
molecules

Article

Comparative Studies on Thermal Decompositions of
Dinitropyrazole-Based Energetic Materials

Jing Zhou 1,2, Chongmin Zhang 2, Huan Huo 2, Junlin Zhang 2, Zihui Meng 1, Tao Yu 2, Yingzhe Liu 2 ,
Xiaolong Fu 2,*, Lili Qiu 1,* and Bozhou Wang 2,*

����������
�������

Citation: Zhou, J.; Zhang, C.; Huo,

H.; Zhang, J.; Meng, Z.; Yu, T.; Liu, Y.;

Fu, X.; Qiu, L.; Wang, B. Comparative

Studies on Thermal Decompositions

of Dinitropyrazole-Based Energetic

Materials. Molecules 2021, 26, 7004.

https://doi.org/10.3390/

molecules26227004

Academic Editor: Weihua Zhu

Received: 19 October 2021

Accepted: 17 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China;
zhoujing19872006@163.com (J.Z.); mengzh@bit.edu.cn (Z.M.)

2 Xi’an Modern Chemistry Research Institute, Xi’an 710065, China; iceand010@163.com (C.Z.);
huohuan-234@163.com (H.H.); junlin-111@163.com (J.Z.); fischer@wo.cn (T.Y.); liuyz_204@163.com (Y.L.)

* Correspondence: fuxiaolong204@163.com (X.F.); qiulili@bit.edu.cn (L.Q.); wbz600@163.com (B.W.)

Abstract: Dinitropyrazole is an important structure for the design and synthesis of energetic materials.
In this work, we reported the first comparative thermal studies of two representative dinitropyrazole-
based energetic materials, 4-amino-3,5-dinitropyrazole (LLM-116) and its novel trimer derivative
(LLM-226). Both the experimental and theoretical results proved the active aromatic N-H moiety
would cause incredible variations in the physicochemical characteristics of the obtained energetic
materials. Thermal behaviors and kinetic studies of the two related dinitropyrazole-based energetic
structures showed that impressive thermal stabilization could be achieved after the trimerization, but
also would result in a less concentrated heat-release process. Detailed analysis of condensed-phase
systems and the gaseous products during the thermal decomposition processes, and simulation
studies based on ReaxFF force field, indicated that the ring opening of LLM-116 was triggered
by hydrogen transfer of the active aromatic N-H moiety. In contrast, the initial decomposition of
LLM-226 was caused by the rupture of carbon-nitrogen bonds at the diazo moiety.

Keywords: dinitropyrazole; mechanism; ReaxFF force field; thermal decomposition; trimerization

1. Introduction

Thermal property is a key factor for the application of energetic materials [1–4], which
is related to safety production, transportation and storage. Unlike traditional energetic
structures with carbonaceous backbones, a large part of modern energetic materials are
designed based on poly nitrogen-rich heterocycles constructed through the coupling of
various heterocyclic units [5–8]. From structural standpoint, both the heterocyclic units and
their coupling manner can significantly influence the thermal properties of the obtained
coupling products [9]; however, the detailed effect and mechanism of the influence still
remains unclear since little comparative thermal research was reported.

Active aromatic N-H moiety widely exists in energetic structures and causes in-
credible variations in the physicochemical characteristics and detonation performances
of corresponding energetic materials [10–12]. With a highly acidic aromatic N-H bond,
4-amino-3,5-dinitropyrazole [13,14] (LLM-116) has been successfully applied as an ac-
tive nucleophile in the design and synthesis of other heterocycle-based energetic ma-
terials [15,16]. 4-Diazo-3,5-bis(4-amino-3,5-dinitropyrazol-1-yl)pyrazole (LLM-226) is a
novel trimer structure of LLM-116 which was recently beautifully prepared through a self-
coupling reaction [17]. (Figure 1) Compared with LLM-116, the trimerization retains the
pyrazole backbones but removes the active H from their aromatic N-H moieties. Due to the
abundant nitro and amino groups, both LLM-116 and LLM-226 are promising candidates
for insensitive high explosives, with their energetic properties as follows [17]: density of
1.90 and 1.83 g·cm−3; Dh50 (2.5 kg weight) of 177 and 31cm; friction sensitivity (BAM) of
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0/10 @ 36kg and 1/10 @ 32.4kg; Spark Sensitivity (J @ 0 Ohms) of 0.038 and 0.014; detona-
tion velocity (calculated) of 8497 and 8220 m/s; detonation pressure (calculated) of 31.89
and 28.0 Gpa; enthalpy of formation (calculated) of 221.1 and 686.63 kJ/mol. Meanwhile,
the novel structures and self-coupling manner make these dinitropyrazole derivatives ideal
for comparative thermal studies to clarify how the heterocyclic units and coupling manners
will affect corresponding thermal properties. Herein, a systematic comparative thermal
research on LLM-116 and LLM-226 were carried out through both experimental and the-
oretical approaches. Their thermal behaviors, thermolysis kinetics, as well as thermal
decomposition mechanism were all investigated and compared to get a deep understand-
ing on the pyrolysis processes of the two related dinitropyrazole-based energetic materials.
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cient approach to improve the thermal stabilities of energetic materials [22,23]. 

