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ABSTRACT

The codon stabilization coefficient (CSC) is derived
from the correlation between each codon frequency
in transcripts and mRNA half-life experimental data.
In this work, we used this metric as a reference to
compare previously published Saccharomyces cere-
visiae mRNA half-life datasets and investigate how
codon composition related to protein levels. We gen-
erated CSCs derived from nine studies. Four datasets
produced similar CSCs, which also correlated with
other independent parameters that reflected codon
optimality, such as the tRNA abundance and ribo-
some residence time. By calculating the average CSC
for each gene, we found that most mRNAs tended to
have more non-optimal codons. Conversely, a high
proportion of optimal codons was found for genes
coding highly abundant proteins, including proteins
that were only transiently overexpressed in response
to stress conditions. We also used CSCs to identify
and locate mRNA regions enriched in non-optimal
codons. We found that these stretches were usu-
ally located close to the initiation codon and were
sufficient to slow ribosome movement. However, in
contrast to observations from reporter systems, we
found no position-dependent effect on the mRNA
half-life. These analyses underscore the value of
CSCs in studies of mRNA stability and codon bias
and their relationships with protein expression.

INTRODUCTION

The interplay between mRNA synthesis and degradation
determines the half-life of mRNA molecules and results in

the final transcript levels found in a cell (1). Several fea-
tures, such as the mRNA secondary structure, sequence,
structural elements located within the 5′and 3′UTRs and
transcript length, can affect mRNA stability (1–3). More-
over, mRNA codon composition is emerging as a strong
factor that affects both RNA stability and translation ef-
ficiency (4). The concept of codon optimality or nonuni-
form codon translation efficiency was developed through
the study of codon bias, which describes the dispropor-
tional frequency at which distinct synonymous codons are
present in the genome (5). Codon optimality is a term that
takes into account competition between tRNA supply and
demand during translation and is an important determi-
nant of codon bias (6). In several examined species, includ-
ing Saccharomyces cerevisiae, the cellular tRNA concentra-
tions are proportional to the tRNA gene copy numbers (7);
therefore, the relative number of tRNA genes present in
the genome and the efficiencies of different wobble inter-
actions can be used to derive the tRNA adaptation index
(tAI) (8,9). Optimal codons are decoded by high abundance
tRNA species and are translated more efficiently than non-
optimal codons. Therefore, the tAI reflects the efficiency of
tRNA usage by the ribosome (9).

In addition to translation efficiency, mRNA codon com-
position seems to predict mRNA stability. Herrick et al.
showed that the percentage of rare codons present in un-
stable mRNAs in yeast was significantly higher than that in
stable mRNAs (10). Recent experiments in bacteria, yeast,
and metazoans have indicated that codon optimality is a
major determinant of mRNA stability (4).

Recently, Coller and colleagues reported a different
codon optimality metric system that was derived from
mRNA half-life data (11). The authors measured the half-
lives of thousands of yeast genes and found that some
codons were enriched in the most stable mRNAs, whereas
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other codons were enriched in the most unstable mRNAs.
Based on Pearson’s correlation between the frequency of oc-
currence of each codon in each mRNA and the mRNA half-
lives, the authors created the codon occurrence to mRNA
stability coefficient (CSC) (11). Direct comparison between
the codon stabilization coefficient calculated by Coller et al.
and the tRNA adaptive index (tAI) revealed good agree-
ment between these scores (11), suggesting a direct effect of
this adaptability index on the RNA half-life.

Here, we show that the CSC is a useful metric to investi-
gate how the mRNA half-life relates to the protein trans-
lation efficiency. This type of analysis has been compli-
cated by the notable lack of reproducibility of genome-wide
mRNA half-life experimental measurements. Comparisons
between different datasets available in the literature have
yielded poor correlations, often classifying the same mRNA
molecule as both stable and unstable. This issue makes the
identification of stability sequence motifs and the global
analysis of transcription and translation dynamics problem-
atic tasks (12,13). Calculation of CSCs from nine different
data sets allowed us to find the most similar datasets and
to identify those that better agreed with independent mea-
surements related to RNA stability, such as the tAI, and
translation efficiencies, such as the ribosome residence time
measured by ribosome profiling. Based on these observa-
tions, we selected the most consistent mRNA half-life data-
set and used the CSC to derive average values for individual
genes (CSCg).

With this metric, we investigated the distribution of CSCg
values across the yeast genome and the relationship between
CSCg and protein translation. Overall, the results agreed
with previous observations that linked a high proportion of
optimal codons to mRNAs of highly abundant proteins, but
we noted that genes that were only transiently overexpressed
in response to stress conditions had CSCg values similar to
those of constitutive genes with high expression levels. Fi-
nally, we used CSCs to identify and locate mRNA regions
enriched in non-optimal codons and to examine how these
sequences affected the translation efficiency. Our genome-
wide analysis confirmed some of the assumptions derived
from works using reporter systems (14). We observed that
non-optimal codons were unevenly distributed across the
mRNA sequence and that the occurrence of non-optimal
sequence stretches increased the ribosome residence time
and decreased the mRNA half-life. However, in contrast to
observations from reporter genes, we found that the posi-
tion of a single stretch of extremely non-optimal codons did
not affect mRNA stability.

MATERIALS AND METHODS
Data sources

Coding sequences and annotation of S. cerevisiae were ob-
tained from the Saccharomyces cerevisiae genome database
(SGD ((https://www.yeastgenome.org) and Ensemble
Genomes (http://ensemblgenomes.org/). We excluded 746
dubious ORFs and mitochondrial genes as defined in
the Saccharomyces Genome Database from our analysis.
We gathered 9 datasets from published studies measuring
mRNA half-lives in yeast, namely Young (15), Brown (16),
Hughes (17), Coller (11), Struhl (18), Weis (19), Gresham

Data Source Identifier

tAI dos Reis et al., 2004
Ribosome density at
A site

Fang et al., 2018;

Ribosome density at
A site

Gardin et al., 2014

Ribosome density at
A site

Weinberg et al., 2016

tRNA abundance Tuller et al., 2010
Frequency of
optimal codons

CodonW-
Saccharomyces
Genome Database

Protein abundance Ho et al., 2018
mRNA abundance Yassour et al., 2009
Reads per kilobase
per million

