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Peptide-Peptide Nucleic Acid (PNA) conjugates targeting essential bacterial genes have
shown significant potential in developing novel antisense antimicrobials. The majority of
efforts in this area are focused on identifying different PNA targets and the selection of
peptides to deliver the peptide-PNA conjugates to Gram-negative bacteria. Notably, the
selection of a linkage strategy to form peptide-PNA conjugate plays an important role in the
effective delivery of PNAs. Recently, a unique Cysteine- 2-Cyanoisonicotinamide (Cys-
CINA) click chemistry has been employed for the synthesis of cyclic peptides. Considering
the high selectivity of this chemistry, we investigated the efficiency of Cys-CINA
conjugation to synthesize novel antimicrobial peptide-PNA conjugates. The PNA
targeting acyl carrier protein gene (acpP), when conjugated to the membrane-active
antimicrobial peptides (polymyxin), showed improvement in antimicrobial activity against
multidrug-resistant Gram-negative Acinetobacter baumannii. Thus, indicating that the
Cys-CINA conjugation is an effective strategy to link the antisense oligonucleotides
with antimicrobial peptides. Therefore, the Cys-CINA conjugation opens an exciting
prospect for antimicrobial drug development.
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INTRODUCTION

Antimicrobial resistance is now considered one of the greatest threats to global health and the
economy. The World Health Organization (WHO) identified multidrug-resistant (MDR) Gram-
negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacterales as
the top priority for the development of new antibiotics (WHO, 2017). This situation has been made
evenmore problematic by the lack of development of new effective antibiotic drug therapies targeting
these multi-drug resistant (MDR) bacteria. Therefore, there is an urgent requirement for the
development of antibiotics with novel modes of action (Andersson et al., 2016; WHO, 2017). To
this end, antisense antibiotics such as Peptide Nucleic Acids (PNAs) can be used to target essential
genes in bacteria, resulting in translational gene silencing and bactericidal effects (Good et al., 2001;
Ghosal and Nielsen, 2012). PNAs are artificial DNA mimics with tertiary amide linked nucleobases
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and aminoethylglycine (aeg) repeating units (Nielsen et al., 1991;
Egholm et al., 1993; Wittung et al., 1996; Good and Nielsen, 1998;
Nielsen, 2001). This unique combination of amide linkage and
carbonyl methylene linked nucleobases provides thermal and
hydrolytic (enzymatic degradation) stability. Furthermore,
PNAs are easy to synthesize and exhibit improved binding
affinity towards complementary DNA/RNA sequences. The
last decade has seen a rapid surge in the development of
PNA-based therapeutics and biochemical tools (Siddiquee
et al., 2015; Gupta et al., 2017). However, the charge-neutral
amide backbone in PNA can result in poor cell permeability that
leads to poor antibacterial activity (Koppelhus and Nielsen,
2003). Conjugation of PNAs with cell-penetrating peptides
(CPP) is a widely used approach to improve the cellular
permeability of antisense PNAs (Mcallister et al., 2006; Gupta
et al., 2016). Importantly, CPP mediated intracellular delivery of
oligonucleotides has been effectively used to target essential
bacterial genes and develop novel antimicrobial peptide-PNA
conjugates (Figure 1) (Good et al., 2001; Ghosal et al., 2013).
Along these lines, peptide-mediated cell penetration was shown
to be effective for the delivery of antisense PNA targeting top-
priority Acinetobacter baumannii (Rose et al., 2019).

A number of conjugation strategies have been explored to link
PNA with CPPs, including disulfide (Turner et al., 2006), thio-
maleimide (Ede et al., 1994) and triazole (McKay and Finn, 2014).
However, these strategies are often limited to simple and linear
CPPs. Importantly, conjugation of PNAs with structurally
complex peptides such as the polymyxins (Velkov et al., 2013)
and cathelicidin (Dürr et al., 2006) remains an unexplored terrain
(Soudah et al., 2019). Moreover, peptide conjugations through
traditional disulfide and maleimide linkages require orthogonal
protecting groups as well as a multistep synthesis strategy (Patil,
2021). Previously, we developed a methodology for cysteine-
cyanobenzothiazole (Cys-CBT) mediated peptide-PNA
conjugation that enables facile synthesis and improved
intracellular stability as compared to other strategies (Patil
et al., 2019). However, commercially available 2-
cyanobenzothiazole is expensive and requires additional