The detailed thermal decomposition behaviors of the two energetic structures were 
first investigated and compared through the DSC-TG method. (Figure 2) As shown in the 
DSC curve, the major decomposition process of LLM-116 started shortly after its melting. 
The major exothermic peak at the heating rate of 10 °C·min−1 was observed at 183 oC in a 
sharp peak shape. A small and broad exothermic peak was found with the peak temper-
ature at around 247 °C, which may be caused by the interactions between the 

Figure 1. The synthesis of LLM-226 based on self-coupling of LLM-116.

2. Results and Discussion

The strong intramolecular and intermolecular hydrogen bonding interactions between
the amino and nitro groups [18,19] give LLM-116 high crystal density and superior insensi-
tivities to mechanical stimulations. Compared with LLM-116, LLM-226 possesses similar
hydrogen bonding interactions and a larger conjugate system. Although the expansion of
the aromatic conjugate structure can improve the thermal stability of LLM-226, the newly
formed diazo structure may bring complex influence on its thermal behaviors. On the one
hand, most diazo structures suffer poor stability [20,21] and will lose dinitrogen to afford
more stable structures under heating conditions. On the other hand, the introduction of
salt structures, especially inner salt structures, has been proved as an efficient approach to
improve the thermal stabilities of energetic materials [22,23].

The detailed thermal decomposition behaviors of the two energetic structures were
first investigated and compared through the DSC-TG method. (Figure 2) As shown in
the DSC curve, the major decomposition process of LLM-116 started shortly after its
melting. The major exothermic peak at the heating rate of 10 ◦C·min−1 was observed at
183 oC in a sharp peak shape. A small and broad exothermic peak was found with the
peak temperature at around 247 ◦C, which may be caused by the interactions between
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the decomposition products of LLM-116. Its major weight loss was an intensive peak
that corresponded with the major exothermic peak in DSC. Compared with LLM-116,
the major decomposition peak temperature of LLM-226 was much higher and the major
exothermic peak shape was much broader. No melting process was observed before the
thermal decomposition process of LLM-226, and its weight loss process lasted in a wide
temperature range. Apparently, the active aromatic N-H moiety significantly influenced
the thermal decomposition of LLM-116; in contrast, the larger aromatic conjugate structure
of LLM-226 provided an additional stabilizing effect but also led to less concentrated
exothermic behaviors.
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With the raise of the heating rates, the thermal decomposition peaks of both LLM-116
and LLM-226 moved to high temperatures. (Figure 3a,b) To further analyse the thermal
decomposition behaviors of LLM-116 and LLM-226, their TG-DTG curves were also studied.
(Figure 3c,d) Both of their TG-DTG curves showed a single DTG curve peak. The single



Molecules 2021, 26, 7004 4 of 19

peaks indicated that the decompositions are possible to be single-step decomposition
reactions; however, they may also be multi-step ones. According to the ICTAC Kinetic
committee recommendations, the Multi-Step Model-Fitting method was applied for deep
investigations [24]. Based on the analysis of the experimental results of LLM-116 and
LLM-226 through the Friedman method, both E and lgA are conversion rate dependent
and should be treated as multiple reactions (accelerated reaction type). Based on this, the
constructions of the multi-step kinetic models were carried out, and the results showed
that the kinetic model of LLM-116 can be regarded as a two-step continuous reaction
consisting of BNA (the extended Prout-Tompkins equation) and F2 (second-order) reactions.
In contrast, the kinetic model of LLM-226 can be regarded as a two-step continuous reaction
consisting of Cn (auto-catalysis n-th order) and F2 reactions. Figure 3e,f are tested, and
simulated curves of LLM-116 and LLM-226 are based on experiments and calculations,
respectively. For both LLM-116 and LLM-226, the tested curve and the simulated curve are
significantly overlapped, indicating that the models match well. The kinetic parameters of
each step in the reaction are calculated and shown in Table 1. Based on the comparative
research results, the activation energy of the first and initiation reaction of LLM-116 was
much less than that of LLM-226, which was accordant with the lower thermal stability of
LLM-116 when compared with that of LLM-226 according to the DSC-TG studies.