Heyer and Moore,
2016

Protein abundance Kulak et al., 2014
Induced stress
proteins

Breker et al., 2013

S. cerevisiae
CHX-free Riboseq
data

Gerashchenko and
Gladyshev, 2014

SRR1520311

S. cerevisiae + CHX
Riboseq data

Gerashchenko and
Gladyshev, 2014

SRR1520315

S. cerevisiae
CHX-free Riboseq
data

Weinberg et al., 2016 SRR1049521

S. cerevisiae
CHX-free Riboseq
data

Pop et al., 2014 SRR1688545

Software and
algorithms
Codon stabilization
coefficient gene
(CSCg)

This paper https://github.com/
RodolfoCarneiro/
CodonOptmality/tree/
master/
Sequence mean values

Shuffled genome This paper https://github.com/
RodolfoCarneiro/
CodonOptmality/tree/
master/Shuffle

Localization of non-
optimal/optimal
codon stretches

This paper https://github.com/
RodolfoCarneiro/
CodonOptmality/tree/
master/Distribution

(20), Cramer (21) and Becskei (12). For most analyses, the
Coller dataset utilized was the total RNA isolation dataset
(11). Chemicals, such as phenanthroline and thiolutin,
have been used to inhibit translation and consequently to
address mRNA decay rates (22). Nevertheless, these chem-
icals have pleiotropic effects and inhibit a large number
of enzymes. Therefore, we excluded all mRNA turnover
measurements based on the use of chemical compounds to
inhibit the RNA polymerase from our datasets.

Statistical analyses, correlations, and raw data

The raw data used to create Figures 1–7 and for the sta-
tistical analyses, including sample size, P value, r value,
� value, uncorrected critical r, uncorrected critical � and
D’Agostino & Pearson normality test calculations, when
used, are presented in the Supplementary Tables S1–S7. For
Figures 3A, B, 5B and F, the Kolmogorov–Smirnov test was
used (Supplementary Tables S3A, S3B, S5B and S5F). For
Figure 5A, the best fit equation found was a Sigmoidal,
4PL, X is log(concentration) equation; the outliers were

https://www.yeastgenome.org
http://ensemblgenomes.org/
https://github.com/RodolfoCarneiro/CodonOptmality/tree/master/Sequence_mean_values
https://github.com/RodolfoCarneiro/CodonOptmality/tree/master/Shuffle
https://github.com/RodolfoCarneiro/CodonOptmality/tree/master/Distribution
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identified with Q = 1% with a confidence level of 95%. All
statistical analyses were performed with GraphPad Prism 7
except for the Kolmogorov-Smirnov test used for Figure 5B,
which was performed with the R software.

Gene ontology

The gene ontology analyses were performed in the Gene
Ontology Consortium (http://geneontology.org/).

Codon stabilization coefficient (CSC) calculation

We calculated the codon stabilization coefficient (CSC) for
each codon based on the method proposed by Coller et al.
(11). The CSC value of a given codon is represented by the
Pearson correlation coefficient (r) between the mRNA half-
life of a gene and the proportion of the given codon in that
gene, which is calculated by

Ni j = Ci j

li
(1)

where Nij is the proportion of codon j in gene i normalized
by the size of the gene measured in codons, Cij is the ab-
solute number of copies of codon j in gene I, and �i is the
length of gene i reported in the number of codons.

To calculate the proportion of a codon in a given gene, we
implemented an algorithm that analyzed an entire dataset
of the yeast genome downloaded from the SGD. The algo-
rithm uses as input a list with every gene in a genome con-
taining a header (with the gene identification code) and the
sequence of the nitrogenous bases of each gene. Then, the
algorithm compares each group of three bases representing
the frame of the ORF to a library containing all 61 codons
and adds 1 to the count of that codon if it is a match. At
the end of each gene, the proportion of each codon is cal-
culated using Equation 1. This process is repeated for every
gene. As output, our algorithm creates a comma-separated
values file (.csv) with the calculated proportions of codons
for each gene from the input file.

Mean codon stabilization coefficient (CSCg) calculation

To study the effect of codon usage in yeast genes, we de-
signed and implemented another algorithm that calculated
the mean value of CSC for each gene (CSCg) with the fol-
lowing equations:

CSCgi =
∑

j

(
CSC j · Ci j

li

)
(2)

CSCgi =
∑

j

(
CSC j · Ni j

)
(3)

where CSCgi is the mean CSC for gene I, CSCj is the CSC
value for codon j and Nij is the proportion of codon j in
gene i normalized to the size of the gene measured in codons
(Equation 1).

Shuffled genome

Data from the original genome were compared to that from
a shuffled genome to evaluate whether the codon usage of
the genes was random or evolutionarily selected. For that
purpose, we designed and implemented a new algorithm
that exchanged codons with their synonymous codons. The
algorithm works in two steps.

First, it counts the total number of each codon in all tar-
get ORFs and arranges them according to the amino acid
they translate. Then, it rereads every target ORF and ex-
changes each codon for a codon that translates to the same
amino acid. The shuffled codon is selected randomly and
proportionally to the total number of copies of that codon
(counted in the first step). The random genome generated
by this algorithm preserves the number of copies of each
codon as well as the amino acid sequence of the original
genome.

Localization of non-optimal/optimal codon stretches

We designed and implemented an algorithm that summed
the CSC (CSC Coller) in a determined number of consec-
utive codons in an mRNA sequence. In this work, we were
interested in retrieving sequences that contained 10-codon
stretches with summed values ≤–1.28, which is a parameter
that has been previously associated with mRNA destabiliza-
tion (14). We used genes that contained 10-codon stretches
with summed values ≥1.28 as a control. The program re-
turns a list with the mRNAs containing the non-optimal
or optimal stretches and the position of non-optimal or
optimal codons relative to the ORF length. Stretches with
10 non-optimal or optimal codons were identified (6386 in
1404 genes for optimal stretches and 1702 in 1208 genes
for non-optimal stretches). Then, genes with more the one
stretch were removed. Finally, the genes with stretches be-
fore codon 200 and the mRNA half-life determined were
analyzed by ribosome profiling (195 genes with optimal
stretches and 336 genes with non-optimal stretches). We
compared the ribosome profiles normalized for genes with
non-optimal stretches versus optimal stretches. Statistical
analyses were performed with multiple t-tests using the
Holm–Sidak method, and the adjusted p-value was calcu-
lated for each point (GraphPad Prism 7).

