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Abstract
Aging, the universal phenomenon, affects human health and is the primary risk
factor for major disease pathologies. Progeroid diseases, which mimic aging at
an accelerated rate, have provided cues in understanding the hallmarks of
aging. Mutations in DNA repair genes as well as in telomerase subunits are
known to cause progeroid syndromes. Werner syndrome (WS), which is
characterized by accelerated aging, is an autosomal-recessive genetic
disorder. Hallmarks that define the aging process include genomic instability,
telomere attrition, epigenetic alterations, loss of proteostasis, deregulation of
nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell
exhaustion, and altered intercellular communication. WS recapitulates these
hallmarks of aging and shows increased incidence and early onset of specific
cancers. Genome integrity and stability ensure the normal functioning of the cell
and are mainly guarded by the DNA repair machinery and telomeres. WRN,
being a RecQ helicase, protects genome stability by regulating DNA repair
pathways and telomeres. Recent advances in WS research have elucidated
WRN’s role in DNA repair pathway choice regulation, telomere maintenance,
resolution of complex DNA structures, epigenetic regulation, and stem cell
maintenance.
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Introduction
Werner syndrome (WS) is a segmental progeria. It belongs to a 
small group of disorders characterized by accelerated aging. WS 
patients in their 20s and 30s display features similar but not iden-
tical to those of normal older individuals, including skin atrophy, 
graying and loss of hair, wrinkles, loss of fat, cataracts, atheroscle-
rosis, and diabetes (reviewed in Yokote et al.1). WS is caused by 
mutations in the WRN gene and has an estimated global incidence 
ranging between 1 in 1,000,000 and 1 in 10,000,000 births; how-
ever, the incidence is higher in Japan at 1 in 100,000 births2. WS 
is inherited in an autosomal-recessive manner. To date, a total of  
83 different mutations in WRN have been identified and catalogued 
by the International Registry of WS (Seattle, WA, USA) and the 
Japanese Werner Consortium (Chiba, Japan)2. Because of its resem-
blance to normal aging, WS is widely studied in the field of aging, 
and many consider WS the best example of an accelerated aging 
syndrome.

Diagnostic criteria for WS were proposed in 19943 and recently 
updated4. Individuals with WS develop normally until their first 
decade, and the first clinical sign of the syndrome appears as 
lack of the pubertal growth spurt during their teen years. Affected  

individuals in their 20s and 30s begin to manifest skin atrophy and 
loss and graying of hair. Bilateral cataracts, abnormal glucose and 
lipid metabolism, hypogonadism, skin ulcers, and bone deformity 
appear by the fourth decade. Fatty liver, osteoporosis, and calci-
fication of the Achilles tendon are also predominantly observed. 
WS may be a good model to study sarcopenia5. Malignancy and 
atherosclerotic vascular diseases such as myocardial infarction are 
the major causes of death among patients with WS.

The WRN gene codes for the WRN protein. WRN is a member of the 
RecQ helicase family of proteins and is unique in that it possesses 
both helicase and exonuclease domains6. WRN also has strand 
annealing activity, but its in vivo role remains unclear. Recently, 
López-Otín et al. created a list of pathways that are changed during 
aging7. These hallmarks of aging pathways have been widely con-
sidered the key processes affected during aging. Since WS clinical 
features include many aspects of normal aging, it is not surprising 
that WRN functions in, or its loss impacts, many of these pathways. 
In this review, we survey the literature and compare each aging hall-
mark against patients with WS (Table 1). We go on to describe a 
few key areas of recent WRN-related advances and then point out 
areas for future research.

Table 1. Hallmarks of aging in comparison with Werner syndrome.

Aging hallmarks Brief description Werner syndrome (WS) Reference for WS

Genome 
instability

Alteration to the genetic information over time 
due to DNA damage and defective DNA repair 
mechanisms. Genomic instability affects overall 
functions of the cell.

Patient cells show gross genomic 
instability. WRN-deficient cells display 
large deletions.

Salk et al.8 
Chen et al.9

Telomere 
attrition 

Progressive decrease in telomere length over 
multiple cell divisions. Telomere attrition mainly 
occurs owing to the end-replication problem and 
the lack of telomerase enzyme.

