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Egyetem tér 1, Győr 9026, Hungary
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Abstract. Fuzzy grey cognitive maps (FGCMs) are extensions of fuzzy
cognitive maps (FCMs), where the causal connections between the con-
cepts are represented by so-called grey numbers. Just like in classical
FCMs, the inference is determined by an iteration process, which may
converge to an equilibrium point, but limit cycles or chaotic behaviour
may also show up.

In this paper, based on network measures like in-degree, out-degree
and connectivity, we provide new sufficient conditions for the existence
and uniqueness of fixed points for FGCMs. Moreover, a tighter conver-
gence condition is presented using the spectral radius of the modified
weight matrix.

Keywords: Fuzzy cognitive map · Fuzzy grey cognitive map ·
Stability · Convergence · Equilibrium point

1 Introduction

Fuzzy cognitive maps are neural network-based decision support tools, where the
neurons represent specific factors or characteristics of the modelled system [11].
Graphically, a fuzzy cognitive map is a weighted, directed graph. The constant
weights assigned to the edges from the interval [−1, 1] express the strength and
direction of causal connections. The current states of the neurons (which are
called concepts in FCM literature) are also characterized by numbers in the
[0, 1] interval (in some applications the interval [−1, 1] is also applicable [12]).
These are the activation values of the concepts [6].
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Formally, the system can be described by the set of concepts (C1, C2, . . . , Cn);
the current activation values of the concepts (A1, A2, . . . , An); the weight matrix
W which assigns weight wij to each edge connecting the nodes Ci and Cj),
expressing how strongly influenced is concept Ci by concept Cj . The sign of wij

indicates whether the relationship between Cj and Ci is direct or inverse. So
matrix W represents the weighted causal connections between the concepts. A
transformation function f : R → [0, 1] calculates the activation value of concepts
at every time step of the iteration and the activation values in the allowed range
(sometimes a function f : R → [−1, 1] is applied).

The iteration rule which calculates the values of the concept at every step
may or may not include self-feedback. In general form it can be written as

Ai(k) = f

⎛
⎝

n∑
j=1,j �=i

wijAj(k − 1) + diAi(k − 1)

⎞
⎠ (1)

where Ai(k) is the value of concept Ci at discrete time k, wij is the weight of
the connection from concept Cj to concept Ci and 0 ≤ di ≤ 1 expresses the
possible self-feedback. If di = 0, then there is no self-feedback. If we include the
dis into the diagonal of weight matrix W , the iteration equation can be rewritten
in more compact style:

Ai(k + 1) = f

⎛
⎝

n∑
j=1

wijAj(k)

⎞
⎠ = f(wiA(k)), (2)

where wi = [wi1, . . . , win] is the ith row of W and A(k) = [A1(k), . . . , An(k)]T

is the concept vector after k iterations. We apply dot product between them, so
wiA

(k) is a real number.
Moreover, if we couple the coordinates of the concept vector together and

denote by G the mapping R
n → R

n that generates the concept vector A(k + 1)
from A(k), then we have that:

A(k + 1) =

⎡
⎢⎣

A1(k + 1)
...

An(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣

f(w1A(k))
...

f(wnA(k))

⎤
⎥⎦ = G(A(k)). (3)

The iteration rule repeated until either the FCM converges to an equilibrium
state (fixed point) or the maximal number of iterations is reached. Mathemat-
ically, the FCM may converge to a fixed point, may arrive to a limit cycle or
shows chaotic pattern [2,5].

The weights of the connections are usually determined by human experts or
by learning methods. In both of the cases there are some uncertainties about
the exact values of the weights. This was the main motivation of Fuzzy Grey
Cognitive Maps, where the weights and concept values are modelled by the so-
called grey numbers [8–10,13].
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A grey number (denoted by ⊗g) is a number whose accurate value is
unknown, but we know the range within the value is included. A grey num-
ber with both a lower limit (g) and an upper limit (g) is called an interval grey
number [4], so ⊗g ∈ [g, g]. In applications, a grey number is usually an interval.
The basic arithmetic operations on grey numbers are the following [4]:

