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Abstract

Voltage-gated potassium channels that activate near the neuronal resting membrane potential are important regulators of
excitation in the nervous system, but their functional diversity is still not well understood. For instance, Kv12.2 (ELK2,
KCNH3) channels are highly expressed in the cerebral cortex and hippocampus, and although they are most likely to
contribute to resting potassium conductance, surprisingly little is known about their function or regulation. Here we
demonstrate that the auxiliary MinK (KCNE1) and MiRP2 (KCNE3) proteins are important regulators of Kv12.2 channel
function. Reduction of endogenous KCNE1 or KCNE3 expression by siRNA silencing, significantly increased macroscopic
Kv12.2 currents in Xenopus oocytes by around 4-fold. Interestingly, an almost 9-fold increase in Kv12.2 currents was
observed with the dual injection of KCNE1 and KCNE3 siRNA, suggesting an additive effect. Consistent with these findings,
over-expression of KCNE1 and/or KCNE3 suppressed Kv12.2 currents. Membrane surface biotinylation assays showed that
surface expression of Kv12.2 was significantly increased by KCNE1 and KCNE3 siRNA, whereas total protein expression of
Kv12.2 was not affected. KCNE1 and KCNE3 siRNA shifted the voltages for half-maximal activation to more hyperpolarized
voltages, indicating that KCNE1 and KCNE3 may also inhibit activation gating of Kv12.2. Native co-immunoprecipitation
assays from mouse brain membranes imply that KCNE1 and KCNE3 interact with Kv12.2 simultaneously in vivo, suggesting
the existence of novel KCNE1-KCNE3-Kv12.2 channel tripartite complexes. Together these data indicate that KCNE1 and
KCNE3 interact directly with Kv12.2 channels to regulate channel membrane trafficking.
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Introduction

Neuronal voltage-gated (Kv) potassium channels that open at

membrane potentials close to the threshold for action potential

generation have a profound effect on neuronal excitability because

of their ability to stabilize membrane potentials below the

threshold for action potential initiation. Kv12 (Elk) channels are

among the most interesting sub-threshold Kv channels because

they activate at more hyperpolarized potentials than other

outwardly rectifying Kv channels [1–5], suggesting a strong

influence on the resting membrane potential. Three distinct

mammalian Kv12 channel genes have been identified: Kv12.1,

Kv12.2 and Kv12.3 [1,2,6]; all three are primarily expressed in

the brain [2,5,7,8]. However, in situ hybridization and real time

RT-PCR studies have revealed that Kv12.2 is the most abundant,

with high expression evident in the dentate gyrus, hippocampal

pyramidal neurons, cortex, cerebellum and basal ganglia [5,8].

Interestingly these regions of the brain have been associated with

pathophysiological hyperexcitability; disruption of K+ currents in

the dentate gyrus can lead to abnormal hippocampal synchroni-

zation and temporal lobe seizures [9]. However, despite the strong

potential for Kv12 family K+ channels as important regulators of

neuronal function and cellular excitability, the cellular neurophys-

iology, fundamental regulation mechanisms and molecular

composition of these channels remains unknown.

We reasoned that we could gain insights into the regulation and

molecular composition of Kv12 channels by identifying interacting

proteins. Interestingly, previous studies have demonstrated that the

single transmembrane domain b-subunits MinK and MinK-

related peptides (MiRPs), which are encoded by the KCNE genes,

modify and often radically alter gating, conductance and the

pharmacology of a diverse range of Kv channels [10]. For example

KCNE b-subunits alter KCNQ, ERG, and HCN channel

currents, as well as members of the Kv1-4 channel family [11–

17]. As Kv12.2 channels are closely related to ERG channels

[5,18], we hypothesized that endogenous KCNE genes similarly

regulate Kv12.2 channel function.

Historically the role of KCNE genes in Kv channel regulation

has primarily focused on mammalian heart; with more recent

studies focusing on the gastrointestinal tract and skeletal muscle

[15,19–23]. To date five known members of the KCNE gene

family have been identified (KCNE1-5), and all have been shown

to effect Kv channels in vitro [10].These accessory proteins provide

an important mechanism for achieving functional diversity among

potassium channels. For example, KCNE1 subunits co-assemble

with KCNQ1 Kv channels to generate the IKs current in human
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ventricular myocardium [24,25], and KCNE2 co assembles with

hERG to form the cardiac IKr current [20]. KCNE3 has been

proposed to regulate Kv3.4 a-subunits in skeletal muscle, reducing

after hyperpolarizations [19]. However despite the mRNA

expression of all identified KCNE genes (KCNE1-5) in mamma-

lian brain [10,13,26,27], surprisingly few studies have investigated

their possible role in K+ channel regulation in the brain.

Furthermore the possibility of the KCNE peptides regulating the

sub-threshold Kv12 channels has never been addressed.

Here we firstly demonstrate that KCNE1 and KCNE3 regulate

the membrane surface expression of Kv12.2 in vitro. Furthermore,

native co-immunoprecitiation studies revealed that KCNE1 and

KCNE3 interact simultaneously with Kv12.2 channels in vivo. This

novel finding suggests that Kv12.2 channel surface expression and

activity may be regulated by the formation of tripartite complexes

with KCNE1 and KCNE3; thus we describe a novel role for these

regulatory b subunits in the brain.

Materials and Methods

Ethics Statement
Mice were housed at the ICND vivarium at The Scripps

Research Institute. Procedures for procurement of animals,

conditioning/quarantine, housing, management, veterinary care,

and disposal of carcasses were reviewed by veterinary staff and

follow guidelines set down by the NIH Guide for Care and Use of

Laboratory Animals.

Molecular biology and Xenopus oocyte preparation
Full length mouse KCNE1 (mKCNE1), mKCNE2, mKCNE3,

mKCNE4, mKCNE5 and mKv12.2 cDNAs were cloned into the

pOX vector [28] for expression in Xenopus oocytes. Capped cRNA

transcripts were prepared by run-off transcription using the T3

mMessage mMachine kit (Ambion, Austin, TX, USA). cRNAs were

cleaned by lithium chloride precipitation and diluted in RNase-free

dH2O to desired concentrations before injection. Mature Xenopus

oocytes (Nasco, CA, USA) were isolated from ovarian lobes and

defolliculated by mechanical agitation in Ca2+-free ND96 solution

(96 mM NaCl, 2 mM KCl, 1 mM MgCl2, and 5 mM HEPES, with

pH adjusted to 7.5 with NaOH) containing 1 mg/ml collagenase

(type II, Sigma, MO, USA). Oocytes were injected with a total of

55 nl of cRNA solution in dH2O containing mKv12.2 (,1 ng),

and/or mKCNE cRNAs (,50 pg) as required. For RNAi, 500 pg

of double-stranded siRNA 21-mer oligos (Invitrogen, CA) were

injected into oocytes immediately after injection of a-subunit

Kv12.2 channel cRNA (see Table 1 for sequences). Oocytes were

incubated at 18uC for 48-hours before recording in ND96 solution

(supplemented with 1.8 mM CaCl2, 100 U/ml penicillin, 100 mg/

ml streptomycin, and 2.5 mM sodium pyruvate).