Ribosome profiling data

Saccharomyces cerevisiae ribosome profiling data were
treated as described previously (23,24). The data were ana-
lyzed as described by Ingolia and collaborators (25) except
that the program used here was Geneious R11 (Biomatter
Ltd., New Zealand) instead of the CASAVA 1.8 pipeline.
The data were downloaded from GEO, and the adaptor
sequence (CTGTAGGCACCATCAAT) was trimmed. The
trimmed FASTA sequences were aligned to S. cerevisiae ri-
bosomal and noncoding RNA sequences to remove rRNA
reads. The unaligned reads were aligned to the S. cerevisiae
S288C genome deposited in the Saccharomyces Genome
Database. First, we removed any reads that mapped to mul-
tiple locations. Then, the reads were aligned to the S. cere-
visiae coding sequence database allowing two mismatches

http://geneontology.org/
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per read. We normalized the coverage within the same tran-
script by dividing each nucleotide read by the sum of the
number of reads for each gene in a given window. A win-
dow of 500 nucleotides before and after the beginning of a
non-optimal/optimal stretch was used to calculate the num-
ber of reads of each gene. This step is important because
longer genes possess lower normalized numbers of reads
than shorter genes if the total number of reads is used to
normalize.

Clustering analysis

All clustering analyses were performed by the Euclidean
distance using the Orange 3 software. For Figure 4B, a clus-
ter analysis at the gene level was performed based on a pro-
portion of optimal, neutral and non-optimal codons, and
the distance among genes was calculated by the Euclidean
metric. The distance measures were visualized in a clustered
distance matrix (Orange 3).

RESULTS AND DISCUSSION

CSC calculation showed the most correlated S. cerevisiae
mRNA half-life datasets

In S. cerevisiae, mRNA half-life experiments usually involve
a time-resolved analysis of the mRNA levels after a pro-
cedure to block transcription or label the mRNA in vivo
(Table 1). In the transcriptional inhibition method, RNA
polymerase II is inactivated, usually by heat shock, to in-
terrupt the synthesis of new mRNAs. In the gene activa-
tion control approach, the promoter of each gene is substi-
tuted by a promoter that can be inhibited by the addition
of a substance in the medium (i.e. GAL or the TET pro-
moter). For in vivo metabolic labeling, modified nucleotides
are introduced into the cell medium and incorporated by
the cells into the RNA. The modified mRNA can be re-
covered by immunoprecipitation or pulled down by strep-
tavidin beads. We selected nine global quantitative studies
aimed at determining yeast mRNA half-lives, 5 of which
used the transcriptional inhibition method, three in vivo
metabolic labeling and one the gene control method (Table
1). In agreement with previous work (12,13), we observed
that the ranges of mRNA half-life values varied depending
on the dataset (Supplementary Figure S1A), yielding gener-
ally poor Spearman’s correlation coefficients (� values rang-
ing from –0.25 to 0.75) (Supplementary Figure S1B). More-
over, we found little to no correlation between these mRNA
half-life datasets and independent parameters, such as pro-
tein expression, translation efficiency, and mRNA abun-
dance (data not shown). This scenario made selecting a par-
ticular dataset for further analysis difficult.

The codon stabilization coefficient (CSC) is the correla-
tion coefficient between the frequency of occurrence of each
codon in mRNA and the mRNA half-life (11). An example
of the CSC calculation for the codon GCT is shown in Sup-
plementary Figure S2. Coller and colleagues observed that
CSC values had a significant positive correlation with the
tRNA Adaptive Index (tAI), which is a metric that ranks
the codons according to the efficiency of tRNA usage by the
ribosome and is widely used to calculate codon adaptabil-
ity (9). The close association between the RNA half-life and

Figure 1. Comparison between different S. cerevisiae mRNA half-life
datasets using the codon stabilization coefficient (CSC). (A) The CSC for
each of the 61 amino acid coding codons equals the correlation coefficient
(r) derived from Pearson’s correlation between the frequency of occurrence
of each codon in the transcriptome and the mRNA half-life values. Each
mRNA half-life dataset generated 61 CSC values that were used to com-
pare the studies. The heat map shows Spearman’s correlation coefficients
(� ) ranging from –0.64 (negative correlation, green panels) to 1.00 (positive
correlation, red panels). (B) Spearman’s correlation between the CSCs de-
rived from nine datasets with different cellular parameters: tAI (9), the in-
verse of the ribosome density at the A-site (27,32,33) and the tRNA abun-
dance (27,28). The heat map shows Spearman’s correlation coefficient (� )
values ranging from –0.72 (negative correlation, green panels) to 0.70 (pos-
itive correlation, red panels). The raw data, sample size, P values, uncor-
rected critical � and Spearman’s correlation coefficient (� ) are presented
in Supplementary Table S1.

codon optimality was also observed by independent means
in both yeast (11) and bacteria (26).

We used nine different mRNA half-life datasets to cal-
culate the CSC of each of the 61 codons using the same
method as Coller et al. (Figure 1A); then, we calculated how
the different CSCs correlated between these different stud-
ies (Figure 1A and Supplementary Figure S3). We observed
that four studies that used different methodologies to quan-
tify mRNA half-lives clustered together (i.e. Coller, Becskei,
Gresham and Cramer). The correlation coefficients between
the CSCs calculated from these four studies ranged from
0.78 to 0.91 (Figure 1A).