synthetic steps before being employed for the solid-phase
synthesis of peptides or PNAs. In our hands, succinoyl-2-
cyanobenzothiazole moiety increased the hydrophobicity of
peptide and PNA analogues, resulting in conjugates with poor
aqueous solubility (Patil et al., 2019; Patil et al., 2021). To
overcome the high-cost and hydrophobicity limitations of the
previously developed Cys-CBT conjugation method, we have
exploited the low-cost commercially avaliable 2-
cyanoisonicotinamide (CINA) group (Patil et al., 2021). This
conjugation strategy involves reaction between an N-terminal
cysteine residue and the nitrile group of cyanoisonicotinic acid
which forms a thiazole ring (Figure 1). The resulting linkage is
less hydrophobic due to the presence of smaller heterocyclic
moiety. As an improved strategy, Cys-CINA conjugation utilizes
a relatively water-soluble, readily available CINA moiety and
retains all the other biological advantages of Cys-CBT linkage.
We have previously utilized this chemo-selective chemistry for
peptide macrocyclization (Patil et al., 2021). In the present work
we explore the utility of the Cys-CINA conjugation strategy for
the generation of novel antimicrobial peptide-PNA conjugates.

MATERIALS AND METHODS

Materials
Piperidine, Trifluoroacetic acid (TFA) and 1H-Benzotriazolium-
1-[bis(dimethylamino)methylene]-5-chloro-
hexafluorophosphate-(1-),3-oxide (HCTU) were obtained from
Auspep (Melbourne, Australia), and Fmoc-8-amino-3,6-
dioxaoctanoic acid (PEG), Fmoc-amino acids were obtained
from Chem-Impex International (United States). PNA
monomers Fmoc-A (Bhoc)-OH, Fmoc-C(Bhoc)-OH, Fmoc-T
(Bhoc)-OH, Fmoc-G (Bhoc)-OH were obtained from
PANGENE Inc. (Daejeon, Republic of Korea)).
Dimethylformamide (DMF), methanol (MeOH), diethyl ether,
dichloromethane (DCM), hydrochloric acid (HCl) and
acetonitrile were obtained from Merck (Melbourne, Australia).
LC-MS grade water and acetonitrile were obtained from Fisher

FIGURE 1 | CINA mediated conjugation to generate peptide-PNA antisense conjugates.
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Chemicals (Melbourne, Australia). 2-Chlorotrityl-Resin and Rink
amide resin were obtained from Chempep Inc. Wellington,
United States. Triisopropylsilane (TIPS), 2,2′-(Ethylenedioxy)
diethanethiol (DODT), diphenylphosphorylazide (DPPA), 2,2′-
dithiodipyridine (DPDS), N,N′-Diisopropylcarbodiimide (DIC),
and diisopropylethylamine (DIPEA), N-Methylpyrrolidone
(NMP), propidium iodide and phenazine methosulfate were
obtained from Sigma-Aldrich (Castle Hill, Australia).
Dulbecco’s modified eagle medium (DMEM) was purchased
from Gibco (Thermo Fisher Scientific, Waltham, MA,
United States). Fetal bovine serum (FBS) was from Bovogen
Biologicals (Victoria, Australia) and XTT staining reagent was
obtained from Santa Cruz Biotechnology (Dallas, TX,
United States).

PNA Synthesis
All PNAs (Table 1) were synthesized using standard Fmoc
chemistry. The PNA was synthesized on Rink amide resin
(100–200, 0.25mmol/g) 100 μmol scale. The Fmoc deprotection
was conducted twice using piperidine 20% in DMF at room
temperature for 3 min. The coupling of PNA monomers was
performed using 3 molar equivalents of Fmoc-protected

PNA(Bhoc)-OH monomers and HCTU dissolved in NMP, in
situ activation using 6 molar equivalents of DIPEA for 30 min at
room temperature. Following final PNA monomer coupling and
deprotection, an 8-amino-3,6-dioxaoctanoic acyl (PEG) spacer and
cysteine residue was coupled at the N-terminus (5′-end). All
synthesized PNAs were cleaved from the solid support with a
solution of TFA: H2O: TIPS (95:2.5:2.5, v/v/v). The N-terminal
cysteine containing PNA (abbreviated below as Cys-PNA) was
cleaved with an optimized solution of TFA: H2O: TIPS (95:2.5:
2.5, v/v/v; 20 equivalent cysteamine) for 1.5 h. The TFA solution was
filtered and evaporated under a nitrogen stream, and the PNA was
precipitated in ice-cold diethyl ether; the PNA pellet was then
washed twice with diethyl ether (40ml). The crude PNA was
analyzed with LC-MS (Method C) and purified by RP-HPLC
method A. The fractions from RP-HPLC were combined and
lyophilized for 2 days to give the purified peptides as their
corresponding TFA salt. The purity of the PNA was confirmed
by LC-MS analysis method D.