WRN interacts with Pot1 and TRF2 
components of the shelterin complex 
to promote telomere maintenance. 
Telomere length in older patients with WS 
(40–60 years) is markedly shorter than 
in younger patients with WS (~30 years) 
and age-matched non-WS individuals.

Opresko et al.11 
Ishikawa et al.10 
Tokita et al.72

Epigenetic 
alterations 

Involves alterations in the DNA methylation patterns, 
post-translational modification of histones, and 
chromatin remodeling

Patients with WS show an increased 
DNA methylation age with an average 
of 6.4 years. WRN interacts with 
methylation complex consisting of 
SUV39H1, HP1α, and LAP2β, which is 
responsible for the epigenetic histone 
mark H3K9 trimethylation (H3K9me3). In 
response to DNA damage, WRN recruits 
chromatin assembly factor 1 (CAF-1) to 
alter chromatin structure.

Maierhofer et al.12 
Jiao et al.78 
Zhang et al.14

Loss of 
proteostasis 

Impairment of protein homeostasis due to 
accumulation of misfolded proteins and 
deregulation of proteolytic system. Chronic 
expression of misfolded, unfolded, or aggregation 
of proteins contributes to the development of age-
related pathologies such as Alzheimer’s disease 
and cataracts.

Cataracts are one of the most common 
features observed in patients with WS. 
WRN expression is severely affected 
by promoter hypermethylation in age-
related cataract lens cells.

Zhu et al.15
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Aging hallmarks Brief description Werner syndrome (WS) Reference for WS

Mitochondrial 
dysfunction 

Reduction in the biogenesis of mitochondria and 
mitophagy. Reduced ATP production coupled 
with increased electron leakage. Oxidation of 
mitochondrial proteins.

WS cells show increased reactive 
oxygen species (ROS) production. 
Hepatocytes of Wrn (∆hel/∆hel) mice 
have decreased mitochondria and show 
altered mitochondrial functions.

Cogger et al.16

Cellular 
senescence 

Stable arrest of the cell cycle coupled with 
stereotyped phenotypic changes such as 
the accumulation of persistent DNA damage, 
senescence-associated β-galactosidase, p16INK4A, 
and/or telomere shortening

Cellular senescence is a striking feature 
of WS patient cells. WRN deficiency 
increased the accumulation of persistent 
DNA damage, p16, and senescence-
associated β-galactosidase.

Norwood et al.73 
Lu et al.13

Deregulated 
nutrient sensing 

Somatotropic axis essentially consisting of growth 
hormone, insulin-like growth factors (IGF-1 and 
II), and their carrier proteins and receptors 
regulates metabolism in mammals. In addition 
to insulin–IGF-1 (IIS) signaling pathway, which 
senses glucose, three interconnected nutrient 
sensing systems are associated with aging. The 
mechanistic target of rapamycin (mTOR) senses 
high amino acid concentrations, AMPK (5′-
adenosine monophosphate [AMP]-activated protein 
kinase) senses low-energy states by detecting 
high AMP levels, and sirtuins sense low-energy 
states by detecting high NAD+ levels. With aging, 
IIS pathway decreases, mTOR activity increases, 
AMPK upregulates in skeletal muscles, and sirtuins 
are downregulated.

WRN protects against starvation-induced 
autophagy. Further research is required 
to elaborate the role of WRN in regulating 
nutrient-sensing mechanisms.

Maity et al.17

Stem cell 
exhaustion 

A decline in the proliferation of stem and progenitor 
cells, which are required for tissue regeneration

WRN-deficient mesenchymal stem cells 
showed progressive disorganization 
of heterochromatin and premature 
senescence.

Zhang et al.14

Altered 
intercellular 
communication 

Enhanced activation of nuclear factor kappa 
B (NF-κB) and increased production of tumor 
necrosis factor (TNF), interleukin-1 beta (IL-1β), 
and cytokines resulting in age-associated alteration 
in intercellular communication. Accumulation of 
pro-inflammatory tissue damage, failure of immune 
system to clear pathogens and dysfunctional host 
cells, and occurrence of defective autophagy 
response. Bystander effect in which senescent cells 
induce senescence in neighboring cells via gap 
junction–mediated cell-cell contacts and ROS.