Next, we compared the CSC score of each codon cal-
culated from published datasets with independent metrics
used to estimate codon efficiency/adaptability and trans-
lation efficiency. In addition to the aforementioned tAI
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Table 1. Description of the mRNA decay experiments analyzed in this work

Name Ref Method Quantification
Yeast strain
medium mRNA enrichment cDNA synthesis

Young Holstege et al. rbp1–1/TI Microarray Z460 YPD Oligo dT-beads
Brown Wang et al. rbp1–1/TI Microarray Y262 YPD Random primersa or Oligo dT
Hughes Grigull et al. rbp1–1/TI Microarray YF2475 YPD Oligo dT-beads Oligo dT
Coller Presnyak et al. rbp1–1/TI RNA-seq yJC244 SD Bead-based rRNA

depletion or Oligo
dT-beads

Random primers

Struhl Geisberg et al. rbp1-frb/TI DRS JGY2000 YPD Silica-membrane for total
RNA

Weis Munchel et al. 4tU chase RNA-seq W303–1A SD Oligo dT-beads Random primers
Gresham Neymotin et al. 4tU chase RNA-seq FY4 SD Bead-based rRNA

depletion
Random primers

Cramer Sun et al. 4tU labeling Microarray GRY3020 YPD Glass-fiber filter
purification rRNA
depletion

Oligo dT

Becskei Baudrimont
et al.

Gene control qPCR BY4741 SD Silica-membrane for total
RNA

Gene-specific primers

aThe dataset used herein was obtained with random primers.

(9), we used previously published tRNA abundance quan-
tifications based on RNA-seq (27) or microarray (28) as
well as data derived from ribosome footprint profiling.
This methodology was created by Jonathan Weissman in
2009 and was based on the deep sequencing of ribosome-
protected mRNA fragments (29). During translation, each
ribosome encloses an exactly 28-nt portion of the mRNA to
protect it against RNAase digestion. This enclosure allows
the protected fragments to be sequenced. This approach
generates a map at nucleotide resolution of translational ac-
tivity for transcribed genes (25). Importantly, all ribosome
profiling data used herein were obtained in the absence of
a translational inhibitor in the cell media, since this treat-
ment distorts the ribosome profile because initiation con-
tinues even though elongation is blocked (23,24,27,30,31).
Coller, Becskei, Gresham and Cramer’s CSC values showed
good positive correlations with the tAI, with Spearman cor-
relation coefficients (� ) ranging from 0.65 to 0.77, whereas
the CSCs from other studies had low or even negative (� )
values (–0.69 to 0.23) (Figure 1B). The same pattern was
observed for correlations with different tRNA abundance
measurements. We took advantage of the nucleotide reso-
lution of ribosome profiling to examine whether the dif-
ference in occupancy at the A-site for each codon corre-
lated with the CSC calculated for each dataset. In princi-
ple, if a codon is optimal, then the ribosome occupancy
of this codon must be shorter than that of a non-optimal
codon; therefore, we used the inverse of the ribosome resi-
dence time to correlate with the CSC (Figure 1B). We ob-
served that the CSCs that most agreed with three indepen-
dent experiments measuring the codon occupancy time by
ribosome profiling (27,32,33) were again the Coller, Becskei,
Gresham, and Cramer datasets (Spearman correlation co-
efficients (� ) ranging from 0.19 to 0.62, Figure 1B). Very
recently, the ribosomal A-site decoding rate was shown to
impact normal mRNA decay in yeast, thereby reinforcing
the correlation between CSC and codon occupancy (34).

When the mRNA half-life values were directly com-
pared, the correlation was strongly impacted by discrepan-
cies caused by different methodologies, outliers, population
sizes, strain choices and other factors (Table 1). The use

of the CSC diluted the contribution of individual mRNA
half-life values to the correlation analysis and thus helped
to identify the more congruent studies. A close inspection
of the experimental conditions of the nine studies used in
our analysis suggested that methods that avoided an en-
richment step using oligo dT-beads tended to have better
CSC correlation values, even when the translation inhibi-
tion and/or mRNA quantification methodologies were dif-
ferent. In fact, methods based on poly-A mRNA capture
are known to possess some limitations, such as down sam-
pling deadenylated mRNA and mRNAs containing cer-
tain stable secondary structure elements (11). Moreover, by
varying only the mRNA enrichment methodology (riboso-
mal RNA depletion × poly-A fraction), Coller et al. ob-
served different half-life values for 92% of the transcripts.
The Spearman correlation coefficients between the CSCs
calculated using the poly-A fraction from Coller’s dataset
and the tAI, ribosome density at the A site, and tRNA abun-
dance were as poor as the values obtained with Young’s
dataset (� values ranging from –0.32 to 0.04 and from –0.69
to –0.11, respectively) (data not shown). Although the CSC
calculation demonstrated common patterns among differ-
ent mRNA half-life datasets, this metric cannot be used as
a validation method for a given mRNA decay dataset.

With the CSC for every codon, we generated a mean
CSC value for a given mRNA sequence termed the CSCg.
This metric can be used to rank all yeast genes accord-
ing to their stability. The CSCg values derived from the
nine datasets were compared with the frequency of optimal
codons (CodonW- SGD), protein abundance (35), mRNA
abundance (36), and transcriptional elongation (27) (Fig-
ure 2A). The striking correlation between the frequency
of optimal codons and the CSCg values calculated using
Coller’s data set is shown in Figure 2B. While CSCg is de-
rived from mRNA stability data, CodonW is defined using
a multivariate model of various codon supply-and-demand
scores such as CAI, tAI. These scores are sought to af-
fect ribosome dwell time and translation efficiency. The fact
that Coller’s CSCg and CodonW generate equivalent scores
for yeast genes (Supplementary Table S2) strengthens the
assumption that a metric derived from mRNA half-lives
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A

B

Figure 2. Saccharomyces cerevisiae individual gene CSCg calculation and
its relationship with different parameters involved with gene expression.
The sum of the CSCs of each codon in an mRNA divided by the length of
the gene equals the CSCg, which is a metric that can be used to estimate
the optimization of codon usage in a given sequence. We calculated the
CSCg for 5891 yeast genes. (A) Spearman’s correlation analysis between
CSCgs calculated from the nine mRNA half-life datasets and other gene-
specific parameters, such as the frequency of optimal codons (CodonW
SGD), protein abundance (35), mRNA abundance (36) and translation ef-
ficiency (27). The heat map shows correlation coefficient (� ) values ranging
from –0.79 (negative correlation, green panels) to 0.95 (positive correla-
tion, red panels). The raw data, sample size, P values, uncorrected critical
� and Spearman’s correlation coefficient (� ) are presented in Supplemen-
tary Table S2. (B) As an example, we show the correlation between the
CSCgs derived from Coller’s dataset and the frequency of optimal codons
according to John Peden’s CodonW script available at SGD.

is a good indicator of codon optimization and reinforces
the connection between codon choice, translation efficiency
and mRNA half-life. Therefore, CSCg can be used to esti-
mate mRNA stability and translation efficiency.