Table 1. Thermal decomposition kinetic parameters of LLM-116 and LLM-226 obtained through
multi-step model-fitting method.

Reaction 1 (BNA) Reaction 2 (F2)

LLM-116

Activation
Energy 82.2 Activation

Energy 131.1

Log(PreExp) 8.7 Log(PreExp) 13.9
ReactOrder n 0.39 Contribution 0.24
AutocatOrder 0.79 - -
Contribution 0.76 - -

Reaction 1 (Cn) Reaction 2 (F2)

LLM-226

Activation
Energy 143.6 Activation

Energy 120.9

Log(PreExp) 11.7 Log(PreExp) 10.2
ReactOrder n 0.65 Contribution 0.42

Log(AutocatPreExp) 1.2 - -
Contribution 0.58 - -

By the experimental results above, although LLM-226 was a trimerization product
of LLM-116, their thermal behaviors and properties are very different from each other.
For deep analysis of their condensed-phase products during the thermal decompositions,
the structural analysis of LLM-116 and LLM-226 were carried out through in situ FTIR
spectroscopy under the linear temperature rise condition in real time. (Figure 4) Figure 4a,b
showed the FTIR spectrum of LLM-116 at room temperature and heating temperatures of
155 ◦C, 170 ◦C, 185 ◦C. With the raise of the heating temperature, the IR signals of -NH2
and -NH moieties of LLM-116 at 3435, 3322 and 3166 cm−1 first decreased significantly,
while the IR signals for the -NO2 (1324 and 1514 cm−1) and its molecular skeleton were
nearly unchanged. Obviously, the decomposition of LLM-116 started from the -NH2 and
-NH moieties. Figure 4c,d showed the FTIR spectrum of LLM-226 at room temperature
and heating temperatures of 160 ◦C, 220 ◦C, 260 ◦C. Interestingly, the -NH2 moieties in the
trimerization structure were much more stable than that in LLM-116. Their corresponding
IR signals in LLM-226 at 3485 and 3367 cm−1 did not decrease quickly ahead of the -NO2
(1536 and 1313 cm−1) and its molecular skeleton. Although the -N2 moiety (with the IR
signal located at 2203 cm−1) decreased faster than the other parts, it still exhibited a sur-
prisingly superior stability compared to most other diazo-containing energetic structures.
Based on the information obtained, it is highly possible that the pyrolysis of LLM-116
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started from the –NH moiety, while the pyrolysis of its trimer derivative LLM-226 was
likely triggered by the decomposition of the diazo moiety.
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To further clarify the corresponding decomposition processes of the similar energetic
heterocycles, systematic simulation studies were then carried out. ReaxFF is a method
for modeling chemical reactions with atomistic potential based on the reactive force field
approach [25], and calculations based on ReaxFF force field were performed with details of
the initial reactions discussed to get a deep understanding of the decomposition processes
of LLM-116 and LLM-226. The energy of the system was calculated based on Equation (1),
in which the Ebond, Eover, Eunder, Eval , Etor, Elp, ECoul , and Evdw refer to corresponding bond
energy, over-coordination penalty energy, under-coordination correction energy, valence
angle energy, torsion angle energy, lone-pair electron energy, Coulomb interaction energies,
and van der Waals interaction energy, respectively.

Esystem = Ebond + Eover + Eunder + Eval + Etor + Elp + ECoul + Evdw (1)

As shown in empirical Formula (2), both bond-order formalism and polarizable charge
descriptions are applied to investigate the reactive and nonreactive interactions between
atoms in this study based on the ReaxFF force field. BO and rij refer to the distance between
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atoms i and j. Pbo terms are empirical parameters. The empirical Formula (2) successfully
described all of the σ, π and π − π bonds formed between atoms i and j. In this study,
a standard of BO cutoff of 0.3 [26,27] was chosen, which means that the chemical bond
between i and j atoms was formed if their bond level was greater than 0.3. EEM method [28]
is applied to describe the charge of an atom in the calculations based on ReaxFF force field
and the description of long-range interactions is added to ReaxFF-lg force field [29] for
van der Waals forces. Isothermal-isobaric (NPT) MD simulation with a 0.25 fs time step is
also applied to relax the internal stresses and obtain the initial structures of LLM-116 and
LLM-226.