General Peptide Synthesis
All the peptides were synthesized using either Rink amide resin
(100-200 mesh 0.61 mmol/g) or 2-Chlorotrityl Resin (0.1 mmol)

TABLE 1 | Peptide-PNA conjugates sequences.

Conjugate c Peptide c and AA
Sequence

PNAc

and nucleobase Sequence
Conjugation

Yields

LASP-058 LASP-054 LASP-050 95%
H-Arg-Acp-Arg-Arg-Acp-Arg-Arg-Acp-Arg-Arg-Acp-Arg-PEG-Lys
(CINA)-NH2

Cys-PEG-Cyt-Thy-Cyt-Ade-Thy-Ade-Cyt-Thy-Cyt-Thy-
Thy-Gua-Lys-NH2

LASP-059 LASP-026 LASP-050 96%
CINA-PEG-OctGly-Dab-Thr-Dab-Dabb-Dab-D-Phe-Leu-Dab-Dab-Thrb Cys-PEG-Cyt-Thy-Cyt-Ade-Thy-Ade-Cyt-Thy-Cyt-Thy-

Thy-Gua-Lys-NH2

LASP-084 LASP-077 LASP-050 90%
CINA-PEG-Gly-Lys-Pro-Arg-Pro-Tyr-Ser-Pro-Arg-Pro-Thr-Ser-His-
Pro-Arg-Pro-Ile-Arg-Arg-NH2

Cys-PEG-Cyt-Thy-Cyt-Ade-Thy-Ade-Cyt-Thy-Cyt-Thy-
Thy-Gua-Lys-NH2

LASP-086 LASP-078 LASP-050 87%a

CINA-PEG-Val-Cysc-Lys-Arg-trp-Lys-Lys-Trp-Lys-Arg-Lys-Trp-Lys-
Lys-Trp-Cysc-Val-NH2

Cys-PEG-Cyt-Thy-Cyt-Ade-Thy-Ade-Cyt-Thy-Cyt-Thy-
Thy-Gua-Lys-NH2

LASP-088 LASP-078 LASP-050 92%
CINA-PEG-Val-Cysd-Lys-Arg-trp-Lys-Lys-Trp-Lys-Arg-Lys-Trp-Lys-
Lys-Trp-Cysd-Val-NH2

Cys-PEG-Cyt-Thy-Cyt-Ade-Thy-Ade-Cyt-Thy-Cyt-Thy-
Thy-Gua-Lys-NH2

LASP-130 LASP-072 LASP-095 94%
Cys-PEG-OctGly-Dab-Thr-Dab-Dabb-Dab-D-Phe-Leu-Dab-Dab-Thrb CINA-PEG-Cyt-Gua-Ade-Thy-Cyt-Ade-Thy-Thy-Cyt-Ade-

Ade-Ade-Lys-NH2

LASP-131 LASP-072 LASP-096 98%
Cys-PEG-OctGly-Dab-Thr-Dab-Dabb-Dab-D-Phe-Leu-Dab-Dab-Thrb CINA-PEG-Thy-Cyt-Cyt-Ade-Thy-Thy-Ade-Thy-Thy-Gau-

Lys-NH2

LASP-132 LASP-072 LASP-072 98%
Cys-PEG-OctGly-Dab-Thr-Dab-Dabb-Dab-D-Phe-Leu-Dab-Dab-Thrb Cys-PEG-OctGly-Dab-Thr-Dab-Dabb-Dab-D-Phe-Leu-

Dab-Dab-Thrb

LASP-133 LASP-097 LASP-119 96%
CINA-PEG-Cyt-Thy-Cyt-Ade-Thy-Ade-Cyt-Thy-Cyt-Thy-Lys-NH2 CINA-PEG-Thy-Thy-Thy-Cyt-Thy-Cyt-Gua-Thy-Cyt-Ade-