RT-PCR
For assessment of RNAi gene silencing at the mRNA level,

equal numbers of oocytes were injected either with Xenopus

KCNE1 siRNA (xKCNE1), xKCNE3 siRNA, or xKCNE5.1

siRNA and compared to non-injected controls (n = 6). Total RNA

was extracted using an RNeasy Mini Kit (Qiagen, CA) after 48-

hours incubation. RNA integrity was assessed by gel electropho-

resis; only RNA preparations with two clear sharp ribosomal

bands were used in subsequent experiments. First strand cDNA

was synthesized from 500 ng of each total RNA sample using

oligo-dT and SuperscriptIII reverse transcriptase (Invitrogen, CA).

Triplicate RT reactions were performed, along with an additional

reaction in which the reverse transcriptase enzyme was omitted to

allow for assessment of contamination in each sample. RT-PCR

for each gene was performed with primers listed in Table 2 using

Go Taq Hot Start polymerase (Promega, WI). The thermocycler

protocol for all PCR reactions was as follows: 94uC for 3 minutes,

96uC for 20 seconds, 53uC for 30 seconds, 72uC for 45 seconds,

and finally 74uC for 5 minutes; for a total of 35 cycles. To

normalize for mRNA concentration, RT-PCR was also performed

with Xenopus b-actin. Optical density of cDNA samples size-

fractionated on a 1% agarose gel and stained with ethidium

bromide was determined and the intensity of each cDNA product

relative to b-actin was quantified using NIH ImageJ. RT-PCR

experiments were repeated three times with separately injected

oocyte batches, yielding similar results. Mean6SEM values are

shown. For statistical analysis, Student’s t test was used to

determine significant difference between two groups and p,0.05

was considered significant.

Kv12.2 channel antibody development and
characterization

A polyclonal antibody, targeted to a highly conserved C-

terminal region of the Kv12.2 channel (residues 701–802) was

generated in rabbits. The corresponding DNA sequence was

cloned into a pGEX-4T1 vector in frame with the GST coding

sequence (Amersham, NJ). GST-Kv12.2 channel fusion proteins

were produced in BL21 bacteria (Stratagene, CA) and purified via

a glutathione agarose column (Amersham, NJ). The Kv12.2

channel was removed from the GST moiety by thrombin

digestion, and conjugated to KLH. Kv12.2-KLH conjugated

antigen was used for the initial boost, and unconjugated Kv12.2

antigen was provided for three subsequent boosts. All immuniza-

tions and bleeds were performed by QED Biosciences (CA).

Antibody specificity was rigorously tested and optimized in Kv12.2

channel transiently-transfected and non-transfected cell lines.

Briefly, CHO cells were plated at a density of ,56106 cells per

100 mm Petri dish, cells were washed once in ice cold PBS and

,2 ml of homogenization buffer (10 mM Tris-HCl, 320 mM

sucrose, and a protease inhibitor cocktail (Calbiochem, San Diego,

CA). was added to each Petri dish. Cells were removed with a cell

scraper and homogenized with an 18-guage needle, passing the

cell lysate through the needle 10 times on ice. Lysates were

centrifuged (10006g, 10 min), supernatants were collected on ice

and quantified by SDS-PAGE and Coomassie blue protein gel

stain (Pierce, Rockford, IL). Equal concentrations of protein were

loaded onto a 12% denaturing SDS Tris-glycine gel (Invitrogen)

and following transfer blots were probed with Kv12.2 primary

antibody using standard Western blot techniques. Antibody

validation studies with controls revealed that 1:100 dilution of

the Kv12.2 primary antibody gave the best signal to noise ratio.

Membrane surface biotinylation assays
Kv12.2 channel membrane expression was assessed by

membrane surface biotinylation assay utilizing a ‘Cell surface

protein isolation kit’ (Pierce, IL), according to instructions from the

manufacturer. Xenopus oocytes (10 per condition) were injected

Table 1. siRNA KCNE gene sequences.

Gene Bases Top Strand Sequence

KCNE1 330–350 59-GAACAAGUUUGCAGUGGAATT-39

KCNE3 286–306 59-GGGAACCACACGGACGCCATT-39

KCNE5.1 260–280 59-GGGAAUGGAAUAAGAACAATT-39

doi:10.1371/journal.pone.0006330.t001
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with Kv12.2 channel RNA alone, or Kv12.2 RNA plus KCNE1

siRNA and/or KCNE3 siRNA. To assess levels of endogenous

channel expression, oocytes were injected with dH20 only.

48 hours post-injection oocytes were mechanically stripped of

their vitelline membranes and surface proteins were labeled with

sulfo-NHS-Biotin (Pierce, IL) for 30 minutes at 4uC; the reaction

was then quenched and the oocytes were gently washed with Tris-

buffered saline (TBS). Oocytes were lysed in 500 ml of radio-

immunoprecipitation assay (RIPA) buffer (1 mM EDTA, 20 mM

Tris, 158 mM NaCl, 0.5% NP-40, 0.5% sodium deoxycholate)

supplemented with protease inhibitors, and homogenized using a

5 ml syringe with a 22-guage needle. Homogenized lysates were

then left on ice for 30 minutes and, to improve the solubilization

efficiency, were passed through a 5 ml syringe with a 27-guage

needle five further times. Lysates were centrifuged (10,0006g) for 2

minutes at 4uC, the clarified supernatant was collected and 200 ml

of each supernatant was saved to assess changes in oocyte total

protein expression. Biotin labeled proteins were isolated by

immobilization on a NeutrAvidin Gel column (Pierce, IL), and

eluted with 2 mM free D-biotin (Pierce, IL); isolated samples were

then analyzed by SDS-PAGE, transferred to nitrocellulose

membranes, and probed with primary antibodies as indicated

for one hour at room temperature. Detection was via chicken anti-

rabbit or chicken anti-mouse horseradish peroxidase-coupled

(HRP) secondary antibodies (Bio-Rad, CA) with one-hour

incubation at room temperature, and membranes were developed

with ‘Supersignal ECL’ (Pierce, IL). To assess that only the

membrane fraction of the oocytes had been successfully isolated

the endoplasmic reticulum (ER) marker calnexin (Stressgen, MI;

1:2000) was used to re-probe each blot. Finally, the cell membrane

marker integrin-b1 (1:2000) (N-20, Santa Cruz Biotechnology,

CA) was used to ensure equal protein loading. The intensity of

each band relative to the total amount of protein loaded per lane

(b-actin) or total membrane fraction (b1-intergrin) was quantified

using the ‘gel’ module in NIH ImageJ. Mean6SEM values are

shown. For statistical analysis, Student’s t test was used to

determine significant difference between two groups and p,0.05

was considered significant.

