST databases which we used as data sources (Table 1) are now retired, thus we are no longer
updating these data. For each EST library, we provide annotations. We provide the mapping between genes and ESTs per
library. For each gene in each library, we provide the number of ESTs mapped to it, and the call of presence of expression.
Despite the growth in other data, there are still conditions where ESTs provide the only direct observation. For example,
mouse insulin-1 has only EST data for pancreas at 1 week. Note that calls of absence of expression are not produced from
EST data. At present, these data are not available for direct download, but are used in integrated calls and scores.

Calls of presence/absence of expression and expression ranks.

Expression calls. A call corresponds to a unique combination of a gene in a condition, with reported presence or absence
of expression. In Bgee 14, only conditions combining species, anatomical entity, and life stage are available to users of our
calls; information about sex and strain will be publicly available for calls in a future release. We produce calls for each
evidence (e.g. RNA-Seq library, Affymetrix chip) integrated into Bgee. For continuous data types, we apply a threshold
which depends on the data type: for Affymetrix a Wilcoxon test on the signal of the probesets against a subset of weakly
expressed probesets (49); for RNA-seq, a library-specific threshold depending on the distribution of TPMs on intergenic
sequences (Julien Roux, Marta Rosikiewicz, Julien Wollbrett, Sara S. Fonseca Costa, Marc Robinson-Rechavi, Frederic B.
Bastian; in preparation); and for ESTs a threshold based on the number of tags (50). These calls can then be integrated over
experiments and over data types.

We have propagated these individual calls along a graph of conditions (see Materials and Methods). Then, we have inte-
grated these individual calls from multiple experiments, propagated along the condition graph, to produce one global call
of presence/absence of expression per gene - condition, associated to a confidence level (39). As a result, for each gene in
each condition, Bgee provides one global call, the confidence level of the call (gold, silver, bronze), the number of experi-
ments from each data type supporting the presence and absence of expression, and whether the call has been propagated or
observed directly in the condition (available in TSV download files).

Expression ranks and scores. To compare expression between experiments in a quantitative manner, we rank genes in a
condition based on their expression level. We have also integrated these ranks over all data types and experiments. The
lower the rank score of a gene in a condition, the higher its expression. Because this is not very intuitive to users, we also
compute an ‘expression score’ for visualisation: the top expressed gene has a rank score of 1 and an expression score of
100, and the lowest expressed has the maximum rank and an expression score of 100/Max (ranks). Expression ranks can be
retrieved per anatomical entity and developmental stage.

Anatomical and developmental similarity. We use the ontology of homology and related concepts (51) to capture the type
of similarity between anatomical entities. These similarity annotations can be retrieved from GitHub (full link in Supple-
mentary Table S1), and will be described in detail elsewhere (Anne Niknejad, Marc Robinson-Rechavi, Frederic B. Bastian;
unpublished). It should be emphasized that they are derived from primary literature (e.g. paleontology, Evo-Devo), not from
the expression data in Bgee; thus the anatomical homology annotations and the gene expression calls are independent. As
of Bgee 14.1, we have integrated 2328 relations of homology, involving 1845 anatomical entities.

For development stages, we have merged all the developmental stage ontologies of species integrated in Bgee into one com-
mon multi-species ontology, within Uberon. Common general stages have been merged between species, and more precise
species-specific stages are children of these general terms. For instance, the human-specific precise stage HsapDv:0000016
‘Carnegie stage 09’ is a child of the more general, multi-species term UBERON:0000111 ‘organogenesis stage’. While we
could not map data to the exact equivalent of Carnegie stage 09 in all species, we could compare them at the more general
organogenesis stage, thanks to propagation of calls to parent terms. This makes comparison with a developmental aspect
possible.
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Figure 3. screenshots of the Bgee web interfaces. (A) example of gene search (top left) for the term ‘insulin’ (https://bgee.org/?page=gene&query=
insulin), allowing to go to the gene page (top right) displaying ranked conditions with expression for the human gene INS (https://bgee.org/?page=
gene&gene id=ENSG00000254647). (B) example of comparison of expression patterns for the SRRM4 genes (brain-related genes) in 13 species (https:
//bgee.org/?page=expression comparison&data=34beddfc93bb7fbb440e757e6de24d91fc0ce177). (C) Anatomical homology retrieval tool, with here an
example query allowing to identify swim bladder as the anatomical structure in zebrafish homlogous to the human lung (https://bgee.org/?page=
anat similarities&species list=9606&species list=7955&ae list=UBERON%3A0002048). (D) example of TopAnat analysis on a set of human genes associ-
ated to autism and epilepsy, identifying the enriched conditions with expression of these genes as specific brain regions (https://bgee.org/?page=top anat#/
result/8fce889da7b4519c5792573ed3933032c8122819/).