Coller’s mRNA half-life measurement generated CSC
and CSCg values that better correlated with indepen-
dent experimental measurements linked to mRNA stabil-
ity, translation and codon optimality (Supplementary Table
S2); moreover, Coller’s CSC was in good agreement with the
studies of Becskei, Gresham, and Cramer. Therefore, we fo-
cused on these datasets in the next steps of this work. How-
ever, a good correlation between two CSCs derived from dif-
ferent studies can mask essential differences in the individ-
ual mRNA half-life values obtained by each research group.
The discrepancy in absolute values between two studies

A

B

Figure 3. Distribution of S. cerevisiae CSCg values compared with a shuf-
fled version of the genome. (A) The frequency distribution of CSCgs cal-
culated from Coller’s CSC is shown in black. The upper panel shows a
cumulative distribution of this dataset. A shuffled version of the genome
was generated by maintaining the same codon bias and protein sequence
but randomizing the codon usage in each mRNA. The resulting CSCg dis-
tribution of the shuffled dataset is shown in blue. The frequency of the
distribution of individual CSC values is shown on the right; this distribu-
tion was maintained in the shuffled version of the genome. (B) The subset
of genes with CSCg values below zero (black lines) was compared to an-
other shuffled mRNA dataset (blue line). This new shuffled dataset was
generated as described in A, but this time the frequency of codons derived
from the mRNA population with negative CSCg values (shown in the right
panel) was used in the calculation. A ratio between the actual genome and
the shuffled distribution is shown in the inset; note that the frequency of
genes with CSCg values lower than 0 is ten times higher in the S. cerevisiae
genome than in the shuffled genome. The P-values were calculated with
the Kolmogorov–Smirnov test for both panels. The raw data, sample size,
P values, and statistical analyses are presented in Supplementary Table S3.

with highly correlated CSCs is probably an inevitable con-
sequence of using different experimental methodologies to
determine mRNA half-lives.

The occurrence of genes with extremely high or low CSCg
values in the yeast genome is not random

We used the CSCg (Coller’s dataset) to characterize the
distribution of yeast mRNAs according to their stability.
We observed that the majority of genes presented slightly
negative CSCg values (non-optimal CSCgs) (Figure 3A,
black circles). The cumulative distribution shown in the
inset revealed that two-thirds of the CSCgs (66%) were
non-optimal (Figure 3A, inset, red line), whereas one-third
(34%) were optimal (Figure 3A, inset, blue line), with ∼4%
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Figure 4. Evaluation of the mRNA codon composition and gene expression using the CSCg and CSC values. (A) The 61 codons were divided into three
groups according to their CSC values: optimal codons are shown in blue (CSC > 0.1), neutral codons are shown in white (0.1 > CSC > –0.1) and non-
optimal codons are shown in red (CSC < –0.1). (B) Distance matrix created from gene level clustering based on the proportion of optimal, neutral and
non-optimal codons. Three main clusters were found. The number of reads associated with the ribosomes is shown on the right (RPK), and the CSCg for
each gene is shown on the bottom. The raw data and the gene ontology analyses for panel B are presented in Supplementary Table S4.

of the genes presenting a high level of optimality (>0.1)
(Figure 3A, inset, dark blue line). This pattern is reminis-
cent of other studies that used alternative metrics to rank
yeast genes according to their codon optimality. This result
was expected, considering the high correlation between the
CSC and CSCg values and other metrics, such as the tAI
and the frequency of the optimal codons (Figure 1B and
Figure 2A). Nevertheless, we extend these analyses by test-
ing whether the characteristic non-Gaussian distribution
with long tails seen in Figure 3A results from the regulatory
role exerted by the codon composition on the final biolog-
ical function of each transcript. For this purpose, we cre-
ated a shuffled version of each yeast mRNA sequence. We
maintained the proportions of all 61 amino acid codons (ge-
nomic codon bias) as well as the final protein sequence but
randomized the codon choice for each transcript. The CSCg
values of the mRNAs with random codon choices (but the
same overall codon bias) generated a more uniform distri-
bution than that of the original mRNA population (Figure
3A, blue squares).

The dramatic difference between the real and artifi-
cial mRNA CSCg distributions underscores the impact of