Lys-NH2

aConjugated and cross-linked yield.
bDab side-chain and C-terminal cyclization.
cSide-chain cross-linked with a butylene bridge.
dLinked with a disulfide bridge.
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(100–200 mesh, 0.71 mmol/g). The first amino acid on 2-
Chlorotrityl Resin was loaded using 6 molar equivalents
solution of respective Fmoc-amino acid in DMF. The rest of
the amino acid sequence was built on a Prelude automated
peptide synthesizer (Protein Technologies) using standard
Fmoc solid-phase peptide chemistry. All coupling of the
Fmoc-amino acids were performed using the default
instrument protocol: 3 molar equivalents (relative to resin
loading) of the Fmoc amino acid, 3 molar equivalents HCTU
and 6 molar equivalents of DIPEA in DMF for 50 min at room
temperature. Fmoc deprotection was performed using the default
instrument protocol: 20% piperidine in DMF (1 × 5 min, 1 ×
10 min) at room temperature. The crude peptide was taken up in
15 ml of TFA cleavage cocktail solution (2.5% DODT, 5% TIPS,
92.5% TFA) and stirred at room temperature for 90 min. TFA
solution was filtered and evaporated under a nitrogen stream,
then 40 ml of diethyl ether was added into residual TFA to
precipitate the peptide. The peptide precipitate was collected
by centrifugation and washed 2 times with diethyl ether
(40 ml), then air-dried to give the crude peptide as a pale-
yellow solid. The crude PNA was analyzed with LC-MS
(Method C) and purified by RP-HPLC method A. The
fractions from RP-HPLC were combined and lyophilized for
2 days to give the purified peptides as their corresponding
TFA salt. The purity of the peptides was confirmed by LC-MS
analysis method D.

General Peptide-PNA Conjugation
The PNA (0.01 mmol) was dissolved in 3 ml of 10 mMTCEP PBS
buffer. In a different vial, the crude peptide (0.012 mmol) was
dissolved 2 ml of 10 mM TCEP PBS buffer, and then both
solutions were mixed, and pH was adjusted between 7.4 and 8
(pH paper) with 1 M NaOH. The reaction mixture was stirred for
1–4 h and monitored by LC-MS. The crude was purified by RP-
HPLC (method B). The fractions from RP-HPLC were analyzed
by LC-MS (method C), combined and lyophilized for 2 days to
give the purified peptide-PNA conjugates as its corresponding
formic acid salt. The purity of the peptides was confirmed by LC-
MS analysis method D.

“One-Pot” Method for the Synthesis of
LASP-086
The PNA (LASP-050, 0.005 mmol) was dissolved in 3 ml of
10 mM TCEP PBS buffer. In a different vial, the crude peptide
(LASP-078, 0.005 mmol) was dissolved 2 ml of 10 mMTCEP PBS
buffer, and then both solutions were mixed, and pH was adjusted
between 7.4 and 8 (pH paper) with 1 M NaOH. The progress of
the reaction was monitored every hour by LC-MS analysis
(method D). Once PNA (LASP-050) was consumed (3 h), the
reaction mixture was diluted up to a ~2 mg/ml concentration
(estimated concentration of intermediate), and a solution of 1,4-
dibromobutene (1 equivalent) in acetonitrile was added dropwise.
The reaction was monitored by LC-MS every hour (4 h). The
reaction mixture was purified by RP-HPLC (method B) to obtain
LASP-086. The crude was purified by RP-HPLC (method B). The
fractions from RP-HPLC were analyzed by LC-MS (method C),

combined and lyophilized for 2 days to give the purified peptide-
PNA conjugate as its corresponding formic acid salt. The purity
of the peptides was confirmed by LC-MS analysis method D.

Synthesis of LASP-088
The PNA (LASP-050, 0.005 mmol) was dissolved in 3 ml of
10 mM TCEP PBS buffer. In a different vial, the crude peptide
(LASP-078, 0.005 mmol) was dissolved 2 ml of 10 mMTCEP PBS
buffer, and then both solutions were mixed, and pH was adjusted
between 7.4 and 8 (pH paper) with 1 M NaOH. The progress of
the reaction was monitored every hour by LC-MS. Once PNA
(LASP-050) was consumed (3 h), The reaction mixture was
purified by RP-HPLC (method B). The fractions from RP-
HPLC were analyzed by LC-MS analysis (method C),
combined and lyophilized for 2 days to give the purified
peptide-PNA conjugate LASP-085 as its corresponding formic
acid salt. The purified LASP-085 was dissolved (0.5 mg/ml) in
PBS buffer at pH 7.4, and a solution of DPDS (0.5 equivalent) in
acetonitrile was added. The reaction mixture was purified by
purification method B to obtain LASP-088. The crude was
purified by RP-HPLC (method B). The fractions from RP-
HPLC were analyzed by LC-MS analysis (method C),
combined, and lyophilized for 2 days to give the purified
peptide-PNA conjugate as its corresponding formic acid salt.
The purity of the peptides was confirmed by LC-MS analysis
method D.