Co-immunoprecipitation of Kv12.2 channels from mouse
brain lysates

Freshly isolated adult mouse brains were homogenized using a

‘Polytron’ homogenizer (power 18) for 2610215 s pulses on ice. A

gap of 1 minute was allowed between each pulse, to ensure the

sample remained cool. The homogenate buffer was composed of

10 mM Tris-HCl (pH 7.4), containing 320 mM sucrose plus a

protease inhibitor cocktail (Calbiochem, CA). Homogenates were

centrifuged at 10006g for 10 minutes at 4uC; the supernatant was

removed and centrifuged further (100,000 g) for 30-minutes at 4uC.

The pellet was solubilized in immunoprecipitation (IP) buffer

(50 mM Tris-Cl, 20 mM MgCl2, 150 mM NaCl, 0.5% Igepal

(Sigma, CA) and a protease inhibitor cocktail (Sigma), pH 7) at 4uC

for 30 minutes (for details see Manning 1999). Anti-Kv12.2 (1:100),

KCNE1 (N-16) or KCNE3 (N-18) (both Santa Cruz Biotechnology,

CA; 1:100) or anti-Kir2.1 (Chemicon CA; 1:50) as a negative

control, covalently conjugated to 20 ml of protein A/G sepharose

beads (ProFound kit, Pierce, IL) were added to each respective

preparation, and left overnight at 4uC. Each lysate/antibody/bead

preparation was then transferred to a preconditioned spin column

and centrifuged at 16,0006g for 1 minute. Each column was rinsed

four times with 500 ml IP buffer; proteins were eluted with 30 ml

‘sample buffer’ (Cytosignal) and incubated at room temperature for

15 minutes before centrifugation at 20,0006g for 2 minutes.

Samples were denatured with b-mercaptoethanol (710 mM) and

heat (95uC for 1 minute) before loading onto a 12% SDS

polyacrylamide gel (Invitrogen, CA). Proteins were transferred to

nitrocellulose membranes (Amersham Pharmacia, PA), blocked

with ‘SuperBlock’ buffer (Pierce, IL) for 1 hour, and then probed

with Kv12.2 (1:200) antibody for 1 hour at room temperature.

Secondary antibody chicken-anti-rabbit-HRP (Santa Cruz, CA;

1:5000) was applied for 1 hour at room temperature, and the

membrane was developed with Supersignal ECL (Pierce, IL). The

membrane was then repeatedly stripped with Western blot stripping

buffer (Pierce, IL) and probed sequentially with anti-KCNE1

(1:200), anti-KCNE3 (1:200), and finally anti-Kir2.1 (1:200) as a

negative control. Co-immunoprecipitation experiments were per-

formed three times yielding similar results.

For native co-immunoprecipitation experiments whole mouse

brains were homogenized according to the ‘NativePAGE sample

preparation kit’ (Invitrogen) instructions. Briefly, mouse whole

brain (,10 mg) was homogenized in 1 ml of NativePAGE sample

buffer (plus 1% digitonin and a protease inhibitor cocktail) by

sonication on ice (3615 seconds each at ,50% power). The lysate

was centrifuged (20,000 g) for 30-minutes at 4uC, and once

clarified lysate protein concentration was determined by BCA

(Invitrogen) assay. Co-immunoprecipitation experiments were

conducted as above with the following modifications, lysate

(20 ml) was added directly to each respective antibody bound

(KCNE1/KCNE3 or IRK1) protein A/G sepharose column and

left overnight at 4uC. The column was subsequently washed and

proteins were eluted with the NativePAGE sample buffer, 50% of

the eluted protein was directly applied to a ‘second-round co-

immunopreciptiation assay’ with the channel Kv12.2 antibody

bound to the column, and the remaining 50% reserved for direct

gel electrophoresis analysis. G-250 (0.25%) sample additive

(Invitrogen) was added to each protein preparation prior to

loading onto a 4-16% ‘NativePAGE Novex Bis-Tris Gel’

(Invitrogen). Electrophoresis with blue ‘NativePAGE Cathode

Buffer’ (Invitrogen) and ‘NativePAGE Anode Buffer’ both at pH 7

(Invitrogen) was begun at 10 mA at 4uC for 1.5 hours. After

1.5 hours, the cathode buffer was replaced by anode buffer, and

electrophoresis continued for a further 5 hours at 8 mA (120 V).

Proteins were transferred overnight at 4uC in ‘NuPAGE Transfer

Buffer’ (Invitrogen) to a PVDF membrane (Amersham Pharmacia,

Table 2. RT-PCR Xenopus (x) primer sequences.

Gene Sense primer sequence Antisense primer sequence

xKCNE1 59-ATGCCAGGGTTAAACACCACTGCC-39 59-CTAGTTGCTGGGAGAAGAGGGGATATA-39

xKCNE3 59-CAGTTTGATTGGAGAGTGGGATTC-39; 59-TAGACCCCTGGGGCCTCGTC-39

xKCNE5.1 59-ATGAATTGTAGTAATACTTCTC-39 59-CTAAAGTAAGTTTTCACTTTCAATACT-39

xb-actin 59-AAGGAGACAGTCTGTGTGCGTCCA-39 59-CAACATGATTTCTGCAAGAGCTCC-39

doi:10.1371/journal.pone.0006330.t002
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PA), blocked with ‘SuperBlock’ buffer (Pierce, IL) for 1 hour, and

probed with respective antibodies as above.