Web interface of Bgee

The Bgee Gene page (Figure 3) provides for each gene the conditions where it is expressed, sorted by their expression rank.
Primary sorting is on anatomical entities.

The anatomical expression enrichment test TopAnat (Figure 3) uses a similar approach to Gene Ontology enrichment tests
(52,53), but genes are associated to the anatomical structures from Uberon by their expression calls, instead of to their
functional classification (Roux J., Seppey M., Sanjeev K., Rech de Laval V., Moret P., Artimo P., Duvaud S., Ioannidis
V., Stockinger H., Robinson-Rechavi M., Bastian F.B.; unpublished). The algorithms from the package topGO (54) are
available in TopAnat to account for the non-independence of anatomical structures, and avoid the over-representation of
less-informative top-level terms. As an example, we have used TopAnat to analyze a list of genes associated with autism
and epilepsy in human (55). TopAnat returns a list of anatomical structures where expression of these genes is enriched
relative to the background of all human genes with expression. These structures are almost all specific brain regions, includ-
ing all brain regions known to be affected by autism (56): frontotemporal lobe (examples of TopAnat results part of this
structure: UBERON:0002771 ‘middle temporal gyrus’ and UBERON:0002810 ‘right frontal lobe’); frontoparietal cortex
(UBERON:0001872 ‘parietal lobe’ and UBERON:0001870 ‘frontal cortex’); amygdala (UBERON:0001876 ‘amygdala’);
hippocampus (UBERON:0003881 ‘CA1 field of hippocampus’); basal ganglia (UBERON:0002038 ‘substantia nigra’, part
of UBERON:0002420 ‘basal ganglion’); and anterior cingulate cortex (UBERON:0009835 ‘anterior cingulate cortex’). Of
note, TopAnat can be slow because of propagation of calls in the anatomical ontology, which is redone on the fly by the
topGO package to allow decorrelation. TopAnat is available as a web-tool, and in the BgeeDB R package (see below).

The Bgee website makes it possible to compare expression patterns between genes, within and between species. When genes in
a single species are compared, Expression Comparison (see Figure 3) considers present/absent expression calls in anatomical
entities (e.g. ‘lung’ in human). When genes from several species are compared, it considers calls in homologous anatomical
entities (e.g. ‘lung - swim bladder’ for comparing data in human and zebrafish (57–59)). For each of these entities, it then

https://bgee.org/?page=gene&query=insulin
https://bgee.org/?page=gene&gene_id=ENSG00000254647
https://bgee.org/?page=expression_comparison&data=34beddfc93bb7fbb440e757e6de24d91fc0ce177
https://bgee.org/?page=anat_similarities&species_list=9606&species_list=7955&ae_list=UBERON%3A0002048
https://bgee.org/?page=top_anat#/result/8fce889da7b4519c5792573ed3933032c8122819/
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displays the genes from the user list that are either expressed, or not expressed, or have no data. It offers different sorting
methods of these entities, by expression rank and by conservation of calls.

For instance, when studying the conservation of expression of the brain specific genes SRRM4 in Tetrapoda, the top homol-
ogous anatomical entities, as of Bgee 14.1, when sorted by maximum expression conservation and minimum expression rank,
are ‘forebrain’, ‘telencephalon’, and ‘cerebral hemisphere’ (https://bgee.org/bgee14 1/?page=expression comparison&data=
34beddfc93bb7fbb440e757e6de24d91fc0ce177). Relations of historical homology can also be queried directly through
the homology retrieval tool (see Figure 3). Thus they can be used for other applications than expression in Bgee,
such as phenotypes. For instance, for comparing such anatomy-related data, a user may ask: ‘what is, in human,
the comparable organ to the zebrafish ‘pharyngeal gill’?’. The homology retrieval tool will return the anatomical
entity in human ‘parathyroid gland’ (https://bgee.org/bgee14 1/?page=anat similarities&species list=9606&species list=
7955&ae list=UBERON%3A0000206). Indeed, the parathyroid gland and the pharyngeal gill likely derive from a com-
mon ancestral structure, present in the ancestor of Vertebrata, as they both regulate extracellular calcium levels, and
the parathyroid gland is positioned within the pharynx in Tetrapoda (60). We have captured this information in our
annotations of similarities between anatomical entities, that the homology retrieval webtool uses to answer the user
query.