RP-HPLC Purification Method A
RP-HPLC purification on Shimadzu LC system with a
“Prominence” diode array detector (214 nm). A Phenomenex
Axia column (Luna C8 (2), 250 × 21.2 mm i.d., 100 Å, 10 μm) was
employed with a gradient of 0–60% buffer B over 60 min at a flow
rate of 15 ml/min; buffer A was 0.1% TFA/water, and buffer B was
0.1% TFA/acetonitrile.

RP-HPLC Purification Method B
RP-HPLC purification on a Shimadzu LC system with a
“Prominence” diode array detector (214 nm). A Water column
(XBridge Peptide BEH C18, 300Å, 150 × 19 mm i.d.) was
employed with a gradient of 0–60% buffer B over 60 min at a
flow rate of 15 ml/min; buffer A was 0.1% formic acid/water, and
buffer B was 0.1% formic acid/acetonitrile.

LC-MS Analysis Method C
The collected fractions were analyzed by Shimadzu LC-MS -2020
instrument. Solvent A was 0.05% TFA/water, and Solvent B was
0.05% TFA/acetonitrile. A Phenomenex column (Luna C8 (2),
100 × 2.0 mm ID) was used, eluting with a gradient of 0–60%
solvent B over 10 min at a flow rate of 0.2 ml/min. Mass spectra
were acquired in the positive ion mode with a scan range of
200–2,000 m/z.

LC-MS Analysis Method D
The final purity of peptides, PNA and peptide-PNA conjugates
was confirmed by LC-MS. Solvent A was 0.05% TFA/water, and
Solvent B was 0.05% TFA/acetonitrile. A Phenomenex column
(Luna C8 (2), 100 × 2.0 mm ID) was used, eluting with a gradient
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of 0–60% solvent B over 30 min at a flow rate of 0.2 ml/min. Mass
spectras were acquired in the positive ion mode with a scan range
of 200–2,000 m/z.

Antimicrobial Activity
According to the EUCAST guidelines (Eucast, E.C.O.a.S.T.,
2021), the inoculum was standardized in sterile saline to the
density of a McFarland 0.50 ± 0.02 standard, corresponding to
~108 CFU/ml of each isolate. The freshly prepared bacterial
suspension was evenly inoculated onto agar plates and disks
containing 40 μM of peptide-PNA conjugates were applied
within 15 min. The diameter of inhibition zones was measured

after incubation for 18 h at 37°C. Polymyxin B (40 μM/disk) was
employed as the control.

Membrane Disorganization Measured With
Flow Cytometry
Flow cytometry was employed to examine the membrane
disorganization in A. baumannii 5075R and 5075D following
treatments of LASP-072, LASP-097, LASP-132 (0.040 mM, 1,
24 h) (Zhu et al., 2020; Wickremasinghe et al., 2021). Samples
were assessed with an ACEA NovoCyte® high-performance
benchtop flow cytometer (ACEA Biosciences, Santa Clara, CA,

FIGURE 2 | The benzhydryloxyearbonyl (Bhoc) adduct during the Trifluoroacetic acid (TFA) cleavage of PNA and optimisation of cleavage protocol.

FIGURE 3 | Synthetic strategies and efficiency of Cys-CINA in the synthesis of complex peptide-PNA conjugates. (A) Synthesis of cyclic peptide-PNA conjugate:
CINA-OctGly-Dab-Thr-Dab-Dab*-Dab-D-Phe-Leu-Dab-Dab-Thr* (1. 2 equivalents), PNA: Cys-PEG-Cyt-Thy-Cyt-Ade-Thy-Ade-Cyt-Thy-Cyt-Thy-Thy-Gua-Lys-NH2 (1
equivalent), 10 M TCEP, PBS, pH 7.4. (B) Analytical HPLC spectra for polymyxin, PNA and crude polymyxin-PNA conjugate. (C) “One-pot” synthesis of thioether cross-
linked cathelicidin-PNA conjugate: CINA-PEG-Val-Cys-Lys-Arg-Trp-Lys-Lys-Trp-Lys-Arg-Lys-Trp-Lys-Lys-Trp-Cys-Val-NH2 (1. 2 equivalents), PNA: Cys-PEG-
Cyt-Thy-Cyt-Ade-Thy-Ade-Cyt-Thy-Cyt-Thy-Thy-Gua-Lys-NH2 (1 equivalent) 10 M TCEP, PBS, pH 7.4, 1,2-dibromobutene. (D) Analytical HPLC spectra for linear
cathelicidin, PNA, crude cathelicidin-PNA conjugate, and in situ side-chain cross-linking. [TCEP: tris(2-carboxyethyl) phosphine, PEG: 8-Amino-3,6-Dioxaoctanoic Acid,
PBS: phosphate buffer saline].
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United States) using blue (BL) and violet (VL) laser detection
channels. The percentage of bacterial cells with damaged
membranes was determined using propidium iodide (PI, Ex/
Em 488/660–690 nm).