BOij = BOσ
ij + BOπ

ij + BOππ
ij = exp

[
pbo1·

( rij

rσ
o

)Pbo2
]
+ exp

[
pbo2·

( rij

rπ
o

)Pbo4
]
+ exp

[
pbo5·

( rij

rππ
o

)Pbo6
]

(2)

The molecular structures and super cells of LLM-116 and LLM-226 were shown in
Figure 5. Here, both Berendsen thermostat (100 fs damping constant) and Berendsen
barostat (500 fs damping constant) were applied. After a 100 ps of NPT simulation, a 50 ps
isothermal isochoric (NVT) MD simulation was carried out with a 0.25 fs time step at
1500 K, 2000 K, and 3000 K, rationally designed high temperatures which could activate the
molecules to the desired states instantly for further analysis of the thermal decomposition
behaviors of LLM-116 and LLM-226. The thermostat and barostat were same as those
applied in the NPT MD simulation, and all MD simulations were carried out using the
ADF software package with a reactive force field of ReaxFF-lg. In this study, the bond
order cutoff applied to confirm chemical bonds formations was set to 0.3 for all atom pairs
and the data calculated from this method was applied to achieve the product distribution
and reaction steps. To clarify the initial reaction mechanism which was significant to
understand the complete reaction pathway, the first 50 ps decomposition products and
pathways of LLM-116 and LLM-226 were studied, respectively. Meanwhile, to understand
the effect of temperature on the decomposition products and pathways, their dynamic
processes at 1500 K, 2000 K and 3000 K were also determined.

Figure 6a–c showed the decomposition processes and decomposition products of
LLM-116 at 1500 K, 2000 K and 3000 K, respectively. At 1500 K, the main decomposition
products were N2, H2N2, NH3, H2O, and the number of the products was very small
compared to 2000 K and 3000 K, which may due to a large number of LLM-116 molecules
being not completely decomposed and still retaining their chain-like or cyclic structures.
At 2000 K, the amount of nitrogen generated increased significantly. This indicated that a
part of LLM-116 molecule was completely decomposed, but the amount of carbon dioxide
was still very small, which showed that the carbon chain structure was still not completely
decomposed. At 3000 K, the amount of nitrogen generated further increased. Meanwhile,
the amount of carbon dioxide generated increased significantly, which indicated that the
carbon chain also began to completely decompose. Therefore, as the temperature increases,
from the perspective of its different decomposition products, the nitrogen atom in LLM-116
compound completely decomposed first, generating stable products such as nitrogen. As
the temperature gradually increased, the carbon chain began to decompose and gave
stable products such as carbon dioxide. At 3000 K, the formation of C2O3 was observed,
but this structure was obviously unstable and quickly further decomposed into CO and
CO2 at high temperatures. Similarly, H2N2 was also unstable in the external environment
and would further decompose. Moreover, it was observed that the initial decomposition
of the LLM-116 molecule was mostly caused by intramolecular hydrogen transfer, and
Figure 7 showed the intramolecular hydrogen transfer phenomena which resulted in the
ring opening of LLM-116.
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Figure 8 shows the decomposition process and decomposition products of LLM-
226 at 1500 K, 2000 K and 3000 K. The main decomposition products included N2, CO2,
H2N2, HN2, NH3, and C2O3. Similar to the compound LLM-116, below 1500 K, only a
small amount of nitrogen was generated, and the molecular structure was not completely
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decomposed. When the temperature reached 2000 K, only the amount of nitrogen generated
increased significantly, while other small molecule products had only a small increase.
When the temperature reached 3000 K, the amount of nitrogen generated continued to
increase, but the amount of carbon dioxide generated did not increase significantly, which
was different with that of LLM-116. The different results were possibly caused by the lower
oxygen content of LLM-226, which made the carbon atoms more difficult to completely
decompose through internal redox reactions to form stable products during the pyrolysis
process. Moreover, the results showed that the molecular structure of LLM-226 was much
more stable than LLM-116, and its initial decomposition was caused by the rupture of
carbon-nitrogen bonds at the diazo moiety, which is shown in Figure 9.
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There have already been several studies which discussed the possible decomposition
mechanisms of energetic pyrazoles under heating conditions. The studies of the Sinditskii
group have shown that the splitting-off the nitro group from nitropyrazole structure
is a possible way to trigger the decomposition of the energetic molecule, meanwhile,
the reaction between conjugated nitro and amine groups may also form fused furazan
intermediate, whose ring strains will accelerate further decomposition [30]. The studies
from the Kiselev and Muravyev group proposed an impressive thermolysis pathway of
3,5-DNP, commencing with the [1,5] sigmatropic hydrogen shift followed by the consequent
molecular elimination of N2 and the radical bond scission yielding •NO2 [31]. The Prokudin
group’s study showed that the thermal decomposition of the nitropyrazole derivatives
may start from the intramolecular oxidation of the adjacent carbon atom by the nitro group,
which proceeds via a strongly polarized cyclic four-membered transition state. [32] These
reported mechanisms from the literature indicate that the pyrolysis of the nitropyrazole
derivatives may include different kinds of pathways, such as hydrogen shift, the elimination
of N2, as well as internal redox reactions. To further prove the results obtained from the in
situ FTIR spectroscopy experiments and calculations based on the ReaxFF force field, the
DSC-TG-FTIR-MS quadruple technology [33] was then applied to perform the real-time
and continuous analysis of the gaseous products during the pyrolysis of LLM-116 and
LLM-226. (Figure 10) According to the experimental mass results obtained, most fragment
products detected coincide with the results obtained in the previous sections, except for
the fragment of HN2, whose signal was not detected. (The signals of fragments of N2 and
CO were covered by the signal of background nitrogen.) With the combination of all the
information obtained, the proposed detailed mechanisms of the thermal decomposition
processes of LLM-116 and LLM-226 were demonstrated in Figure 11. For LLM-116, the
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decomposition started from the hydrogen transfer, which resulted in the formation of the
intermediate (in Figure 7) and triggered the ring opening [34]. According to the fragments
observed in Figure 10, after the ring opening, NH3 could be released from the structure,
which also resulted in the elimination of N2 through pathway A; in contrast, N2H2 could
be released through pathway B. Activated explosive structures were left after the two
pathways, and redox reactions between the fuel moieties (carbon and hydrogen elements)
and oxidative moiety (nitro groups) lead to the fragments of CO2, CO, N2 and H2O. (The
fragment of C2O3 was the incompletely oxidized fragment of CO2+CO.) Based on the
calculation result (Figure 8), the decomposition of LLM-226 was proposed to start from the
cleavage of diazo moiety, leading to an activated tricyclic intermediate. The elimination
of N2 was triggered according to the fragments observed in Figure 10b; moreover, it is
possible that the two NH2 moieties interact with each other to release the fragments of
NH3 and N2H2. A redox reaction between the final remaining fuel elements and oxidative
nitro groups in the activated explosive structure could lead to the formation of CO2, CO,
H2O and N2. (The fragment of C2O3 was the incompletely oxidized fragment of CO2+CO).
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3. Methods