1. ⊗g1 + ⊗g2 ∈ [g1 + g2, g1 + g2]
2. − ⊗ g ∈ [−g,−g]
3. ⊗g1 − ⊗g2 ∈ [g1 − g2, g1 − g2]
4. ⊗g1 × ⊗g2 ∈ [min(S),max(S)],

where S =
{
g1 · g2, g1 · g2, g1 · g2, g1 · g2

}
5. If λ > 0, λ ∈ R, then λ · ⊗g ∈ [λg, λg]

Beside the above defined operations, we have to provide a consistent defi-
nition for the generalization of any f : R → R function to grey numbers. The
function of a grey number ⊗g ∈ [g, g] is the grey number f(⊗g) ∈ [f(⊗g), f(⊗g)],
where

f(⊗g) = inf{f(γ) : γ ∈ [g, g]} (4)

f(⊗g) = sup{f(γ) : γ ∈ [g, g]} (5)

For a continuous and monotone increasing function f we have

inf{f(γ) : γ ∈ [g, g]} = f(g) (6)

sup{f(γ) : γ ∈ [g, g]} = f(g) (7)

Consequently, f(⊗g) = f(g) and f(⊗g) = f(g) and f(⊗g) ∈ [f(g), f(g)].
The dynamics of an FGCM is similar to the original FCM’s. It begins with an

initial grey vector A(0), which represents initial uncertainty. The elements of this
vector are grey numbers, i.e. Ai(0) ∈ [Ai(0), Ai(0)] for every i. The activation
values are computed by the iterative process, resulting grey numbers as concept
values:

Ai(k) ∈
[
f(wiA(k − 1)), f(wiA(k − 1))

]
(8)

An FGCM with continuous threshold produces one of the following behaviours:

1. Fixed point: the FGCM converges to a grey fixed-point attractor. This fixed
point is vector, whose coordinates are grey numbers (intervals). The conver-
gence (stabilization) means that the endpoints of these intervals are stabilized
after a certain number of iterations.

2. Limit cycle: the state values keep oscillating between several states. These
states (elements of the limit cycle) are concept vectors with interval coordi-
nates.

3. Chaotic behaviour: the FGCM produces different grey vector states for each
iteration, without any pattern.
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Usually, the behaviour of fuzzy cognitive maps is examined by trial-error
methods. The main contribution of this paper is to present analytical conditions
for the existence and uniqueness of attracting fixed points of FGCMs. It also
ensures the global exponential stability of the system. Previously, Boutalis et al.
[14] proved a condition for the convergence of a class of FCMs. Their result has
been generalized in [2]. Knight et al. [15] studied the problem of fixed points of
FCMs using only the topology, without the weights.

In this paper, we give several conditions for convergence and stability of fuzzy
grey cognitive maps. In Sect. 2 different type of behaviours of FCMs and FGCMs
are demonstrated by illustrative examples. In Sect. 3 we briefly summarize the
mathematical background, in Sect. 4 some theorems are proved regarding to
existence and uniqueness of fixed points of FGCMs. We illustrate the results
with an example in Sect. 5, and shortly summarize them in Sect. 6.

2 Examples for Different Behaviour

Consider the following toy example to demonstrate the behaviour of FCMs and
FGCMs (Fig. 1). Although this network is extremely simple, it is able to produce
qualitatively different behaviours for different choice of weights. Let us apply the
hyperbolic tangent function with parameter λ (tanh(λx)) as threshold function
(for some properties of hyperbolic tangent FCMs see [3]).

C1 C2
w21

w12

w11 w22

Fig. 1. The topology of the demonstrative example. The self-loops indicate the possible
existence of self-feedback.

Different settings of weights and parameter λ yield completely different
behaviour, although the topology remains the same.

For a certain set of parameters we may have a non-trivial fixed point (the
trivial fixed point is the zero vector, since it is always a fixed point of hyper-
bolic tangent FCMs, but not always attractor [3]) (Fig. 2). Other setting yields
oscillation, namely a quasiperiodic behaviour (Fig. 3).

Convergence of FGCMs means that the upper and lower endpoints of the
intervals containing the activations values are stabilized. It can be observed in
Fig. 4, while with different weights and parameter λ we can observe oscillating
pattern (Fig. 5).
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Fig. 2. FCM with hyperbolic tangent threshold function: fixed point. The activation
value of concept C1 vs. number of iterations. The parameters are w11 = 1, w21 =
0.6, w21 = 0.4, w22 = 1, λ = 1.