Patients with WS have elevated 
levels of inflammation-driven aging-
associated cytokines (IL-4, IL-6, IL-10, 
granulocyte macrophage colony-
stimulating factor [GM-CSF], IL-2, TNF-
α, interferon gamma [IFNγ], monocyte 
chemoattractant protein-1 [MCP-1], and 
granulocyte colony-stimulating factor [G-
CSF]) compared with normal individuals.

Goto et al.18

Aging research has enumerated nine hallmarks of aging: genomic 
instability, telomere attrition, epigenetic alterations, loss of prote-
ostasis, deregulated nutrient sensing, mitochondrial dysfunction, 
cellular senescence, stem cell exhaustion, and altered intercellular 
communication (Table 1)7. Patients with WS have defects in DNA 
repair machinery and show genomic instability8,9. WRN, in asso-
ciation with the telomere-protecting shelterin complex, promotes 
telomere maintenance, and loss of WRN, as seen in vitro and in 
patients with WS, results in the rapid decline of telomere length10,11. 
A progressive increase in DNA methylation is considered an aging 
biomarker, and, consistent with this, patients with WS display 
increased epigenetic age12. Increased DNA damage accumulation, 
genomic instability, telomere attrition, and histone methylation are 
contributing factors for cellular senescence and stem cell exhaus-
tion in WS13,14. Although extensive research is required to sort out 

the molecular functions of WRN in regulating proteostasis, nutrient 
sensing, and mitochondria, WS is phenotypically associated with a 
loss in proteostasis and mitochondrial dysfunction15,16. WRN pro-
tects cells from starvation-induced autophagy, which is deregulated 
by an imbalance in nutrient-sensing mechanisms17. Inflammation 
alters intercellular communication owing to the accumulation of 
cytokines increasing with aging. Patients with WS have elevated 
cytokine levels of interleukin-2 (IL-2), IL-4, IL-6, tumor necrosis 
factor alpha (TNF-α), interferon gamma (IFNγ), and monocyte che-
moattractant protein-1 (MCP-1)18.

In the past five years, there have been a large number of studies on 
WS, covering areas including those discussed in Table 1. Here, we 
discuss some areas of particular relevance where significant insight 
has been gathered in recent years. These include the role of WRN 
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in DNA double-strand break (DSB) repair, telomere maintenance, 
senescence and heterochromatin stabilization, and cancer. We will 
discuss these selected areas in depth below.

WRN regulates double-strand break repair pathway 
choice
The human genome is under constant exposure to exogenous and 
endogenous agents. DSBs are among the most potent and deleteri-
ous forms of cellular DNA damage, causing mutagenic changes, 
developmental defects, gross chromosomal rearrangements, cell 
death, and malignancy19. Approximately 10 to 50 DSBs are being 
formed per cell per day20. DSBs are mainly detected, processed, and 
repaired by two pathways: homologous recombination (HR) and 
non-homologous end joining (NHEJ). The choice of DNA repair 
pathway is tightly regulated and associated with the cell cycle. 
While NHEJ is active throughout the cell cycle, DSBs in S and G

2
 

phases are preferably repaired by HR using the intact sister chroma-
tid. WRN recruits to DSB sites in G

1
 as well as in S and G

2
 phases21. 

The DSB sensor protein complexes Ku70/80 and MRN (MRE11, 
RAD50, NBS1) initiate NHEJ and HR pathways, respectively. The 
HR pathway is a high-fidelity DNA repair mechanism. In contrast, 
the NHEJ pathway is an error-prone mechanism where the DSBs 
are processed and ligated without relying on sequence homology22. 
Despite its error-prone nature, NHEJ is the predominant form of 
DSB repair in human somatic cells. In addition to these DSB repair 
pathways, error-prone alternative (alt)-NHEJ and single-strand 
annealing also operate under various conditions22.