The samples of LLM-116 and LLM-226 were supplied by Xi’an Modern Chemistry
Research Institute. The compounds were synthesized through reported procedures [17,35]
(Scheme 1) All the samples were characterized by 1H NMR, 13C NMR, FTIR and elemen-
tal analysis.
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The thermal analysis experiments were performed with a model TGDSC STA 449C in-
strument (NETZSCH, Germany). Operation conditions: sample mass, 0.6 mg; atmosphere,
dynamic nitrogen; aluminum cell. The IR spectra were recorded on a Nicolet 60SX FTIR
spectrometer employing an HgCdTe detector.

4. Conclusions

In summary, comparative thermal behaviors of LLM-116 and its novel trimer deriva-
tive LLM-226 were investigated through both experimental and theoretical approaches.
Active aromatic N-H moiety exhibited great influence on the corresponding thermal prop-
erties and decomposition behaviors. DSC-TG experiment results showed a much higher
decomposition peak temperature of LLM-226 with a broader exothermic peak shape, which
indicated that the thermal stability was significantly improved after the trimerization, but
led to a less concentrated heat release process. Analysis of the condensed-phase systems
of the thermal decompositions proved the active aromatic N-H moiety played a key role
in the initial process of the decomposition of LLM-116 and the thermal stability of amino
groups were improved after the trimerization. Systematic simulation studies based on
ReaxFF force field were calculated to further clarify the corresponding decomposition
processes of the similar energetic heterocycles, which showed the initial decomposition
of the LLM-116 molecule was mostly caused by intramolecular hydrogen transfer, while
the initial decomposition of LLM-226 was caused by the rupture of carbon-nitrogen bonds
at diazo moiety. The DSC-TG-FTIR-MS quadruple technology was then applied to the
analysis of the gaseous products during the pyrolysis of LLM-116 and LLM-226, finding
that the experimental result is quite close to the calculation results based on the ReaxFF
force field. According to the obtained experimental and calculated results, corresponding
mechanisms were finally proposed to clarify the detailed decomposition processes.
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