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Immune checkpoint inhibitors, such as pembrolizumab, are revolutionizing

therapeutic strategies for different cancer types, including non-small-cell lung

cancer (NSCLC). However, only a subset of patients benefits from this ther-

apy, and new biomarkers are needed to select better candidates. In this study,

we explored the value of liquid biopsy analyses, including circulating free

DNA (cfDNA) and circulating tumour cells (CTCs), as a prognostic or pre-

dictive tool to guide pembrolizumab therapy. For this purpose, a total of 109

blood samples were collected from 50 patients with advanced NSCLC prior

to treatment onset and at 6 and 12 weeks after the initiation of pem-

brolizumab. Plasma cfDNA was measured using hTERT quantitative PCR

assay. The CTC levels at baseline were also analysed using two enrichment

technologies (CellSearch� and Parsortix systems) to evaluate the efficacy of

both approaches at detecting the presence of programmed cell death ligand 1

on CTCs. Notably, patients with high baseline hTERT cfDNA levels had sig-

nificantly shorter progression-free survival (PFS) and overall survival (OS)

than those with low baseline levels. Moreover, patients with unfavourable

changes in the hTERT cfDNA levels from baseline to 12 weeks showed a

higher risk of disease progression. Additionally, patients in whom CTCs were
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detected using the CellSearch� system had significantly shorter PFS and OS

than patients who had no CTCs. Finally, multivariate regression analyses

confirmed the value of the combination of CTCs and cfDNA levels as an

early independent predictor of disease progression, identifying a subgroup of

patients who were negative for CTCs, who presented low levels of cfDNA

and who particularly benefited from the treatment.

1. Introduction

Lung cancer is the most commonly diagnosed cancer,

ranking first in morbidity and mortality rates among

malignant tumours worldwide [1]. Under normal physi-

ological conditions, immune checkpoint proteins are

crucial for the maintenance of self-tolerance, protecting

tissues from damage when the immune system responds

to infections. However, the expression of immune

checkpoint proteins is dysregulated by tumours as an

immune resistance mechanism [2]. Over the past decade,

immunotherapy has become a milestone in the treat-

ment of non-small-cell lung cancer (NSCLC), which

accounts for 80–90% of all lung cancer cases [3].

Currently, immune checkpoint inhibitors (ICIs) target

both programmed cell death protein 1 (PD-1) and pro-

grammed cell death ligand 1 (PD-L1). Pembrolizumab is

a humanized IgG4monoclonal antibody that inhibits the

PD-1 receptor. When used as a monotherapy, it is the

standard first-line treatment for selected patients with

metastatic NSCLC presenting high PD-L1 tissue expres-

sion (≥ 50%) [4]. The standard method to determine the

levels of PD-L1 is immunohistochemistry (IHC) of

tumour tissues, which is recommended for all patients

with newly diagnosed advanced NSCLC in routine clini-

cal practice [5]. However, PD-L1 expression does not

seem to be an optimal predictive biomarker since not all

patients experience an effective response to ICIs based

on the established selection criteria [6]. Thus, the addi-

tion of pembrolizumab to platinum-based chemotherapy

in patients with previously untreated advanced NSCLC

has recently produced a significant improvement in sur-

vival outcomes, independent of PD-L1 expression [7,8].

The determination of PD-L1 expression in tissues is

highly variable according to the time and site of biopsy,

and sometimes, PD-L1 expression is not detected due to

the limited tissue sample. Moreover, a unique tissue

biopsy may not be representative of the entire molecular

landscape of the tumour, and therefore, some PD-L1-

positive patients do not receive immunotherapy. The

management of NSCLC with ICIs requires the identifi-

cation of new and reliable biomarkers to select patients

who will benefit from immunotherapy while limiting

ineffective therapy that may produce adverse reactions

in patients [9]. Liquid biopsy has emerged as a rapid and

noninvasive alternative tool to obtain new biomarkers

of several cancers and to monitor its evolution over time

[10–12]. Circulating free DNA (cfDNA) and circulating

tumour cells (CTCs) are the most common and stan-

dardized liquid biopsy biomarkers, representing promis-

ing tools for the diagnosis, selection of ICI treatment

and monitoring of patients with NSCLC receiving

immunotherapy [13]. Moreover, analyses using combi-

nations of multiple liquid biopsy biomarkers are being

conducted to improve the accuracy of detection [14,15].

Some studies have suggested that monitoring cfDNA

dynamics might help clinicians select patients with

NSCLC who will benefit most from immunotherapy

[15–17]. In this study, we explored the value of the

cfDNA determination to anticipate the evolution of

metastatic NSCLC in patients receiving first-line pem-

brolizumab as a monotherapy or combination therapy.

In addition, we also focused our attention on CTC

levels, including an analysis of the PD-L1-positive sub-

population, to complete our liquid biopsy approach. For

this aim, we compared CTC enrichment technologies,

such as an epitope-dependent, EpCAM-based system

(CellSearch�; Menarini, Silicon Biosystems, Bologna,

Italy), with an epitope-independent, microfluidic system

(Parsortix; Angle Inc., Guildford, UK). Additionally,

PD-L1 expression was analysed in the enriched CTCs

using both technologies. Overall, cfDNA and CTC mon-

itoring provides clinically relevant information to select

patients who will benefit most from immunotherapy. To

our knowledge, this study is the first to examine the asso-

ciation of combined levels of both circulating biomarkers

with survival and the response to first-line pem-

brolizumab therapy in patients with metastatic NSCLC.