Fig. 3. FCM with hyperbolic tangent threshold function: quasiperiodic pattern. The
activation value of concept C1 vs. number of iterations. The parameters are w11 =
1, w21 = 0.6, w21 = −0.4, w22 = 1, λ = 1.
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Fig. 4. FGCM with hyperbolic tangent threshold function: fixed point. The activation
value (interval) of concept C1 vs. number of iterations. The upper endpoint of the
interval is denoted by ∇, the lower endpoint is denoted by •. The parameters are
w11 = [0.9, 1], w21 = [0.5, 0.7], w21 = [0.3, 0.5], w22 = [0.9, 1], λ = 0.8.

Fig. 5. FGCM with hyperbolic tangent threshold function: oscillating behaviour. The
activation value (interval) of concept C1 vs. number of iterations. The upper endpoint
of the interval is denoted by ∇, the lower endpoint is denoted by •. The parameters
are w11 = 0, w21 = [0.5, 0.7], w21 = [−0.5, −0.3], w22 = 0, λ = 2.
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3 Mathematical Background

The results presented in the next section are based on the contraction property
of the mapping that generates the iteration. Here we recall the definition of
contraction mapping [7]:

Definition 1. Let (X, d) be a metric space. A mapping G : X → X is a con-
traction mapping or contraction if there exists a constant c (independent from
x and y), with 0 ≤ c < 1, such that

d (G(x), G(y)) ≤ cd(x, y). (9)

The notion of contraction is related to the distance metric d applied. It may
happen that a function is a contraction w.r.t. one distance metric, but not a
contraction w.r.t. another distance metric. The iterative process of an FCM may
end at an equilibrium point, which is a so-called fixed point.

Let G : X → X, then a point x∗ ∈ X such that G(x∗) = x∗ is a fixed point
of G. The following theorem provides sufficient condition for the existence and
uniqueness of a fixed point [7]. Moreover, if mapping that generates the iteration
is a contraction, it ensures the stability of the iteration.

Theorem 1 (Banach’s fixed point theorem). If G : X → X is a contraction
mapping on a nonempty complete metric space (X, d), then G has only one fixed
point x∗. Moreover, x∗ can be found as follows: start with an arbitrary x0 ∈ X
and define the sequence xn+1 = G(xn), then limn→∞ xn = x∗.

Definition 2. Let x∗ be a fixed point of the iteration xn+1 = G(xn). x∗ is
locally asymptotically stable if there exist a neighborhood U of x∗, such that for
each starting value x0 ∈ U we get that

lim
n→∞ xn = x∗. (10)

If this neighborhood U is the entire domain of G, then x∗ is a globally asymp-
totically stable fixed point.

Corollary 1. If G : X → X is a contraction mapping on a nonempty complete
metric space (X, d), then its unique fixed point x∗ is globally asymptotically sta-
ble.

In Sect. 4, the following property of the sigmoid function will be applied:
The derivative of the sigmoid function f : R → R, f(x) = 1/(1 + e−λx),

(λ > 0) is bounded by λ/4. Moreover, for every x, y ∈ R the following inequality
holds

|f(x) − f(y)| ≤ λ/4 · |x − y| .
In [1] the following statements have been introduced about the convergence

of fuzzy grey cognitive maps:
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Theorem 2. Let ⊗W be the extended (including possible feedback) weight
matrix of a fuzzy grey cognitive map (FGCM), where the weights ⊗wij are non-
negative or nonpositive grey numbers and let λ > 0 be the parameter of the sig-
moid function f(x) = 1/(1+ e−λx) applied for the iteration. Let W ∗ be a matrix
defined by the absolute values of the weights, i.e. w∗

ij = max
{

|wij |, |wij |
}
. If

one of the inequalities

‖W ∗‖1 <
4
λ

(11)

‖W ∗‖∞ <
4
λ

(12)

‖W ∗‖F <
4
λ

(13)

hold, then the FGCM has one and only one grey fixed point, regardless of the
initial concept values.