In vitro Toxicity
Human lung epithelial cells (A549) were obtained from the
American Type Culture Collection (ATCC) and maintained in
DMEM supplemented with 10% FBS in an incubator containing
5% CO2 at 37°C. Cells were plated in 96-well plates at 104 per well
for 24 h, then were incubated with LASP-072, LASP-097, LASP-
132 (0.04 mM) for another 24 h (Ahmed et al., 2017). The
viability (%) of A549 cells was measured with XTT staining
(200 μg/ml) combined with phenazine methosulfate (25 μM) in
the same culture medium for 2 h at 37°C (De Oliveira Alves et al.,
2017). The absorbance was measured at 475 nm using an Infinite
M200 plate reader (Tecan group Ltd., Zürich, Switzerland). Cell
viability (%) was calculated by the ratio of the background
subtracted absorbance of treatments compared with the mean
absorbance of untreated controls (Riss et al., 2016).

RESULTS AND DISCUSSION

All PNAs were synthesized using Fmoc/Bhoc protected PNA
building blocks by standard solid-phase synthesis (SPPS)
protocol (Table 1). In our initial attempt to cleave the
N-terminal cysteine containing PNA (Cys-PNA) from rink
amide resin, we observed the formation of a Bhoc-adduct as a
major product (characterized by a 166 Dalton higher mass),
resulting in a significant loss in the yield of the desired PNA
(Figure 2, purified yield only 5%) (Goodwin et al., 1998). The
benzhydryloxycarbonyl (Bhoc) protecting group generates
“benzhydryl cation” during the trifluoroacetic acid (TFA)
cleavage. This benzhydryl cation reacts with the 1,2-
aminothiol moiety of N-terminal cysteine and produces a

Bhoc-adduct. Previously, Goodwin et al. (1998) utilized the
S-t-butylmereapto group as an orthogonal protecting group
strategy to synthesize Cys-PNAs. The use of S-t-butylmereapto
protected N-terminal cysteine residue prevented the Bhoc adduct
formation. However, additional deprotection and purification
steps were needed to obtain the desired Cys-PNA. Notably,
the reported strategy is time-consuming and may present a
bottleneck for structure-function studies involving large
peptide-PNA libraries. Therefore, we optimized the cleavage
conditions that improved the Cys-PNA yields with minimum
steps. Initially, we investigated four cleavage solutions, each with
different scavengers (4-Methoxythiophenol, 4-Mercaptophenol,
Cysteine, and Cysteamine) that preferentially react with
“benzhydryl cation”. The LC-MS analysis suggested that
cysteamine exhibited a better ability to scavenge the
“benzhydryl cation” (Supplementary Figure S2). We then
optimized the concentration of cysteamine and revealed that 2
equivalents of cysteamine per Bhoc group was essential to avoid
the formation of the Bhoc adduct. The optimized cleavage
conditions significantly improved the yields of the Cys-PNA
(LASP-050, 55%).

Once a large scale Cys-PNA (LASP-050, Supplementary
Figure S1) was accomplished, we synthesized 5 structurally
diverse peptides with the CINA moiety using standard SPPS
protocol. The synthesis of cyclic peptide-PNA conjugates
involves critical steps such as handling orthogonally protected
cyclic peptides with labor-intensive synthesis and multiple
purifications (Alam et al., 2011; Shinbara et al., 2020). Thus,
the synthesis of cyclic peptide-PNA conjugates presents
significant challenges. To investigate the efficiency of CINA-
conjugation, we synthesized a polymyxin analogue (LASP-026,
Table 1, Supplementary Figure S3) with a CINA moiety. The
presence of N-terminal CINA moiety did not affect the yields of
polymyxin analogue. The CINA-peptide LASP-026 and Cys-
PNA LASP-050 (Figure 3A) were then used to optimize
conjugation conditions. We observed that the Cys-PNA