codon usage on mRNA biology. Abundant proteins tend
to be coded by mRNAs that are enriched in optimal codons
(37,38); therefore, we expected to find a long tail with highly
positive CSCg values (Figure 3A). However, we did not ex-
pect to see a population of mRNAs enriched in non-optimal
codons (negative values below -0.05; Figure 3A genomes
× shuffled). Therefore, we decided to evaluate whether this
subset of sequences with very low CSCg values was merely
a consequence of having a group of transcripts that con-
centrated the codons with high CSC values. For this pur-
pose, we selected genes with CSCg values lower than 0 (3257
genes), calculated the frequency of each codon in this pop-
ulation, and shuffled the mRNA codons as described in
Figure 3A. However, for this analysis, we used the codon
bias from the mRNAs with CSCg values lower than 0 (right
panel Figure 3B). With this adjustment, we simulated a pos-
sible influence of the depletion of highly optimal codons
on the distribution of the CSCg values on this population.
We observed that the actual genome still contained more
sequences with extremely low CSCg values than the shuf-
fled version of the mRNA (Figure 3B, compare the nega-
tive values of the shuffled × genome). With this result, we
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Figure 5. Correlation between CSCg and the protein copy number in S. cerevisiae. (A) The best-fit curve was used to calculate the correlation among the
CSCg values (Coller’s dataset) and the protein abundance (Kulak’s dataset) (40). Outliers are highlighted in blue. (B) Plot showing the distribution of genes
according to their expression regulation under 400 different experimental conditions (data obtained from the SGD). The inlier genes are shown with a
black line, and outlier subsets of genes are shown with blue lines. The inset shows the overexpressed population on a different scale. Note that the outliers
presented higher induction levels and were overexpressed in more conditions than the inlier group. The P-value was calculated with the Kolmogorov–
Smirnov test (Supplementary Table S5B). (C) The same analysis described in panel A was performed to compare other datasets (i.e. CSCg values from
Coller’s dataset vs protein abundance from Ho’s dataset (41) (Supplementary Figure S6) and CSCg values from Becskey’s dataset versus protein abundance
from Kulak’s dataset (Supplementary Figure S5)). The Venn diagram of outliers identified in these three analyses showed 48 genes in common. (D) Gene
ontology of the 48 genes identified in panel C. For the subsequent experiments, we analyzed a different subset of proteins that were upregulated under
different stress conditions. (E) As an example, we show the correlation plot used to select the subset of proteins induced by DTT (43). Proteins with an
induction level of more than 1.5-fold were selected (blue dots). (F) Cumulative distribution of the CSCg values of genes coding the proteins induced more
than 1.5-fold by different stresses (43) was compared to that of all genes (control). The p-value calculated with the Kolmogorov–Smirnov test was <0.0001
for each stress condition analyzed versus the control (see statistical details in Supplementary Table S5B).

concluded that codon usage probably played a regulatory
role in sequences containing both optimal and non-optimal
codons.

Highly abundant constitutive proteins have mRNAs with the
highest CSCg values, but genes that are only transiently up-
regulated in response to stress also present high CSCgs

The low expression of heterologous proteins coded by
mRNA sequences with low codon usage provided robust ev-
idence of the impact of codon adaptation on protein trans-

lation (4). Moreover, recent studies in yeasts suggested that
codon optimality played an essential role in regulating pro-
tein expression, especially for mRNAs coding proteins with
high expression levels (4). However, how far mRNA codon
composition and stability can tune the endogenous protein
translation efficiency is less clear.

To address how CSC relates to the protein translation ef-
ficiency, the 61 amino acid codons were arbitrarily classi-
fied into three categories based on their CSC values (Coller’s
dataset). We considered codons with a CSC higher than 0.1
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Figure 6. The enrichment of non-optimal codons near the translation initiation site leads to an increase in ribosome density in a small subset of genes. (A)
Average CSC value according to each codon position in the yeast mRNAs. The tile strip on the left represents the first 20 codons, whereas the strip on
the right represents the last 20 codons. The heat map shows the mean CSC values ranging from 0.02 to -0.02. A shuffled version of the yeast genome was
analyzed as a control. (B) The full yeast genome was subdivided into 10 groups with 500 genes each, organized according to the average CSC of the first
10 codons. The first group (1) contains genes with the lowest average CSC while the last group (10) contains genes with the highest average CSC. The �
and � groups are composed of the first 50 sequences with the lowest CSC and the next 50 lowest CSC, respectively. The orange bars show the number
of genes in each group. The average ribosome footprint count of each group was derived from experiments performed in the presence (+CHX) (C) or in
the absence of cycloheximide (–CHX) (D). For each gene, the number of reads per base was normalized to the total number of reads in a 500-nucleotide
window after the ATG of the same gene. The variations in footprint count for each of the groups shown in panels C and D were analyzed by multiple
t-tests using the Holm–Sidak method; the adjusted P-values are shown using a heat map in panels (E) and (F), respectively. Panel (G) shows the normalized
average ribosome footprint counts for all yeast genes in the presence or absence of CHX.

optimal codons, whereas codons with a CSC lower than
–0.1 were non-optimal codons (Figure 4A). Codons with
CSCs in the range of –0.1 to 0.1 were considered neutral
codons (Figure 4A). Then, we performed a gene-level clus-
ter analysis of all yeast genes according to their CSC com-
positions (Figure 4B). A distance matrix was created, and
three main groups were found. These clusters were ana-
lyzed regarding gene expression using previously published
ribosome profiling data (Figure 4B, right plot) (39). Clus-
ter 1 comprised genes mainly formed by optimal or neutral
codons and <10% of the non-optimal codons. Although
<6% of yeast genes were found in this category, they were
responsible for approximately 63% of all transcripts being
translated in the cell (Figure 4B). Genes in cluster 2 com-
prised up to 23% of non-optimal codons and represented
22% of genes and 23% of the translated sequences, respec-
tively (Figure 4B). Finally, the third cluster grouped se-
quences with up to 50% non-optimal codons. The majority

of yeast genes (72%) fell in this cluster, but they represented
only 14% of all transcripts being translated in the cell (Fig-
ure 4B). A small number of genes are responsible for most of
the transcripts and they are enriched with optimal codons,
confirming the relationship between codon optimality, a
long RNA half-life and higher translation levels. A similar
profile was also observed when the CSC was derived from
Becskey’s dataset (Supplementary Figure S4). Gene ontol-
ogy analysis of the three groups revealed that genes with op-
timal codons (cluster 1) were enriched in functional classes
related to translation, rRNA binding and RNA binding,
among others (Supplementary Table S4). The non-optimal
genes (cluster 3) were enriched in genes with histone acetyl-
transferase activity and protein kinase activity, among oth-
ers (Supplementary Table S4).