Electrophysiology
Macroscopic currents were recorded from oocytes using

standard two-electrode voltage-clamp (CA-1B amplifier (Dagan

Corp., MN)), sampled at 2 KHz and filtered at 1 KHz. Data were

collected using the pCLAMP/Digidata acquisition package (Axon

Instruments, CA), and subsequently analyzed using Clampfit

(Axon instruments, CA) and Origin (OriginLab, MA). Micro-

electrodes contained 3 M KCl and had tip resistances between

0.5–1 MV. Oocytes were continually perfused with extracellular

solution at room temperature containing: 98 mM Na-methane-

sulfonate (MES), 2 mM K-MES, 2 mM CaCl2, 10 mM HEPES,

pH 7.0. The low [Cl2] of the recording solutions was sufficient to

eliminate contaminating outward native Cl2 currents. Agar

bridges (1 M NaCl) were used to isolate bath clamp circuitry.

Peak currents were measured at each voltage, and conductance/

voltage (GV) parameters are averages derived from Boltzmann fits

of isochronal tail currents recorded at 260 mV (G = Gmax/

[1+exp(V - V0.5/k)], where V0.5 is the half-maximal activation, and

k is the slope factor). All values are mean6SEM (n$6), statistical

significance was determined by Students t test for unpaired

observations; significance was taken as P,0.05.

Results

Kv12.2 channel currents in Xenopus oocytes are
suppressed by endogenous KCNE1 and KCNE3

Previous studies have demonstrated that KCNE1, KCNE3, and

KCNE5.1 are endogenously expressed in Xenopus oocytes [29]. We

therefore investigated whether these endogenous K+ channel b-

subunit regulatory proteins modulate heterologously expressed

Kv12.2 channels. RNA interference (siRNA) was firstly utilized to

specifically knockdown endogenous KCNE1, KCNE3 or KCNE5.1

expression. Double-stranded xKCNE-specific siRNA oligos de-

signed by Anantharam et al. (2003) [29] were injected into Xenopus

oocytes to assess their ability to knock down xKCNE mRNA

expression. The band intensity of amplified KCNE1 cDNA from

oocytes injected with xKCNE1 siRNA was almost non-detectable

(Figure 1A, F). Similarly, xKCNE3 and xKCNE5.1 siRNA

significantly reduced KCNE3 and KCNE5.1 cDNA expression.

(Figure 1B, C, F). To ensure the quality and equal cDNA

concentrations between samples, results were normalized with

RT-PCR for Xenopus b-actin cDNA. We also examined whether

xKCNE1 siRNA affected xKCNE3 RNA levels and vice versa. No

detectable gene knockdown of either KCNE1 or KCNE3 was

observed by these experiments, demonstrating the specificity of each

respective siRNA (Figure 1D–F).

We next determined the effect of attenuating endogenous KCNE1,

KCNE3, and KCNE5.1 on Kv12.2 channel currents. Two electrode

voltage clamp recordings were performed 48-hours post injection of

Kv12.2 channels, in the absence or presence of the respective KCNE

siRNA. Kv12.2 channel heterologous expression resulted in a

relatively small voltage-dependent outward current (1.260.11 mA

peak current at 80 mV; V50 -21.960.81 mV, Figure 2A, F–G).

Typical of Kv12.2 channel currents, when the voltage was stepped to

potentials above 20 mV the outward current develops a visible rapidly

inactivating component [2,3]. KCNE1 and KCNE3 siRNAs

significantly increased Kv12.2 currents by ,4.1 fold and ,4.2-fold,

respectively (Figure 2B–C, F; p,0.01). Furthermore the combination

of KCNE1 and KCNE3 siRNAs increased Kv12.2 channel currents

,9-fold (Figure 2D, F, p,0.01), suggesting an additive effect of each

KCNE b-subunit. In contrast, KCNE5.1 siRNA knockdown had no

significant effect on Kv12.2 currents, compared to Kv12.2 cRNA

injected only controls (Figure 2E–F). Analysis of isochronal tail

currents revealed that the voltage for Kv12.2 channel activation (GV)

was not significantly affected by either xKCNE1 (V50 22261.14 mV)

or xKCNE3 (V50 22461.32 mV) siRNAs when compared to dH2O

injected controls (V50 221.960.81 mV, Figure 2G). However, the

GV was significantly left shifted by ,20 mV by dual injection of

xKCNE1 and xKCNE3 siRNAs (V50 241.260.8 mV, Figure 2G).

Previous studies have shown that KCNE peptides modulate K+

channel activation and/or deactivation kinetics; for example, KCNE1

slows activation and deactivation of KCNQ1 [24,25], and KCNE3

slows activation and deactivation of Kv2.1 channels in neurons [30].

Therefore, we repeated the experiments on a non-inactivating mutant

Figure 1. Knockdown of endogenous KCNE expression in Xenopus
oocytes with siRNA. (A–E) RT-PCR of xKCNE1, xKCNE3 and xKCNE5.1
mRNA isolated from Xenopus oocytes injected with dH2O (2) or the
indicated siRNA (+). RT-PCR for b-actin is shown as a control for
normalization of band intensity. (A–C) siRNAs designed against xKCNE1,
xKCNE3 and xKCNE5.1 all significantly knock down mRNA expression level
of their respective target genes. (D–E) In contrast, siRNA targeted to
xKCNE1 and xKCNE3 do not affect mRNA expression levels of other KCNE
genes. (F) Optical density of cDNA bands relative to b-actin was quantified
using NIH ImageJ. xKCNE1, xKCNE3 and xKCNE5.1 siRNA bands indicted a
,10-fold, ,4-fold, and ,4fold reduction in expression of each respective
gene; control injections did not show a significant reduction. Each
experiment was performed 3 times; values show Mean6SEM, ** p,0.01.
doi:10.1371/journal.pone.0006330.g001
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Kv12.2 channel (S464T), which contained a single point mutation in

the P region of the channel [14], to better assess the effect of dual

knockdown of KCNE1 and KCNE3 on Kv12.2 channel kinetics. We

did not find significant changes in either activation or deactivation, but

did observe significant increases in current magnitude and a similar

shift in GV as for the wild-type channel with the dual injection of

xKCNE1 and xKCNE3 siRNAs, indicating that the S464T mutation

did not disrupt the channel interaction with KCNE1 and KCNE3

(data not shown). These findings suggest that KCNE1/KCNE3 b
subunits primarily regulate Kv12.2 channels via control of current

amplitude and activation threshold.

Kv12.2 currents are reduced by over-expression of KCNE1
and KCNE3 in Xenopus oocytes

Consistent with xKCNE siRNA gene knockdown studies, co-

injection of Kv12.2 with mKCNE1 or mKCNE3 cRNA signifi-

cantly reduced Kv12.2 currents.2-fold (from 2.2360.02 mA, V50

222.860.12 mV to 0.960.07 mA, V50 222.562.17 mV, or

0.960.06 mA, V50 220.262.1 mV, respectively) (Figure 2H–I).