FIGURE 4 | The inhibition zone of peptides, PNA, and peptide-PNA conjugates against A. baumannii 5075D (A) polymyxin and PNA No zones of inhibition
observed, (B) polymyxin-acpP PNA conjugate zone of inhibition observed.
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(LASP-50) was completely conjugated to the polymyxin peptide
(LASP-026) within 2 h (Figure 3B). The use of aqueous buffers
for the conjugation reaction enabled direct purification. Since the
thiazolidine ring is not stable in 0.1% TFA buffers (Morewood
and Nitsche, 2021), the peptide-PNA conjugate (LASP-059) was
purified using a less acidic formic acid buffer (Nitsche et al.,
2019). The optimized Cys-CINA conjugation method was
applied to synthesize all other peptide-PNA conjugates
(Table 1). Subsequently, we investigated the effect of the
position of the CINA group and peptide length on the
efficiency of conjugation reaction using LASP-054 and LASP-
077 (Table 1, Supplementary Figures S4, S5). A lysine-side-
chain anchored CINA peptide RXR (Popella et al., 2021) and an
antimicrobial peptide “drosocin” containing 19 amino acids were
selected as templates (Hansen et al., 2016). The conjugation
reactions were completed within 4 h, and both peptide-PNA
conjugates, LASP-058 (95%) and LASP-084 (90%), were
obtained with high yields. The CINA group is highly selective
towards N-terminal cysteine and enables the orthogonal disulfide
bond formation or thioether cross-linking with intra-chain free
thiols. We explored this selectivity of Cys-CINA chemistry and
synthesized the disulfide-linked cathelicidin-PNA conjugate
(LASP-088) in two steps. Interestingly, the conjugation buffer

contains TCEP as a reducing agent, which provides an
opportunity to explore the facile formation of thioether bonds
using halogenated cross-linking agents such as 1,4-
dibromobutene (Heinis et al., 2009; Fadzen et al., 2017).
Hence, we utilized this key attribute of the Cys-CINA
approach and developed a “one-pot” protocol for the
conjugation and side-chain cross-linking. A cathelicidin
analogue was an ideal template for investigating this strategy
(Mwangi et al., 2019). The linear peptide (LASP-078,
Supplementary Figure S6) was quantitatively converted to
conjugate intermediate within 3 h (Figure 3C). Excitingly, in
situ formation of thioether linkage between 1,4-dibromobutene
and the free thiols of non-terminal cysteines yielded LASP-086 as
a major product (Figure 3D). Notably, Cys-CINA conjugation
reactions were efficiently conducted in an aqueous buffer, which
allowed facile handling and purification of the conjugates.

The selected peptide sequences are known for their
antimicrobial activity (Le et al., 2017). Therefore, we evaluated
the antimicrobial activity of synthesized peptide-PNA conjugates
using the Disc Diffusion Assay (DDA) against a panel of MDR
Gram-negative bacteria consisting of P. aeruginosa, A.
baumannii, K. pneumoniae, E. coli, including the isolates
highly polymyxin-resistant A. baumannii 5075R, and

FIGURE 5 | Bacterial flow cytometry analysis. Early log phase of A. baumannii 5075, 5075D and 5075R were treated with LASP-072, LASP-097 and LASP-132
(0.04 mM, 1 and 24 h). Bacterial cells were stained with PI and analyzed by fluorescence-activated cell sorting (FACS) flow cytometry. The histograms represent the
percentage of PI-positive cells after each treatment.
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A. baumannii 5075D (Figure 4 and Supplementary Table S1).
No zone of bacterial growth inhibition was observed in the
presence of conjugates LASP-058, LASP-086, and controls
(unconjugated peptide and PNAs). However, conjugates
LASP-084 and LASP-088 showed a zone of inhibition
(diameter of 8 mm) against E. coli DH5α, A. baumannii
5075, and A. baumannii 5075D. Interestingly, A. baumannii
5075, which exhibits a polymyxin-dependent resistance
phenotype, showed greater bacterial growth in the presence
of LASP-084. The polymyxin-PNA conjugate LASP-059,
showed better antimicrobial activity compared to LASP-058,
084, 088, with the diameters of inhibition zones ranging between
7 and 10 mm (Supplementary Table S1). These experiments
suggested that polymyxin peptides can be an effective carrier for
antimicrobial PNA. Therefore, we further synthesized 10-mer
PNAs targeting four bacterial essential genes anti-rpoA LASP-
095 (Abushahba et al., 2016), anti-murA LASP-096 (Goh et al.,
2009; Mondhe et al., 2014), anti-acpP LASP-097 (Hansen et al.,
2016), and anti-rpoD LASP-119 (Bai et al., 2012; Alajlouni and
Seleem, 2013). During the synthesis of the next set of peptide-
PNA conjugates, we switched the direction of the conjugation
handles to investigate the impact on the efficiency of
conjugation. Here, PNAs were synthesized with an
N-terminal CINA moiety (LASP-095, 096, 097 and 119,
Table 1) and a polymyxin analogue (LASP-072, Table 1) was
synthesized containing an N-terminal cysteine residue
(Supplementary Figure S3). Pleasingly, the alteration of the