The results from Figure 4B agreed with previous data
showing that constitutive highly expressed proteins have a
high content of optimal codons. Indeed, when the CSCg
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Figure 7. Occurrence and position of non-optimal/optimal codon stretches in yeast mRNAs and their impact on translation. (A) The frequency of stretches
of 10 consecutive codons with extremely low CSC values (≤–1.28) (red line) across the mRNA sequence. Neutral stretches (0.05 ≥ CSC ≥ –0.05, black
line) and optimal stretches of CSCs (≥1.28) (blue line) were used as the control groups. Dunn’s multiple test comparisons; **** ≤–1.28 versus neutral (0.05
to –0.05), **** ≤–1.28 versus ≥1.28 and **** ≥1.28 versus neutral (0.05 to –0.05). See details of the statistical analysis in Supplementary Table S7A. (B)
mRNA sequences containing a 10-codon stretch with CSC values ≤–1.28 were aligned according to the position of the non-optimal stretch from the start
codon. The heatmap depicts the sum of the CSC values in a ten-codon window. Panel (C) shows the mRNA half-lives (11) of the genes presented in panel
7B. (D) The average ribosome footprint density of the genes presented in panel 7C from the stretch of non-optimal codons (position 0). The number of
reads at each position was normalized to the total number of reads in a 500-nucleotide window before and after the stretch. Genes with optimal stretches of
CSC (≥1.28) (blue line) were used as the control group. The right y-axis represents the adjusted p-value (green area) calculated for each nucleotide position
by multiple t-tests using the Holm-Sidak method. (E) The mRNA half-life values (11) were plotted according to the position of the non-optimal codon
stretch (CSC ≤ –1.28) from the ATG. No correlation was found between the non-optimal codon position and the mRNA half-life. (F) The half-life (11) of
the gene categories used in panels A and D. Kruskal–Wallis test, ****<0.0001, *0.017.

values were correlated and plotted against the protein
abundance estimated by proteomics (40), we observed a
positive correlation (Figure 5A). All proteins with more
than 105 copies/cell had mRNAs with CSCg values higher
than 0. Nevertheless, some low abundance proteins (<103

copies/cell) were produced by mRNAs with high CSCg val-
ues (>0.1). In this section, we investigated the functional
roles of this protein population. One possible explanation
is that these genes are optimized for high expression but
under a different condition than that used in Figure 5A.
To test this possibility, we divided the yeast genes into two

groups (inliers, black dots versus outliers, blue dots; Q =
1%, 95% confidence interval) and compared the fold change
in gene induction/repression under >400 conditions using
information from the SGD. We observed that the outlier
group of genes tended to have higher levels of induction in
a higher number of conditions than the inlier group (Figure
5B).

Because Coller’s mRNA half-lives were evaluated after
a mild heat shock, we repeated the CSCg to protein ex-
pression correlation analysis using Becskei’s mRNA half-
life data set, whose methodology did not involve tempera-
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ture changes (Table 1). We also tested an independent pro-
teome dataset (41). More than 80% of the outliers identified
using Coller’s and Becskei’s CSCg to protein expression cor-
relation analysis were identical (Supplementary Figure S5).
The outlier population was also significantly more suscep-
tible to upregulation than the inliers regardless of whether
the CSCg or proteomic dataset was used (Supplementary
Figures S5 and S6). A Venn diagram of the outliers iden-
tified using different CSCg and protein expression datasets
revealed 48 genes in common (Figure 5C). A gene ontol-
ogy enrichment analysis of these genes that were low abun-
dance but had high CSCg values revealed that proteins in-
volved in carbohydrate transporters and cell wall organiza-
tion were overrepresented (Figure 5D). In yeast, the expres-
sion of some hexose transporters is strongly regulated by
the presence of glucose; for some transporters, the induc-
tion can be as high as 300-fold (42).

We also calculated the CSCg values of mRNAs cod-
ing proteins that were previously shown to be upregulated
above the threshold of 1.5-fold induction under different
stress conditions. Figure 5E shows an example of the anal-
ysis used to identify proteins overexpressed in response to
DTT (43). Cumulative distributions comparing CSCg val-
ues of genes that were found to be upregulated by DTT and
other stress conditions with the overall yeast mRNA CSCg
values are shown in Figure 5F. The same analysis was re-
peated with CSCgs generated by different mRNA half-life
datasets obtained using diverse methodologies (Supplemen-
tary Figure S7). Regardless of which CSC dataset was used,
we observed that the CSCg values of stress-induced genes
were higher than those of the total proteome (Figure 5F
and Supplementary Figure S7). These analyses indicated
that for many stress inducible genes, high CSCg scores cor-
related with high protein and mRNA levels observed under
stress conditions, no matter the CSCg was based on mRNA
half-lives from cells growing in optimal conditions. Since
mRNA-decay rates can drastically change in response to
stress it would be interesting to experimentally measure the
stability of stress responsive mRNAs and evaluate at which
extent different growth conditions can affect CSC values.

Non-optimal codons lead to pauses in translation, but the ef-
fect on the mRNA half-life is independent of its position in
the mRNA sequence

Previous reports showed that non-optimal codons were
concentrated in both the 3′ and 5′ regions in several genes
(28,44). The biological explanation for this observation re-
lies on the efficiency with which a ribosome translates these
codons (28). The ribosome ramp hypothesis claims that
highly expressed genes possess a subset of non-optimal
codons in their 5’ mRNA regions, which are necessary to
slow down translation and thus avoid ribosome jams and
minimize the cost of protein translation. However, the ri-
bosome profiling data used to support the ribosome ramp
hypothesis were collected in the presence of cycloheximide
prior to cell lysis. As mentioned before, this protocol intro-
duces artifacts in the data, especially in the region near the
ATG (Figure 6G, 27, 30, 31). Using the CSC as a metric, we
measured the distribution of codons in the yeast genome.
Similar to the tAI (28), we observed an enrichment of non-

optimal codons from codon 3 until codon 10 (Figure 6A).
A more discrete enrichment was also observed in the region
close to the stop codon (Figure 6A). To verify whether en-
richment of non-optimal codons near the initiation site are
implicated in the ramp formation we calculated the average
CSC value of the first 10 codons and separated the yeast
genes in 10 groups of approximately 500 genes, based on
their scores (Figure 6B, groups 1–10): group number one
contains the genes with the lowest codon optimality while
group number ten contains the genes with the highest CSC
values in their first 10 codons (Figure 6B, groups 1–10). In
order to analyse the effect of sequences with extremely low
CSC sores, we separated the 100 genes with the lowest scores
into two small groups: � group, with the first 50 genes, and �
group, with the next 50 genes (Figure 6B, � and � groups).
Next, we compared the average ribosome footprint count
per nucleotide of each group in the presence or absence of
cycloheximide (Figure 6C and D, respectively). Figure 6C
shows that all groups had a steady increase in footprint
counts from the start codon, what characterizes the ramp
previously described by others (28). However, none of the
groups was different from the average genome (Figure 6E).
When the ribosome profiling was performed in the absence
of cycloheximide, the increase in footprint counts in the
beginning of the transcript was only subtle. However, the
� group showed a significant increase in footprint counts
(Figure 6F). Therefore, we concluded that only sequences
with extremely low CSC can lead to a ribosome ramp. The
ribosome ramp as seem in Figure 6C and G + CHX is in-
deed an artefact caused by the drug and is independent of
codon composition.