Similarly, the co-injection of both mKCNE1 and mKCNE3

cRNA further inhibited Kv12.2 currents (,3-fold; 0.737656

0.1375 mA, V50 221.660.9 mV) (Figure 2H–I). Consistent with

siRNA studies, co-expression of mKCNE5 cRNA did not affect

Kv12.2 currents (data not shown). Injection of KCNE1,

KCNE3, or KCNE5 cRNA alone into oocytes did not generate

currents significantly different to H2O-injected controls in our

protocols (data not shown). Previous studies have demonstrated

that injection of KCNE1 b-subunits into oocytes generates a

small, slowly activating IKs-like current via assembly with

endogenous KCNQ1 [24,25]. We probably did not detect a

significant amount of this current in our experiments because we

used much shorter voltage steps and shorter incubation periods.

Taken together these data suggest that KCNE1 and KCNE3 but

not KCNE5 b-subunits, significantly reduce Kv12.2 channel

currents via a mechanism that has only modest effects on

channel gating. Furthermore these studies suggest that the ability

of KCNE1 and KCNE3 to modulate Kv12.2 channels is

conserved across vertebrate species.

Kv12.2 channel antibody generation
A 100 amino acid section (position 702–801) of the cytoplasmic

C-terminus of mouse Kv12.2 was used to generate a Kv12.2-

specific polyclonal antibody in rabbit. The region was selected for

high predicted antigenicity and lack of conservation with other

Kv12 channels (Figure 3A). Western blot analysis demonstrated

that the Kv12.2 antibody recognized a single band of ,120 KDa

(the predicted size of a Kv12.2 monomer) on a denaturing gel in

lysates from mouse brain and HEK-293 cells transiently

transfected with Kv12.2 (Figure 3B). The Kv12.2 antibody (anti-

Kv12.2) did not recognize specific bands in non-transfected HEK-

293 cell lysates, or in HEK-293 cells transfected with the closely

related Kv12.1 channel, or when excess antigenic peptide was

present to block immunodetection (Figure 3B). The antigenic

peptide also blocked detection of Kv12.2 in mouse brain lysates in

separate experiments (data not shown). The antibody therefore

appeared to be highly specific for Kv12.2 channels as no

immunoreactivity was evident in the above conditions.

Biotinylation assays reveal that KCNE1 and KCNE3 gene
knock-down increases Kv12.2 channel membrane surface
expression

We next investigated the mechanism by which KCNE1 and

KCNE3 attenuated Kv12.2 currents. KCNE subunits have been

proposed to directly affect channel conductance, but recent studies

in HEK-293 cells interestingly revealed that KCNE1 and KCNE2

regulate HERG channel surface expression on the plasma

membrane [31]. We therefore hypothesized that KCNE1 and

KCNE3 are important for Kv12.2 channel trafficking. To

investigate this possibility we biotinylated membrane surface

proteins in Xenopus oocytes injected with Kv12.2 channel cRNA

alone and in combination with KCNE1 and/or KCNE3 siRNA.

Retrieval of the tagged proteins allowed us to compare total and

membrane surface expression of Kv12.2 protein for each case.

Oocytes injected with Kv12.2 cRNA showed just detectable cell

surface expression; whereas the co-injection of KCNE1 and/or

KCNE3 siRNA dramatically increased the amount of biotinylated

Kv12.2 channel plasma membrane expression (all ,3-fold

increase, p,0.01) (Figure 4A, B). The magnitude of this increase

is consistent with our previous observations of Kv12.2 current

increases observed with KCNE1 or KCNE3 siRNA knockdown,

suggesting that this change in surface expression accounts for the

changes in current amplitude. Furthermore, we observed an

additional significant increase in Kv12.2 channel plasma mem-

brane expression with the co-injection of both KCNE1 and

KCNE3 siRNA (,22.7% P,0.05 for KCNE1 alone, and ,20%

P,0.05, for KCNE3 alone, Figure 4A, B). We speculate that this

further increase in channel protein expression is less than expected

based on electrophysiology because of saturation of detection

sensitivity in the ECL-based immunoassay. In comparison,

electrophysiological measurements are linear over a wide range

and therefore likely provide a better quantitative measure for

changes in Kv12.2 surface expression. Kv12.2 channel plasma

membrane expression was not detected in water-injected oocytes

(Figure 4A, B), and importantly the biotinylated membrane

fraction did not appear contaminated with endoplasmic reticulum

(ER) proteins, as the specific ER marker calnexin was not detected

(Figure 4A middle panel). The enrichment of Kv12.2 channel

protein in the biotinylated plasma membrane fraction was

confirmed using b1-integrin as a plasma membrane marker

(Figure 4A, bottom panel).

In addition to determining the effect of KCNE peptides on

Kv12.2 channel plasma membrane surface expression, we assessed

changes in total channel protein expression. Determining the

effects of the KCNE b-subunits on total channel protein were

important as previous studies have shown that KCNE4 and

KCNE5 decreased KCNQ plasma membrane expression by

reducing total channel protein expression [32]. Importantly no

changes were observed in the total amount of the channel protein

following KCNE1 and/or KCNE3 co-injection, when compared

to Kv12.2 channel injected alone (Figure 4C, D). The increase in

Kv12.2 channel expression is therefore specific to the plasma

membrane, and not due to a non-specific increase in total oocyte

Kv12.2 channel protein expression.

In summary we demonstrate that KCNE1 or KCNE3 gene

knockdown significantly increased Kv12.2 channel membrane

expression, and moreover the dual knockdown of both regulatory

b-subunits significantly increased further the channel membrane

fraction. Taken together these studies suggest that endogenous

KCNE1 and KCNE3 are important for the regulation of Kv12.2

trafficking to the plasma membrane and subsequent channel

activation.

KCNE1 and KCNE3 interact with Kv12.2 channels in vivo
Next we questioned whether endogenous KCNE1 and/or

KCNE3 b-subunits interact with neuronal Kv12.2 channels in the

brain by looking for Kv12.2/KCNE protein complexes in vivo.