WRN mainly localizes to the nucleolus, and then translocates to 
DSBs, when introduced. The acetylation of WRN by CBP/p300 
affects its subcellular distribution, and deacetylation mediated by 
Sirt1 affects its translocation to the nucleolus23,24. In response to 
DNA damage, WRN interacts with several proteins that partici-
pate in HR, NHEJ, and single-strand annealing6. Recent advances 
in DSB repair suggest the existence of two distinct mechanisms 
of NHEJ: classical/canonical (c)-NHEJ and alt-NHEJ25. Alt-NHEJ 
is distinguished from c-NHEJ by the participating proteins, DSB 
resection, and the use of microhomology during end joining. The 
essential factors involved in c-NHEJ include Ku70/80 heterodimer, 
DNA-dependent protein kinase catalytic subunit (DNA-PKcs), 
and XRCC4/ligase IV (X4L4) complex. Alt-NHEJ mainly acts 
as a backup pathway to c-NHEJ and operates as a major pathway 
of DSB repair in Ku70/80-deficient cells and ligase IV-deficient 
cells26,27. Alt-NHEJ depends on proteins that participate in HR; 
however, the pathway does not depend on a homologous sister chro-
matid. MRE11, PARP1, CtIP, DNA ligase I, and DNA ligase III all 
promote alt-NHEJ28–30. Research from our lab and others identified 
physical interactions of WRN with Ku70/80, DNA-PKcs, X4L4, 
PARP1, DNA ligase I, DNA ligase III, and MRN31–37.

The Ku70/80 heterodimer in association with DNA-PKcs initiates 
a cascade of events that constitutes the c-NHEJ pathway38. The 
Ku70/80 complex interacts directly with WRN and stimulates its 
exonuclease activity31,39. WRN has two putative Ku-binding motifs, 
one in the N-terminus and another in the C-terminus, which accel-
erate DSB repair. The N-terminal Ku-binding motif mediates Ku-
dependent stimulation of WRN exonuclease activity40. DNA-PKcs, 
which gains robust kinase activity by interacting with DSB-bound 

Ku70/80, phosphorylates WRN at S440 and S467 positions and 
regulates WRN’s enzymatic activities32,41,42. With its nuclease activ-
ity, WRN processes DNA ends and generates substrates suitable 
for ligation mediated by the X4L4 complex33. Ku-mediated c-NHEJ 
dominates over all other DSB repair pathways, while alt-NHEJ is 
the default DNA repair pathway in Ku-deficient cells or under con-
ditions that inhibit c-NHEJ43. WRN’s role in DSB repair pathways 
is complex; however, findings clearly demonstrate that WRN stimu-
lates c-NHEJ with its enzymatic activities and inhibits alt-NHEJ 
with its non-enzyme functions21.

The accurate repair of DSBs depends on the regulation of end 
processing. Resection of DSBs is very limited during c-NHEJ and 
is extensive during HR and alt-NHEJ. End resection is carried out 
in a two-step process: initial resection (short-range), which is regu-
lated by MRN complex with CtIP, and extended resection (long-
range) performed by DNA2/BLM or EXO144. End resection during 
HR and alt-NHEJ is initiated by MRE11 in association with CtIP. 
Interestingly, WRN actively restrains 5′-3′ end resection by inhibit-
ing the recruitment of MRE11 and CtIP to DSBs, specifically in 
G

1
 phase. Consequently, alt-NHEJ is upregulated in WS cells and 

WRN-deficient cells, resulting in telomere fusions. Consistent with 
this finding, the inhibition of alt-NHEJ by downregulation of CtIP 
suppresses telomere fusions in WRN-deficient cells21. WRN has 
also recently been shown to inhibit MRE11/Exo1-dependent end 
resection and generation of single-stranded DNA in camptothecin 
(CPT)-treated cells45. CPT is an anti-cancer agent which blocks 
replication and induces WRN degradation46,47. Replication fork 
progression in CPT-treated (low-dose) WS cells was rescued by 
expressing wild-type WRN42, and the exonuclease activity of WRN 
was required to protect DSBs at replication forks from MRE11-
dependent processing45. WRN and DNA2 physically interact with 
each other and coordinate their enzyme activities to promote dou-
ble-stranded DNA degradation and resection48,49. Interestingly, the 
phosphorylation of WRN at S1133 by cyclin-dependent kinase 1 
(CDK1), which occurs during late S/G

2
 and M phases, regulates 

DSB repair pathway choice between HR and NHEJ50. Taken 
together, WRN plays a major role in DSB repair pathway choice 
(Figure 1).