Here ‖ ∗ ‖1, ‖ ∗ ‖∞ and ‖ ∗ ‖F denote the 1-norm, infinity norm and Frobenius
norm of the matrix, respectively. Here fixed point ⊗A∗ is

⊗A∗ = [⊗A∗
1, . . . ,⊗A∗

n]T ∈
[
[A∗

1, A∗
1], . . . , [A

∗
n, A∗

n]
]T

The grey fixed point is unique in the sense that the endpoints of the intervals
containing grey concept values are unique, i.e. the values A∗

i and A∗
i are unique

for every i.

4 Convergence Conditions

In this section, we provide several theorems regarding the existence and unique-
ness of attracting grey fixed point. The first three theorems are based on the
structure of the FGCM, namely they are based in the so-called in-degree, out-
degree and connectivity, which are widely used measures to describe the quality
of the network. The last one is based on the spectral radius of the modified
weight matrix W ∗ and it gives the better condition in the sense that it ensures
the convergence for the largest set of parameter λ.

Definition 3. The weighted in-degree of concept Cj equals the sum of the abso-
lute values of the weights of in-coming edges:

degin
j =

n∑
i=1

|wij | (14)

which is the sum of the absolute values of the entries of the jth column of W .



Convergence and Stability of Fuzzy Grey Cognitive Maps 517

Definition 4. The weighted out-degree of concept Ci equals the sum of the abso-
lute values of the weights of out-going edges:

degout
i =

n∑
j=1

|wij | (15)

which is the sum of the absolute values of the entries of the ith row of W .

We note that self-feedback means self-loop in the graph. So if self-feedbacks are
applied in the concepts, then the weights of the feedback are counted in the
in-degree and the out-degree, too. It is the reason that we did not exclude i = j
from the summations above.

Definition 5. The connectivity of an FCM is the ratio of the number of con-
nections between concepts to the maximum number of such possible connections.

Connectivity measures the ‘density’ of the network. If self-feedback is allowed,
then the maximum number of connections is n2, if not allowed, then the maxi-
mum number of connections is n(n − 1).

The weighted in-degree, weighted out-degree and weighted connectivity can
defined similarly for FGCMs, but instead of absolute values of real numbers
(exact weights), we use the absolute values of grey numbers (intervals):

degin
j =

n∑
i=1

|⊗wij | =
n∑

i=1

w∗
ij

degout
i =

n∑
j=1

|⊗wij | =
n∑

j=1

w∗
ij

Definition 6. The weighted connectivity of an FCM is the ratio of the sum
of absolute values of weights of connections between concepts to the maximum
number of such possible connections.

If self-feedback is allowed, then the weighted connectivity is

Conw =

∑n
i=1

∑n
j=1 |wij |

n2

If self-feedback is not allowed, then the weighted connectivity is

Conw =

∑n
i=1

∑n
j=1 |wij |

n(n − 1)

For fuzzy grey cognitive maps, we apply the absolute values of the grey weights
(w∗

ij− s), so the enumerator is the sum
∑n

i=1

∑n
j=1 w∗

ij .

Theorem 3. Let λ be the parameter of the sigmoid threshold function applied
for every concept. If the maximal in-degree of the FGCM (including possible
feedback) is less than 4/λ, then the FGCM has one and only one fixed point.
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Proof. In [1] it has been shown that if ‖W ∗‖1 < 4/λ, then the FGCM has one
and only one grey fixed point. Moreover, since

‖W ∗‖1 = max
1≤j≤n

n∑
i=1

w∗
ij = max

1≤j≤n
degin

j (16)

this condition is equivalent to the requirement stated in the theorem.

Theorem 4. Let λ be the parameter of the sigmoid threshold function applied
for every concept. If the maximal out-degree of the FGCM (including possible
feedback) is less than 4/λ, then the FGCM has one and only one fixed point.

Proof. The proof goes similarly to the previous one, but instead of 1-norm we
use the infinity norm. In [1] it has been shown that if ‖W ∗‖∞ < 4/λ, then the
FGCM has one and only one grey fixed point. Moreover, since

‖W ∗‖∞ = max
1≤i≤n

n∑
j=1

w∗
ij = max

1≤i≤n
degout

i (17)

this condition is equivalent to the requirement stated in the theorem.

The theorems above are mathematically equivalent with the statements of
Theorem 2, but they are easier to capture by the users of FCMs. While the users
are not necessarily familiar with matrix norms, they can easily handle notions
like in- and out-degree, which are graphically straightforward.