Mouse brain lysates were immunoprecipitated with the following
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Figure 2. KCNE1 and KCNE3 inhibit Kv12.2 currents in Xenopus oocytes. (A–E) Current traces recorded from oocytes injected with (A) Kv12.2
cRNA only, or co-injected (B) KCNE1, (C) KCNE3, (D) KCNE1 and KCNE3, or (E) KCNE5.1 siRNAs. Currents were recorded in response to 2 s voltage steps
from 2100 to +80 mV, in 20 mV increments from a holding potential of 2100 mV; tail currents were recorded at 240 mV (protocol in inset). (F) Peak
current-voltage relationships from oocytes injected with Kv12.2 cRNA only (&), or Kv12.2 cRNA plus either KCNE1 (N), KCNE3 (m), KCNE1 and KCNE3
(.), or KCNE5.1 (¤) siRNAs. KCNE1 and KCNE3 siRNAs significantly increase Kv12.2 currents and have an additive effect in combination. (Mean6SEM,
n = 12–16, ** p,0.01). (G) Normalized conductance voltage (GV) curves measured from isochronal tail currents for oocytes injected with Kv12.2 cRNA
only (&), and either KCNE1 (N), KCNE3 (m), or KCNE1+KCNE3 (.) siRNA. Lines show Boltzmann fits; parameters are given in the Results. Only dual
injection of xKCNE1 and xKCNE3 siRNAs caused a significant shift in V50. Data are given as Mean6SEM, n = 12–16, (** p,0.01). (H) Peak current-
voltage relationships from oocytes injected with Kv12.2 cRNA (&), or Kv12.2 cRNA+mKCNE1 (N), mKCNE3 (m), mKCNE1 and mKCNE3 (.) cRNA
(protocol as in A, Mean6SEM, n = 8, * p,0.05, ** p,0.01). Co-injection of Kv12.2 with mKCNE1 and/or mKCNE3 cRNA significantly reduced Kv12.2
currents. (I) GV curves from isochronal tail currents recorded from oocytes injected with Kv12.2 cRNA (&), or Kv12.2 and either mKCNE1 (N), mKCNE3
(m), and mKCNE1 and mKCNE3 (.) cRNA. Boltzmann fits (lines) revealed that the voltage-dependence of Kv12.2 activation was not significantly
affected by overexpression of KCNE1 and KCNE3. V50 values are given in the Results (n = 8).
doi:10.1371/journal.pone.0006330.g002
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antibodies: anti-KCNE1, anti-KCNE3, or anti-Kv12.2, and the

immunoblots were probed with anti-Kv12.2. Immunoblot indi-

cated that both KCNE1 and KCNE3 interact directly in vivo with

Kv12.2 channels (Figure 5A, top panel). The specificity of this

interaction was demonstrated using anti-Kir2.1 antibody as a

negative control; Kir2.1 is an inwardly rectifying potassium

channel that is highly expressed in the brain [33], and does not

interact with KCNE1 [34]. In our experiments, Kir2.1 immuno-

reactivity was evident in mouse brain (data not shown); however it

did not demonstrate significant binding to KCNE1, KCNE3 or

Kv12.2 channels (Figure 5A). To further confirm the co-

immunoprecipitation results we performed reciprocal experiments

using anti-Kv12.2 as the ‘pull-down’ antibody; the blots were

probed with either anti-KCNE1 or anti-KCNE3. Consistent with

the KCNE1 and KCNE3 co-immunoprecipitation data, anti-

Kv12.2 ‘pull-down’ experiments revealed that both KCNE1 and

KCNE3 immunoprecipitate with Kv12.2 channels (Figure 5A

middle and bottom panels, respectively).

To further characterize the KCNE1/KCNE3 b-subunit

interaction with Kv12.2 channels we performed a two-step co-

immunoprecipitation assay under native protein conditions. The

main aim for conducting these additional co-immunoprecipitation

experiments was to determine whether KCNE1 and KCNE3 b-

subunits simultaneously interact with individual tetrameric Kv12.2

channels in neurons. Consistent with previous data, under native

conditions the tetrameric Kv12.2 channel immunoprecipitates

Figure 3. Characterization of the Kv12.2 channel antibody. (A) Alignment of a 100 amino acid section, 702–801 of the cytoplasmic C-terminus
of mouse Kv12.2 used to generate a Kv12.2-specific polyclonal antibody in rabbit to Kv12.1. The homologous region of Kv12.3 (not shown), is most
similar to Kv12.1. Amino acid identities are shaded and numbers indicate amino acid position in Kv12.2. The cartoon depicts a Kv12.2 subunit with 6
transmembrane domains (S1–S6), a Per-Arnt-Sim (PAS) motif and a putative cyclic nucleotide binding motif (cNBD). Gray scale coding indicates the
level of amino acid identity shared between Kv12.2 and other Kv12 channels in each region of the channel. (B) Top panel, Western blot analysis
demonstrates that the Kv12.2 antibody (anti-Kv12.2) recognizes a single band of ,120 KD (the predicted size of a Kv12.2 channel monomer) from
mouse brain and HEK-293 cells transiently transfected with mKv12.2 channel cDNA (HEK-293+Kv12.2). Anti-Kv12.2 did not recognize specific bands in
non-transfected HEK-293 cell lysates (HEK-293), in HEK-293 cells transfected with the closely related Kv12.1 channel (HEK-293+Kv12.1), or when excess
antigenic control peptide (CP) was present to block immunodetection (HEK-293+Kv12.2+CP). Bottom panel, anti-b-actin demonstrates equal protein
loading for each condition. These experiments were repeated 4 times yielding similar results.
doi:10.1371/journal.pone.0006330.g003
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with KCNE1 or KCNE3 b-subunits; and again the specificity of

this interaction was assessed using the anti-Kir2.1 antibody as a

negative control (Figure 5B). The size of the Kv12.2 channel

complex was ,500 Kd, which is consistent with a tetrameric pore

structure and allows for small associated proteins such as KCNE1

and KCNE3. The migration of KCNE1 and KCNE3 with this

large Kv12.2 channel complex is strong additional proof for

specific interaction of these proteins in vivo and importantly shows

that channel structure is maintained under the conditions we used

for co-immunoprecipitation assays. This allowed us to ask whether

KCNE1 and KCNE3 simultaneously interact with individual

tetrameric Kv12.2 channels, since it is believed that multiple, and

most likely two, KCNE subunits associate with each tetrameric

potassium channel [35,36]. Since KCNE1 and KCNE3 do not

interact directly, such a scenario could only be detected if

tetrameric channel structure is maintained during immunoprecip-

itation assays. The relatively small size of the KCNE1 and

KCNE3 subunits, 14 kDa and 36 kDa respectively, makes it

impossible to accurately determine the stoichiometry of KCNE/

Kv12.2 interactions based on the Kv12.2 channel complex size.