Telomere maintenance
Chromosome ends, the telomeres, are unique DNA structures that 
must be replicated and protected. Human telomeres are approxi-
mately 11–15 kilobases in length and composed of about 2,500 
repeats of TTAGGG sequence followed by a single-stranded 3′ tail 
region of the same sequence. With age, telomere length is reduced 
mainly owing to end-replication problems. Telomeres are packed 
into protein-DNA complexes with the aid of shelterin proteins. We 
and others have previously shown that WRN interacts with TRF1, 
TRF2, and POT1 components of the shelterin complex11,51–53.

Several lines of evidence suggest that telomere dysfunction  
contributes to WS pathology. Cells from WS patients and  
WRN-deficient cells undergo early replicative senescence and dis-
play telomere loss and chromosomal rearrangements. Telomere 
fusions and chromosome translocations are also well documented 
in WS patient and WRN-deficient mouse cells54–58. Importantly,  
re-introduction of telomerase activity into WS cells prevents  
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Figure 1. Double-strand break (DSB) repair pathway choice. DSBs generated by extrinsic and intrinsic factors are recognized by the 
sensor proteins Ku70/Ku80, WRN, MRN, and PARP1 to mediate repair. DSBs are repaired via classical/canonical non-homologous end joining 
(c-NHEJ), alternative (alt)-NHEJ, and homologous recombination (HR) pathways. WRN promotes Ku-dependent c-NHEJ with its catalytic 
activities and strongly inhibits alt-NHEJ with its non-catalytic activities. WRN suppresses the recruitment and downstream functions of MRE11 
and CtIP to inhibit alt-NHEJ. During S/G2 phases of the cell cycle, WRN promotes HR. Accurate repair of DSBs is required for genome stability 
without loss of genetic information.

senescence and telomere loss54,59. Additionally, although the WRN 
protein is ubiquitously expressed, WS patient cells preferentially 
display premature aging of mesenchymal cells60. Reprogramming 
of induced pluripotent WS stem cells has reinforced the importance 
of the roles WRN plays in telomere maintenance because differen-
tiation into any cell which naturally expresses telomerase extends 
the proliferative capacity of WS cells61. A Wrn-null mouse model 
further substantiates the importance of WRN in telomere mainte-
nance. These mice failed to show significant pathology until bred 
with late-generation telomerase-deficient mice, demonstrating that 
short telomeres were critical to revealing WS-like premature aging 
features62,63.

WRN acts at telomeres to promote replication and suppress recom-
bination. Cells use telomerase, a reverse transcriptase enzyme with 
an RNA component, Terc, to replicate and lengthen telomeres. It is 
thought that WRN’s helicase activity contributes to telomere repli-
cation through the resolution or dissolution of complex DNA struc-
tures found at telomeres such as T-loops, D-loops, and G-quartets 
(G4s)11,64–66. G4s are formed by four guanines associated through 
Hoogsteen base pairing. They are thought to arise in areas of single-
stranded DNA, in regions undergoing replication and transcription, 
and preferentially in the telomeric G-rich strand. G4s may promote 
genomic instability; therefore, enzymes, like WRN, exist to unwind 
them, thereby suppressing recombination66–69.

In the absence of telomerase, cells maintain their telomeres via 
recombination mechanisms termed alternative lengthening of tel-
omeres (ALT). ALT cells and cells without WRN protein show 
increases in telomere-sister chromatid exchanges21,56,70. This increase 
has been, in part, attributed to a rise in alt-NHEJ in WRN-deficient 

cells21. Interestingly, knockdown of WRN in three different ALT 
cell lines demonstrated variable dependence on WRN to prevent 
telomere loss71. This suggests that there are multiple telomerase-
independent mechanisms that contribute to telomere maintenance.

Although it is routinely reported that skin cells from patients with 
WS have shorter telomere length10, it is still debated whether this is 
true in all organs and how it contributes to the pathology found in 
patients with WS. In one study of two patients with WS at autopsy, 
the authors did not find substantially shorter telomeres from the  
liver relative to controls72. However, the liver is considered a regen-
erative organ and therefore may have the capacity to re-activate  
telomerase in this tissue, negating the impact of WRN loss. In 
another recent study, younger WS patients with intractable ulcers 
had normal terminal restriction fragment lengths, suggesting that 
telomere length was not likely driving this phenotype10. While the 
prevailing theory is that telomere-driven replicative senescence pro-
motes pathology in WS, this may need to be revised as we learn 
more about telomeres in different organs from patients with WS.