Recently, the DEAD-box protein Dhh1p was shown to
function as a sensor of codon optimality that targeted
mRNA for degradation (14). In a series of elegant exper-
iments, Coller et al. showed that Dhh1p bound to ribo-
somes and modulated ribosome occupancy of mRNAs with
low codon optimality (14). The authors proposed that when
elongation was delayed, Dhh1p bound to the translating ri-
bosomes, leading to mRNA decay. To prove that hypothe-
sis, a gene with optimal codons (PGK1) was modified with
a non-endogenous stretch of ten codons with exceptionally
low CSCs (TTA ATA GCG CGG CGG CGG CGG CGG
GCG ACG). This stretch was placed at increasing distances
from the ATG. Interestingly, the half-life of the PGK1
mRNA inversely correlated with the distances at which the
stretch was placed (i.e., mRNAs with non-optimal codons
that are closer to ATG possess longer half-lives than RNAs
in which these stretches are located more distant from the
ATG) (14). We investigated whether this observation could
be expanded to endogenous mRNAs. Using the CSC score
from Coller’s dataset, we summed the value of each one of
the ten codons used in Coller’s PGK1 construct and found a
value of –1.28. To determine the frequency and the position
of stretches of non-optimal codons in the yeast genome, we
developed a program that was able to screen the sequence
of a given gene and calculate the sum of CSCs for every 10
codons. We found 1702 stretches in 1208 genes with values
equal to or lower than –1.28. To allow a comparison with
the optimal codons, we followed the same strategy, but this
time the threshold value was equal to or higher than +1.28.
The distribution of non-optimal stretches was not random;



Nucleic Acids Research, 2019, Vol. 47, No. 5 2227

they were concentrated close to the ATG. An opposite less
obvious distribution was observed with the optimal codons
(Figure 7A). Next, we created a new dataset in which we re-
moved genes with more than one non-optimal stretch and
with undetermined mRNA half-lives (11). The genes were
organized according to the position of the stretch with non-
optimal codons from the ATG (Figure 7B, non-optimal
stretch shown in yellow). Next, the ribosome profiles of the
same genes were analyzed (Supplementary Figure S8). No-
tably, we used ribosome profiling data obtained in the ab-
sence of cycloheximide prior to cell lysis (30,45). We aligned
the non-optimal codon stretches and compared the average
ribosome density from the 500 nucleotides before and af-
ter the stretch of non-optimal codons (Figure 7D, red line).
Again, all analysis steps used for genes with non-optimal
stretches were repeated with genes with optimal stretches as
a control (Figure 7D, blue line). We compared the normal-
ized ribosome profiles of genes containing a non-optimal
stretch vs. an optimal stretch (Figure 7D, right axis). As
expected, ribosome accumulation was observed at the be-
ginning of the non-optimal stretch, whereas no accumula-
tion was present in the genes with an optimal stretch (Fig-
ure 7D, see adjusted p-values on the right y-axis). However,
the statistical analysis did not support the existence of other
differences in the ribosome distribution between these two
groups of genes. A similar pattern was observed with ribo-
some profiling from another dataset (Supplementary Figure
S9A) (30). This observation is important since the model
proposed by Coller et al. to explain the difference in mRNA
half-lives for genes with non-optimal codons is based on the
accumulation of ribosomes before the stalling point (14).
Based on the data obtained with the modified versions of
PGK1, genes with a non-optimal stretch of codons located
closer to the ATG should have higher half-lives than genes
in which the stretch is located farther away from the start
codon. When we compared the mRNA half-life value with
the distance of the non-optimal stretch of codons from the
ATG, we did not observe any correlation (Figure 7C and E).
As expected, the same absence of correlation was also ob-
served when the control group (genes with optimal stretches
of codons) was analyzed (Supplementary Figure S9B). The
presence of a non-optimal stretch affects the half-life of the
mRNA (Figure 7F), but a direct correlation between the
position of the non-optimal stretch and a reduction in the
mRNA half-life was not observed in our analysis (Figure
7E). One possible explanation for the different conclusions
obtained with the reporter system and our analysis may re-
side in the use of PGK1 as the reporter sequence. PGK1
is a highly expressed protein that is formed mainly by neu-
tral or optimal codons. It belongs to cluster 1 of Figure 4
and has the 15th highest CSCg value in the yeast genome.
We observed that the lowest CSC value in a window of 10
residues for this class was -0.055 (Supplementary Figure
S10). Therefore, in this context, the occurrence of a stretch
with –1.28 can be considered an aberration. The effect of the
insertion of a non-optimal codon stretch in an optimized
gene, such as PGK1, may not reflect the situation with nat-
urally occurring sequences. In fact, most yeast genes are
formed by non-optimal and neutral codons. For instance,
all sequences used in Figure 7B and F belonged to cluster
3 of Figure 4B. In this context, the same stretch of non-

optimal codons tested with PGK1 presented little impact
on the overall mRNA stability, and the position-specific ef-
fect observed with the reporter was completely lost.

CONCLUSIONS

Using CSCs for each of the 61 codons and the CSCg values
calculated for each yeast gene, we elucidated important fea-
tures of the yeast genome, including the following: (i) some
mRNAs concentrate optimized and non-optimized codons,
and this organization is shaped by evolution; (ii) genes with
optimal codons can be found in highly expressed genes not
only under standard growth conditions but also under stress
conditions and (iii) stretches of non-optimal codons tend
to be located closer to the ATG. The presence of these se-
quences can slow ribosome movement, but genes contain-
ing non-optimal stretches closer to the ATG do not neces-
sarily have higher mRNA half-lives.
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