Therefore, to determine whether both KCNE1 and KCNE3 b-

subunits can interact with tetrameric Kv12.2 channels simulta-

neously, we conducted a ‘second- round’ co-immunoprecipitation

experiment, whereby the proteins from the ‘first-round’ KCNE1

or KCNE3 ‘pull-down’ were subsequently subjected to pull-down

by anti-Kv12.2. Blots were then probed with either anti-KCNE1

or anti-KCNE3. Following the ‘second-round’ co-immunoprecip-

itation with anti-Kv12.2, KCNE3 protein could be detected in

samples where anti-KCNE1 was used for the ‘first-round’ pull-

down. In addition the reciprocal interaction occurred when anti-

Figure 4. KCNE1 and KCNE3 reduce membrane surface expression of Kv12.2 channels. (A) Blots of the biotinylated plasma membrane
fraction of proteins from Xenopus oocytes injected with Kv12.2 cRNA alone or in combination with KCNE1 and/or KCNE3 siRNA subjected to
membrane surface biotinylation. Top panel, Detection of Kv12.2 channel protein with anti-Kv12.2. Xenopus oocytes injected with Kv12.2 cRNA showed
just detectable membrane surface expression; whereas the co-injection of KCNE1 and/or KCNE3 siRNA dramatically increased Kv12.2 channel plasma
membrane expression. Kv12.2 was not detected in oocytes injected with dH2O (negative control), and was robustly detected in mouse whole brain
lysate (positive control). An endoplasmic reticulum (ER) marker (calnexin, middle panel), and a cell membrane marker (b1-integrin, bottom panel), were
used as a negative and positive controls, respectively, to show specific isolation of the plasma membrane protein fraction and to confirm equal
protein loading. (B) The optical density of each Kv12.2 protein band was quantified using NIH ImageJ and normalized to density of b1-integrin for
comparison; both xKCNE1 or xKCNE3 siRNA increased Kv12.2 channel membrane expression.3-fold (Mean6SEM, n = 4, ** p,0.01). Furthermore, the
combination KCNE1 and KCNE3 siRNA increased surface Kv12.2 expression ,20% further than either siRNA alone (n = 4, * p,0.05). (C) Blots showing
total protein expression from Xenopus oocytes injected as in A. Top panel, Kv12.2 channel total expression was not detected in dH2O-injected oocytes,
and did not increase when Kv12.2 was injected with siRNA for KCNE1 and/or KCNE3. Bottom panel, b-actin was used to confirm equal protein loading
for each condition assessed. (D) The optical density of each Kv12.2 protein band was quantified using NIH ImageJ and normalized to b-actin; xKCNE1,
xKCNE3 or KCNE1 and KCNE3 siRNA did not significantly affect total Kv12.2 channel expression (Mean6SEM, n = 4).
doi:10.1371/journal.pone.0006330.g004
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KCNE3 was utilized in the ‘first-round’ co-immunoprecipitation

and the final blot was probed for presence of KCNE1 (Figure 5C,

D). These two-step co-immunoprecipitation experiments were

repeated 3 times with similar results. The results suggest that

KCNE1 and KCNE3 b subunits form tripartite channel

complexes with Kv12.2 in vivo.

Discussion

We demonstrate here that the K+ channel b-subunits KCNE1 and

KCNE3 regulate trafficking and activation of Kv12.2. This is the first

evidence that KCNE subunits associate with Kv12 family potassium

channels. Furthermore, we show by native co-immunoprecipitation

experiments that both b-subunits, KCNE1 and KCNE3, simulta-

neously interact with tetrameric Kv12.2 channels in vivo; suggesting

the existence of a native channel tripartite complex (Kv12.2-KCNE1-

KCNE3). As Kv12.2 channels are highly expressed in several

important brain regions, including the hippocampus, amygdala and

cerebral cortex [5,8], we predict that in vivo association of KCNE1 and

KCNE3 with Kv12.2 channels has considerable significance to the

modulation of neuronal excitability. The specific localization of

KCNEs in the brain has not been carefully defined; however northern

blot analysis in human brain has demonstrated that KCNE3 is

expressed in the hippocampus, cerebellum, thalamus, hypothalamus

and cerebral cortex [30] and has therefore has specific overlap with

areas high in Kv12.2 channel expression [8]. It is now well established

that KCNQ1 channels assemble with KCNE b-subunits for correct

physiological function; mutations that disrupt this complex formation

result in congenital deafness and inherited cardiac arrhythmias

[10,37,38]. Interestingly studies in the heart have shown that the

Figure 5. Kv12.2 channels simultaneously associate with KCNE1 and KCNE3 b-subunits in vivo. (A) Mouse brain lysates (MB) were
immunoprecipitated (IP) with anti-KCNE1, anti-KCNE3, anti-Kv12.2, or anti-Kir2.1 and were then subjected to SDS-PAGE and Western Blot analysis.
Whole mouse brain lysate (MB) and proteins precipitated with unconjugated beads (AG only) are shown as positive and negative controls,
respectively. Proteins used for IP are indicated at the top, proteins detected in Western blot (IB) are indicated at the left. Top panel, IB with anti-Kv12.2
indicates that both KCNE1 and KCNE3 interact in vivo with Kv12.2 channels. Middle panel, IB was stripped and re-probed with anti-KCNE1. KCNE1
immunoprecipitates with Kv12.2 but not KCNE3. Bottom panel, IB was then re-stripped and re-probed with anti-KCNE3. KCNE3 immunoprecipitates
with Kv12.2 but does not interact with KCNE1. Controls show little or no IP of Kv12.2, KCNE1 or KCNE3 with anti-Kir2.1 or unconjugated beads. (B–D)
Two-step co-immunoprecipitation assays run under native protein conditions. The Kv12.2 channel complex labeled under native conditions was
,500 Kd, consistent with a channel tetramer. (B) Kv12.2 channels were immunoprecipitated first with anti-KCNE1 or anti-KCNE3 in these native
protein conditions. Specificity was assessed using the anti-Kir2.1 antibody and unconjugated beads as negative controls. Proteins
immunoprecipitated in this first IP were subjected to a second IP using anti-Kv12.2. (C) Anti-KCNE1 detected the Kv12.2 tetramer complex after
the second IP regardless of whether anti-KCNE1 or anti-KCNE3 was used for the first IP. (D) Similarly, anti-KCNE3 detected the Kv12.2 complex after
the second IP with anti-Kv12.2 even if anti-KCNE1 was used for the first IP. These results can be explained if KCNE1 and KCNE3 simultaneously interact
with individual Kv12.2 channels. Denatured mouse brain lysate was loaded into the first lane, to confirm the established size of the respective KCNE b-
subunit. Note that some KCNE1 has dissociated from the channel complex in the KCNE1 lane of (C).
doi:10.1371/journal.pone.0006330.g005
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expression of the KCNE b-subunits fluctuates during disease states,

suggesting that a balance in the variety of KCNE b-subunits may be

required to physiologically regulate K+ channels [39]. Our data

suggest that a similar regulatory mechanism may exist in the brain.