Theorem 5. Let λ be the parameter of the sigmoid threshold function applied for
every concept. If the weighted connectivity (Conw) of the FGCM small enough,
namely

1. if self-feedback is allowed:

Conw <
4

λn2
,

2. if self-feedback is not allowed:

Conw <
4

λn(n − 1)
,

then the FGCM has one and only one fixed point.

Proof. We show that if
∑n

i=1

∑n
j=1 w∗

ij < 4/λ, then mapping G is a contraction,
so it has exactly one fixed point. Let us define the distance of grey concept
vectors as

d(A,A′) =
1
2

(
‖A − A′‖1 + ‖A − A

′‖1
)

(18)

We are going to show that with the distance measure above:

d(G(A), G(A′)) ≤ λ

4

n∑
i=1

n∑
j=1

w∗
ijd(A,A′)
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By the definition of the distance of two grey-valued vectors, we have

d(G(A), G(A′)) =
1
2

(
‖G(A) − G(A′)‖1 + ‖G(A) − G(A′)‖1

)

It has been shown in [1] that the following upper estimation can be given for
the difference of the ith coordinates (similar inequality holds for the difference
of the upper endpoints):

∣∣∣G(A)
i
− G(A′)

i

∣∣∣ ≤
∣∣∣∣
λ

4
w∗

i |A − A′|
∣∣∣∣

where w∗
i is the ith row of matrix W ∗ and we apply dot product between w∗

i

and |A − A′| = (|A1 − A′
1|, . . . , |An − A′

n|). Moreover,

w∗
i |A − A′| ≤ ‖w∗

i ‖1 · ‖A − A′‖1
Here ‖w∗

i ‖1 =
∑n

j=1 |w∗
ij | =

∑n
j=1 w∗

ij . Use this inequality for the distance of
G(A) and G(A′):

d(G(A), G(A′)) =
1
2

(
‖G(A) − G(A′)‖1 + ‖G(A) − G(A′)‖1

)
(19)

=
1
2

(
n∑

i=1

∣∣∣G(A)
i
− G(A′)

i

∣∣∣ +
n∑

i=1

∣∣∣G(A)i − G(A′)i

∣∣∣
)

(20)

≤ λ

4
1
2

⎛
⎝

n∑
i=1

n∑
j=1

w∗
ij‖A − A′‖1 +

n∑
i=1

n∑
j=1

w∗
ij‖A − A

′‖1
⎞
⎠ (21)

=
λ

4

n∑
i=1

n∑
j=1

w∗
ij

1
2

(
‖A − A′‖1 + ‖A − A

′‖1
)

(22)

=
λ

4

n∑
i=1

n∑
j=1

w∗
ij · d(A,A′) (23)

If
λ

4

n∑
i=1

n∑
j=1

w∗
ij < 1, then the mapping is a contraction, so the iteration leads to

a unique fixed point, regardless to the initial value. Rearanging this inequality
and division both sides by n2 ( or n(n − 1)) completes the proof.

Although Theorem 5 provides weaker condition, it has an important message
expressed by connectivity: poorly connected FGCMs cannot produce complex
behaviour (the term ‘poorly’ depends on λ and n).

Theorem 6. Let ⊗W be the extended (including possible feedback) weight
matrix of a fuzzy grey cognitive map (FGCM), where the weights ⊗wij are non-
negative or nonpositive grey numbers and let λ > 0 be the parameter of the
sigmoid function f(x) = 1/(1 + e−λx) applied for the iteration. Let W ∗ be a
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matrix defined by the absolute values of the weights. If the spectral radius of W ∗

is less than 4/λ, i.e if the inequality

ρ (W ∗) <
4
λ

(24)

hold, then the FGCM has one and only one grey fixed point, regardless of the
initial concept values.