Resources to access data

We provide access to the annotated and processed expression values through the Bioconductor (61) R (62) package BgeeDB
(63). BgeeDB is a collection of functions to import into R these data, facilitating downstream analyses. BgeeDB also allows
to run TopAnat analyses, offering more flexibility in the choice of input data and analysis parameters than the web-interface.

Bgee also provides a SPARQL (64) endpoint which is based on the EasyBgee database. EasyBgee is a lighter version of the
Bgee database, that contains the most useful information, made explicit. The endpoint is accessible at the address https:
//bgee.org/sparql/. In addition to SPARQL endpoint querying through any programmatic language, a web-interface also
offers the possibility to run more user-friendly queries, developed as part of the BioSODA project (65). This web-interface
is available at http://biosoda.expasy.org/. Bgee specific queries are present under the category ‘Bgee database queries’.

We provide TSV files to retrieve, for each species: (i) annotated and processed expression values for RNA-Seq and Affymetrix
data and (ii) calls of presence/absence of expression with confidence and rank scores generated from all data types.

DISCUSSION

The philosophy of Bgee is to provide information and data which users can trust, so that they can be built on to do further
work. Expert manual curation is at the core of providing trustworthy information (66–69). It is key to certify that expression
data is from healthy wild-type samples, and to annotate precisely and accurately. It is also the only way to generate reliable
annotations of anatomical homology. While expression data analysis is not specific to Bgee (8), our approach is to focus on
delivering clear biological signals, and choosing the best methodology to do so. For users to have an easy and intuitive access
to information from expression data, despite its complexity, we have chosen to present different views which answer different
questions. These include summarized views, such as the Gene Page or Expression Comparison, with more advanced access,
such as the R packages or SPARQL endpoint, to serve different use cases and ensure flexibility.

Comparative transcriptomics is essential to understand the molecular basis for phenotypes, such as, for instance, evolution
of animal morphology (70), embryonic cell differentiation (71), species lifespan (72,73), or cancer evolution (74). Bgee, by
generating comparable reference sets of expression patterns in multiple species, and homology relations to link them, is the
first resource to allow the systematic and automated comparison of gene expression patterns between species.

These comparisons are based on the present/absent calls of expression produced by Bgee. It is thus essential that these
calls capture the relevant functional aspects of gene expression. This relevance is demonstrated, for instance, by the results
provided by our webtools ‘Gene Page’, and by TopAnat. On the Gene Page, the top ranked conditions of genes are relevant
to their known biology (e.g. as of Bgee 14.1: several muscle regions for human PDE4DIP gene, ‘liver’ for mouse Apoc1 gene,
‘pancreas’ for Xenopus ins gene). In TopAnat, results for list of genes are highly representative of their known function
(e.g. as of Bgee 14.1: top ranked condition is ‘spermatocyte’ for a list of mouse genes associated with spermatogenesis,
‘musculature of body’ for a list of cow genes with a relation to muscle in their description). Bgee thus provides reference sets
of expression patterns that are accurate and predictive of gene functions.

https://bgee.org/bgee14_1/?page=expression_comparison&data=34beddfc93bb7fbb440e757e6de24d91fc0ce177
https://bgee.org/bgee14_1/?page=anat_similarities&species_list=9606&species_list=7955&ae_list=UBERON%3A0000206
https://bgee.org/sparql/
http://biosoda.expasy.org/
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Here we have presented the latest release of Bgee, which integrates expression information from four well established data
types. An important feature is that the model of Bgee allows integration of new data types into the same framework. From
each new data type, we need to define quality control criteria, conditions for calling gene expression present or absent, and
rules for expression ranks. Once this is done, our model will allow views and tools such as the Gene Page, the Expression
Comparison, or TopAnat to make use of the new data together with the previously available data. Notably, single-cell RNA-
Seq presents an important perspective of combining anatomical precision beyond that of in situ hybridization with the broad
coverage of microarrays or RNA-Seq. Unlike dedicated single-cell databases, Bgee offers the perspective of a unified view
of gene expression from the cellular to the organism level, which we believe will be increasingly relevant.

DATA AVAILABILITY

Bgee, documentation, and links to resources used, are available at https://bgee.org/. Source code and annotations are avail-
able in the GitHub repository (https://github.com/BgeeDB). R packages are available in Bioconductor (https://bioconductor.
org/packages/BgeeDB/ and https://bioconductor.org/packages/BgeeCall/).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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