conjugating handle did not affect the efficiency of the Cys-CINA
conjugation (90–98%, Table 1). The synthesized peptide-PNA
conjugates LASP-130, -131, -132 and -133 showed zones of
inhibition in bacterial growth (diameter in the range of
11–14 mm). Importantly, all conjugates (LASP-130 to 133,
Supplementary Table S1, Supplementary Figures S7–S13)
showed antimicrobial activity against A. baumannii 5075R
and A. baumannii 5075D without any observed dependent
phenotype (Figure 4). Excitingly, LASP-132 showed a
maximum zone of inhibition, indicating the potential
promise of polymyxin anti-acpP PNA conjugates for the
development of new antimicrobial agents.

Intrigued by the activity of LASP-132 against polymyxin-
resistant A. baumannii isolates (5075R with LPS
phosphoethanolamine modification, and LPS loss polymyxin-
dependent resistant isolate 5075D), we investigated the potential
mode of action of our PNA conjugates using flow cytometry
(Figure 5). The increase in proportions of PI-positive cells (%)
was observed following the treatment with LASP-072 and LASP-
132 for all the isolates tested at 1 h; whereas these proportions
were minimal in untreated controls at the same time-point. Our
results show the membrane damage in polymyxin-resistant A.
baumannii 5075R and 5075D by LASP-072 and LASP-132,
indicating re-sensitization of the polymyxin-resistant bacteria
to PNAs. Our finding also highlights the outer membrane as a
potential target for LASP-132 besides its intracellular antisense
activity (Bergen et al., 2006; Rasmussen et al., 2007).
Importantly, the proportions of PI-positive bacterial cells (%)
after the treatment of LASP-132 was higher (11.9%–16.5%)
compared to that by LASP-072 at 1 h, indicating a higher
capacity of membrane disorganization activity of the former.
The membrane damage activity of LASP-132 is well correlated
with the antimicrobial activity, where a larger zone of inhibition
was observed for LASP-132 compared to that of LASP-072
(Figure 4). Interestingly, membrane damage activity of LASP-
132 was decreased at 24 h; in particular, no distinct population of
PI-positive cells was observed in A. baumannii 5075R, possibly
due to the remodelling of the bacterial outer membrane at 24 h
(Zhu et al., 2020). We also investigated the in vitro toxicity of
LASP-072, LASP-097, and LASP-132 in human lung epithelial
A549 cells (Figure 6) (Ahmed et al., 2017; Mea et al., 2020).
Interestingly, the antibacterial LASP-072 and LASP-132 caused
<10% death of A549 cells and no significant difference was
observed with the untreated control samples. Our cell culture
results indicate the relatively low toxicity of both compounds.
Overall, our findings suggest that LASP-132 is a promising hit
for further development of PNA-peptide conjugates against
MDR A. baumannii, including those resistant to the last-line
polymyxins.

CONCLUSION

We successfully developed an efficient and biocompatible strategy
to conjugate complex peptides with PNAs using the 2-
cyanoisonicotinamide moiety. This method utilizes economic
and commercially available 2-cyanoisonicotinic acid that can

FIGURE 6 | Cell viability (%) of the A549 cells treated with LASP-072,
LASP-097 and LASP-132 (0.04 mM, 24 h) using XTT assay (mean ± SD; n =
4). Tukey’s multiple comparisons test was performed and p > 0.05.
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be directly introduced to peptide and PNA by SPPS. We also
developed a new cleavage protocol to enhance the yields of
N-terminal cysteine containing PNAs. Importantly, the
compatibility of Cys-CINA conjugation with chemically
diverse peptides, including cyclic and cysteine-rich peptides,
allows scalable and cost-effective syntheses of complex
peptide-PNA analogues. Further, we developed the “one-pot”
conjugation and side-chain cross-linking protocol for the
cysteine-rich peptide. The Cys-CINA conjugation strategy
offers a versatile, high yielding and efficient approach for
synthesizing peptide-PNA conjugates that will advance the
current oligonucleotide-based chemical biology research.
Finally, this study identified a polymyxin-PNA conjugate
(LASP-132) as a promising antimicrobial agent against MDR
A. baumannii. The LASP-132 serves as a template for the future
development of peptide-PNA antibiotics underway in our
laboratory.
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