Possible roles for KCNE b subunits in the regulation of other

neuronal K+ channels have been proposed. Furthermore the

mRNA transcripts for all five KCNE b-subunits have been

detected in tissue from rodent brain [10]. McCrossan et al. (2003)

[14] have demonstrated that Kv2.1 and Kv3.1 immunoprecipitate

from rat brain membranes with anti-KCNE3 antibodies. Both

KCNE1 and KCNE3 reduced the current density of Kv2.1 and

Kv3.1 channels in heterologous expression systems, the mecha-

nism was shown to be via a direct effect on gating kinetics, and not

regulating plasma membrane expression [14], as we find for

Kv12.2 channels. More recent studies have demonstrated that

heterologously expressed Kv4.3 channels, which are activated

during neuronal excitation and are believed to have a role in spike

repolarization and frequency, are dramatically inhibited by

KCNE3 b-subunits by effects on both activation kinetics and

current amplitude [40]. We show here for the first time that

KCNE subunits may also regulate the activity of a K+ channel

believed to significantly contribute to neuronal resting potential.

Further in vivo studies are required to characterize and determine

the trafficking dynamics and physiological significance of this

Kv12.2 -KCNE1-KCNE3 channel regulatory tripartite complex.

The most pronounced effect of KCNE1 and KCNE3 on Kv12.2

channels is on the regulation of plasma membrane expression. We

demonstrate that KCNE1 and/or KCNE3 b-subunits did not affect

overall Kv12.2 channel total protein expression. Previous studies have

suggested a similar role of the KCNE b-subunits in K+ channel

regulation. Nicolas et al. (2001) demonstrated in KCNE1 knock-out

mice, that KCNQ1 channels do not traffic to the apical membranes

of vestibular dark cells, where they would normally be found in wild

type cells [41], suggesting that KCNE1 b-subunits chaperone

KCNQ1 to the membrane surface or alternatively stabilize

membrane expression. Interestingly KCNE3 has been shown

previously to inhibit hERG channels, suggesting either the formation

of a non-functional channel, or one that fails to reach the plasma

membrane [29]. Similarly in our study Kv12.2 channel currents were

increased by the knockdown of endogenous KCNE1 and/or KCNE3

b-subunits, and attenuated by the over-expression. Our results clearly

show that increased Kv12.2 current following knockdown of KCNE1

and KCNE3 occurs primarily through enhanced surface expression.

We assume Kv12.2 current reductions induced by KCNE1 and

KCNE3 overexpression result from reduced surface expression,

although we did not definitively determine the mechanism using the

surface biotinylation assay. KCNQ1-KCNE1 assembly is chaperone

mediated, suggesting that these proteins first associate in either the

ER or cis-Golgi; as KCNQ1 channels assemble early in the secretory

pathway [42]. This suggests the possibility that KCNE subunits could

affect membrane trafficking of K+ channels by control of retention in

or export from the ER. Interestingly a recent study by Xu et al. (2009),

demonstrated that KCNQ1-KCNE1 complexes but not homomeric

KCNQ1 channels undergo clathrin- and dynamin 2-dependent

internalization; redefining KCNE1 as an endocytic chaperone for

KCNQ1 [43]. Further studies are required to define whether

KCNE1 and KCNE3 determine membrane surface expression of

Kv12.2 through control of export to the plasma membrane,

promotion of endocytic recycling, or a combination of both

mechanisms.

The subunit composition of KCNE-containing channel com-

plexes can greatly influence channel function [10], and it is

therefore important to understand the stoichiometry of native

channel complexes. Here we demonstrate in vivo that both KCNE1

and KCNE3 appear to simultaneously interact with individual

Kv12.2 channel tetramers. Remixing of subunits during the co-IP

assays to produce these results remains a possibility, but is

extremely unlikely due to high dilution factors and removal of the

proteins from the membrane context. Recent in vitro investigations

with K+ channels have proposed that two KCNE peptides interact

with the channel tetramer [35,36]. Several K+ channels, including

KCNQ1, hERG and Kv2.1 have been shown to interact with

multiple distinct KCNE peptides in vitro [15,16,20,24,25,44]. One

recent study even demonstrated that KCNE1 and KCNE4 can

simultaneously interact with KCNQ1 channels in COS-M6 cells

[45]. However, the question of whether individual channels may

contain multiple distinct KCNE proteins in vivo has never been

examined prior to this study. We present evidence demonstrating

that a significant portion of Kv12.2 channels contain both KCNE1

and KCNE3 b subunits in vivo. However, we cannot rule out the

possibility that Kv12.2 channels also complex separately with

either KCNE1 or KCNE3 in the brain.

We observed an additive increase over the effect of either siRNA

alone with both KCNE1 and KCNE3 knockdown on Kv12.2

channel plasma membrane expression. Several mechanisms may

have meditated this additive effect. Firstly, it is possible that

KCNE1 and KCNE3 have independent effects on Kv12.2 traf-

ficking and are not able to substitute for each other. In this case,

both subunits would have to be present for maximal inhibition of

Kv12.2 channel expression on the membrane. Alternatively, it may

be the case that KCNE1 and KCNE3 do have redundant effects on

trafficking in Xenopus oocytes, and that removal of either may simply

reduce the number of channels that contain a KCNE subunit. In

support of this view, KCNE subunits have similar structures [10]

and are thus likely to interact with K+ channel a-subunits in

overlapping binding sites. It would be interesting to determine

whether all or only a subset of these KCNE binding sites must be

occupied to affect trafficking of Kv12.2 channels. The demonstra-

tion of heterologous assembly between a K+ channel (Kv12.2) and

KCNE family regulatory b-subunits, suggests that the promiscuity

of K+ channel/KCNE interactions observed in vitro may reflect

complexity in the stoichiometry of channels formed in vivo.

In summary, this study demonstrates for the first time that

KCNE1 and KCNE3 b-subunits form a tripartite complex with

Kv12.2 channels in the brain; and furthermore suggests that

regulation of membrane surface expression, and subsequent

channel activation as a function of this association.
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