Epigenetic modification and senescence
In vitro, premature cellular senescence is a striking feature of 
WRN-deficient cells73. Senescent cells are defined as viable 
growth-arrested cells. Senescence and exhaustion of stem cells are 
thought to contribute to tissue degeneration and aging. There are 
many actions which induce cellular senescence: extended cellular 
division, oncogene activation, telomere attrition, and exposure to 
DNA-damaging agents74. Senescent cells typically have an altered 
appearance and elevated secretion of pro-inflammatory cytokines 
which promote inflammation75. Until recently, cellular senescence 
in WRN-deficient cells was believed to be due to telomere issues 
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and the accumulation of replication-associated endogenous DNA 
damage.

The genome-wide distribution of histone methylation marks 
changes during aging76. Consistent with WS as an aging model, 
patients with WS display increased epigenetic age as measured by 
DNA methylation of known aging biomarkers12. In humans, H3K9 
trimethylation (H3K9me3) denotes constitutive heterochromatin 
and is mainly methylated by SUV39H1/2 histone methyltransferase 
(HMTase)77. Though not fully characterized, loss of heterochroma-
tin is considered to increase the susceptibility of genomic DNA 
to mutations and reduce transcriptional precision, both of which 
promote genomic instability during aging76. Interestingly, Zhang  
et al.14 reported that WRN exists in complex with SUV39H1, 
HP1α, and LAP2β, which together are responsible for the epi-
genetic histone mark H3K9me3. WRN also interacts with the  
chromatin remodeling chaperone chromatin assembly fac-
tor 1 (CAF-1)78, which deposits histones H3 and H4 onto newly  
replicated DNA79. In response to DNA damage, WRN recruits 
CAF-1 and participates in chromatin structure restoration78.

In stem cells, the histone methylation pattern is preserved over 
generations and is associated with the maintenance of stem cell 
potential. Mesenchymal stem cells differentiated from WRN-null 
embryonic stem cells display genome-wide reductions in H3K9me3 
levels contributing to heterochromatin disorganization and stem 
cell exhaustion14. Specifically, the loss of WRN resulted in loss 
of heterochromatin in subtelomeric and subcentromeric regions 
and altered the transcription of repetitive satellite DNA. Since 
epigenetic changes are a known hallmark of aging, Zhang et al. 
tested whether disorganized heterochromatin could induce cellular 
senescence14. Disorganized heterochromatin, without concomitant  
DNA damage, does in fact induce cellular senescence, and  
restoration of heterochromatin suppresses the senescence  
phenotype. Thus, the authors suggested that WRN participates in 
heterochromatin stability and demonstrated that heterochromatin 
disorganization is yet another mechanism whereby WRN deficiency 
can promote cellular senescence and aging.

Attempts to safely destroy senescent cells is a burgeoning field 
and one in which patients with WS may derive benefits. Since  
replicative senescence is a classic feature of WS cells, several  
groups are using WS cells to identify and characterize anti-
senescent agents. An inhibitor of p38, a mitogen-activated pro-
tein kinase, improved replication capacity in WS fibroblasts80,81.  
Rapamycin, a mechanistic target of rapamycin (mTOR) 
kinase inhibitor, decreased 53BP1 foci, a marker for DNA 
damage, and increased proliferation in WRN-knockdown 
cells after long-term treatment82. Rapamycin and hydro-
gen sulfide both have been shown to decrease senescence in 
WS patient cells, perhaps through Sirt1, although this needs  
further investigation83. Translational applications developed from 
WRN-deficient systems may not only benefit patients with WS but 
also provide insight into basic mechanisms of aging.