Proof. Let us define the distance of two grey-valued vectors as the norm of their
difference. At this stage we do not specify this norm:

d(A,A′) = ‖A − A′‖ =
1
2

(
‖A − A′‖ + ‖A − A

′‖
)

We are going to show that with the distance above and for a suitable matrix
norm:

d(G(A), G(A′)) ≤ λ

4
‖W ∗‖d(A,A′)

By the definition of the distance of two grey-valued vectors, we have

d(G(A), G(A′)) =
1
2

(
‖G(A) − G(A′)‖ + ‖G(A) − G(A′)‖

)

It has been shown in [1] that the following upper estimation can be given for
the difference of the ith coordinates (similar inequality holds for the difference
of the upper endpoints):

∣∣∣G(A)
i
− G(A′)

i

∣∣∣ ≤
∣∣∣∣
λ

4
w∗

i |A − A′|
∣∣∣∣

where w∗
i is the ith row of matrix W ∗. Since this inequality holds for every

coordinates, we conclude to following inequality for the difference of the lower
endpoint vectors:

‖G(A) − G(A′)‖ ≤
∥∥∥∥

λ

4
W ∗|A − A′|

∥∥∥∥
Using this inequality (and the corresponding inequality for the upper endpoints)
we provide upper estimation for the distance of G(A) and G(A′):

d(G(A), G(A′)) =
1
2

(
‖G(A) − G(A′)‖ + ‖G(A) − G(A′)‖

)
(25)

≤ 1
2

(∥∥∥∥
λ

4
W ∗|A − A′|

∥∥∥∥ +
∥∥∥∥

λ

4
W ∗|A − A

′|
∥∥∥∥
)

(26)

≤ λ

4
‖W ∗‖ 1

2

(∥∥A − A′∥∥ +
∥∥∥A − A

′∥∥∥
)

(27)

=
λ

4
‖W ∗‖ d(A,A′) (28)

In ‖W ∗‖, the matrix norm is induced by the vector norm. By the contraction
mapping theorem, if the coefficient of d(A,A′) is less than one, then mapping
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G is a contraction, consequently it has exactly one fixed point. Moreover, if the
spectral radius of a matrix is less than one, then there exists a matrix norm, such
that norm of the matrix is less then one, i.e. if ρ

(
λ
4W ∗) < 1, then there exist a

matrix norm, such that ‖λ
4W ∗‖ < 1. Applying this matrix norm, mapping G is

a contraction, which completes the proof.

Since ρ(W ∗) ≤ ‖W ∗‖ for any matrix norm, Theorem 6 gives the best condition
expressed by W ∗.

Remark 1. The results in Sect. 4: Theorem 3, Theorem 4, Theorem 5 and Theo-
rem 6 are valid for fuzzy grey cognitive maps with hyperbolic tangent threshold
function (tanh(λx)), too, but we have to replace 4/λ by 1/λ, since the derivative
of tanh(λx) is bounded by λ (and not λ/4).

5 Example

Let us consider the following weight matrix with imprecise (grey) entries:

⊗ W =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 [0.1, 0.2] [−0.6,−0.5] 0 0 0
0 0 [−0.7,−0.5] 0 0 [0.1, 0.3]

[0.6, 0.8] 0 0 [−0.6,−0.2] 0 0
[0.7, 0.9] 0 0 0 [0.6, 0.8] 0

0 0 [0.6, 0.7] 0 0 0
0 [0.1, 0.3] 0 [0.8, 1] [−1,−0.8] 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

Then the matrix W ∗ with the w∗
ij entries:

W ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.2 0.6 0 0 0
0 0 0.7 0 0 0.3

0.8 0 0 0.6 0 0
0.9 0 0 0 0.8 0
0 0 0.7 0 0 0
0 0.3 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

The corresponding measures:

– Maximal weighted in-degree: 2.3
– Maximal weighted out-degree: 2
– Connectivity

• without self-feedback: Conw = 0.2633
• with self-feedback: Conw = 0.2194

– spectral radius: ρ(W ∗) = 1.1485

According to Theorem 6, if λ < 3.4827, then this grey FCM has one and only
one grey fixed point. It also means that in this case the FGCM produces globally
asymptotically stable behaviour, since every initial grey vector leads to the same
equilibrium state.
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6 Summary

Fuzzy Grey Cognitive Maps are generalizations of classical FCMs, that can model
the uncertainties of activation values and weights of causal connections.

In this paper, we provided some conditions for the convergence of FGCMs to
a unique fixed point. The unicity of this attracting fixed point also ensures that
the FGCM is globally exponentially stable, i.e. it converges to the same fixed
point attractor regardless of the initial concept vector. Future work is focused
on the effective detection of multiple fixed points scenarios and the prediction
of oscillating patterns without simulations. The future goal is to provide exact
analytical conditions for both of these behaviours.
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