WRN in cancer research
WRN promotes DNA repair and genome stability, and conse-
quently patients with WS are predisposed to various cancers. The  

most common neoplasia in patients with WS are thyroid cancer, 
malignant melanoma, meningioma, soft tissue sarcoma, osteosa-
rcoma, breast cancer, and leukemias84,85. Additionally, there is a 
higher prevalence of mesenchymal or non-epithelial malignan-
cies (that is, so-called sarcomas) in patients with WS in contrast to  
normal older individuals who usually develop malignancies of epi-
thelial origin. It is widely believed that WRN functions as a tumor 
suppressor gene. Although patients with WS develop various can-
cers, limited studies have been conducted to correlate WRN muta-
tions in cancers in non-WS individuals. Interestingly, race-specific 
mutations in WRN were found to be associated with increased breast  
cancer risk. Breast cancer risk was increased by the Cys1367Arg 
mutation in German and Austrian populations and by the  
Phe1074Leu mutation in Taiwanese and Chinese populations86–89.

Primary tumors of colorectal cancer patients and cell lines dis-
play decreased WRN mRNA and protein expression90,91; however, 
no WRN mutations have been associated with colorectal cancer 
risk92,93. Irinotecan (CPT-11), a semi-synthetic derivative of CPT, 
which is routinely used in colorectal cancer therapy, enhances the 
survival of colorectal cancer patients with hypermethylated WRN 
promoter90. In contrast, Bosch et al. reported that hypermethylation 
of the WRN promoter does not have predictive value for person-
alized irinotecan-based therapy91. The observed differences could 
be due to the complex nature of promoter hypermethylation and 
varied expression of WRN. CPT and its derivatives inhibit DNA  
topoisomerase I (Top1) and generate DSBs during replication. 
WRN physically and functionally interacts with Top1, and WRN 
helps in resolving CPT-induced DNA lesions. Furthermore, the  
ectopic expression of WRN inhibits CPT-induced cellular  
senescence, cell death, and enhanced replication fork recovery and 
DSB repair45,46,48. Interestingly, recent studies suggest that CPT 
induces WRN and Top1 degradation via the ubiquitin proteasome 
pathway46,47. CPT-induced WRN degradation, but not Top1 degra-
dation, was found specifically in CPT-sensitive cells30. Thus, it is 
possible that WRN expression or degradation (or both) could be 
used as a biomarker for personalized chemotherapy, and further 
research should explore this potential.

Conclusions and future perspectives
As shown in Table 1, many of the hallmarks of aging are found in 
patients with WS and altered as a direct consequence of WRN loss. 
Although there is strong evidence for a role for WRN in several 
of the pathways (Figure 2), others show a weak association and 
need further investigation. Patients with WS display many aging 
features, but the initiating pathology for most is still not known. 
For example, patients with WS suffer from severe intractable foot 
ulcers; however, the underlying pathology has yet to be understood. 
Cataracts are another cardinal feature found in patients with WS, 
but the mechanism or mechanisms instigating cataracts in patients 
with WS have to be identified. Age-associated cataracts occur 
because of an imbalance in the proteostasis in the lens cells94; per-
haps a similar mechanism is at play in WS. Recent studies sug-
gest that WRN regulates cellular functions, like DSB repair, via 
catalytic and non-catalytic functions. Further investigations into 
its catalytic and non-catalytic functions may help elucidate disease 
pathology. Additional research is also needed to further define the 
specific functions for the exonuclease and helicase domains and to  
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Figure 2. The role of WRN in the contexts of the known hallmarks of aging7. The widths of the lines showing inhibition indicate the 
estimated relative involvement of WRN in the processes. ROS, reactive oxygen species.

understand why these two activities are present in the same protein. 
They may cooperate in some pathways such as base excision repair95 
or telomere maintenance11 or they may not. Model organisms may 
be of benefit in this research because not all species express both 
the helicase and the exonuclease from one gene. In Caenorhabditis 
elegans and Drosophila, the two domains are expressed from sepa-
rate genes. Additionally, the analysis of WRN functions in model 
organisms will help identify conserved and divergent WRN roles 
over an organism’s life span.

Mammals have five RecQ helicases; it is important to dissect out 
why and how they cooperate in genome maintenance. Mutations in 
three of the five human RecQ helicases cause unique syndromes, 
indicating that they have non-overlapping functions. Patients with 
WS are affected by certain types of cancers compared with patients 
with Bloom and Rothmund-Thomson syndrome. Studies identify-
ing the mechanisms behind the susceptibility of these patients to 
certain type of cancers are still needed. Furthermore, the reason 

why patients with WS are prone to non-epithelial malignant tumors 
remains to be determined.
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