2. Materials and methods

2.1. Cell lines and culture

The lung cancer cell lines A549, NCI-H322 and NCI-

H460 were purchased from the American Type Culture
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Collection (ATCC� CCL-185TM; Manassas, VA, USA)

and routinely cultured in the ATCC-recommended

growth medium at 37 °C, 5% CO2 and 95% humidity.

Cancer cell lines were treated with 100 ng�mL�1 IFN-c
(Merck KGaA, Darmstadt, Germany) for 48 h to

obtain different levels of PD-L1 expression.

2.2. Patients and blood sample collection

We designed a prospective study including patients

with advanced NSCLC treated with pembrolizumab as

first-line therapy between June 2017 and January 2021

at the Department of Medical Oncology of Complexo

Hospitalario Universitario de Santiago de Compostela

(Fig. 1). Fifty consecutive patients were recruited.

Samples were collected from each patient at different

time points: prior to the start of treatment (baseline)

and 6 and 12 weeks after the first pembrolizumab dose

(Fig. 1). One hundred and nine peripheral blood sam-

ples were obtained from patients. All individuals pro-

vided written informed consent prior to enrolling in

the study, and the procedure was approved by Santi-

ago de Compostela and Lugo Ethics Committee (Ref:

2017/538). The approved protocol was conducted

according to the Declaration of Helsinki.

The efficacy of the treatment was evaluated based

on RECIST1.1 criteria as follows: complete response

(CR), partial response (PR), stable disease (SD) or

progressive disease (PD). Progression-free survival

(PFS) was defined as the time from the date of initial

treatment until the date of disease progression, death

or the last follow-up if progression or death had not

occurred. Overall survival (OS) was defined as the time

from the date of initial treatments until death or the

last follow-up.

2.3. CfDNA isolation from plasma samples

Twenty millilitres of peripheral whole blood from

patients with cancer was obtained by direct venipunc-

ture and collected using CellSave tubes (Menarini, Sili-

con Biosystems, Bologna, Italy). Plasma was separated

within 96 h after blood collection through two sequen-

tial centrifugation steps (10 min at 1600 g and 10 min

at 6000 g; both at room temperature) and then stored

at �80 °C until further processing. CfDNA was

extracted from 3 mL of plasma using a QIAamp Cir-

culating Nucleic Acid Kit (Qiagen, Hilden, Germany)

and a vacuum pump, according to the manufacturer’s

instructions.

Fig. 1. Study schema and monitoring of the patient cohort, including patient enrolment and sample collection.
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2.4. CfDNA quantification

Circulating free DNA yields were determined using the

quantitative PCR (qPCR) method by analysing the

telomerase reverse transcriptase (hTERT) single-copy

gene (Thermo Fisher Scientific, Waltham, MA, USA),

as previously reported [18]. The hydrolysis probe is

located on chr. 5:1253373 with an 88-bp amplicon that

maps within exon 16 of the TERT gene. qPCR was

carried out in a final volume of 20 µL consisting of

10 µL of TaqMan Universal Mastermix (Thermo

Fisher Scientific), 1 µL of hTERT hydrolysis probe

and 2 µL of sample. Amplification was performed

under the following cycling conditions using a QuantS-

tudioTM 3 real-time PCR system (Thermo Fisher Scien-

tific): 50 °C for 2 min; 95 °C for 10 min; 40 cycles of

95 °C 15 s; and 60 °C for 1 min. Data were analysed

with QUANTSTUDIO
TM Design & Analysis software, ver-

sion 2.5.1 (Thermo Fisher Scientific).

Each plate included a calibration curve and negative

controls. The calibration curve was calculated based

on a dilution series of standard human genomic DNA

(Roche Diagnostics, Mannheim, Germany) fragmented

into 184-bp fragments using a Covaris� E220-focused

ultrasonicator (Covaris Inc., Woburn, MA, USA).

gDNA was fragmented in a 6 9 16 mm microTUBE

AFA Fibre Pre-Slit Snap-Cap (Covaris) using the fol-

lowing settings: 430-s duration, peak incident power of

175 Watts, duty factor of 10% and 200 cycles per

burst. Fragment sizes were then determined using a

TapeStation 4700 (Agilent, Santa Clara, CA, USA)

and High Sensitivity DNA ScreenTape� (Agilent).

Each sample was analysed in duplicate, and the final

concentration was calculated by interpolation of the

mean of the quantification cycle (Cq) with the calibra-

tion curve. Values with a Cq confidence interval less

than 0.95 were discarded. Moreover, only assays with

R2 values greater than 0.98 for the standard curve and

with an efficiency ≥ 88.8% were used.

2.5. Spiked experiments

The assays to evaluate PD-L1 expression on CTCs

were tested using the cancer cell lines A549, NCI-H322

and NCI-H460 spiked in whole blood from the healthy

volunteers recruited for this study. The protocol

employed was described previously [12]. Briefly, cells

were trypsinized to approximately 80% confluence,

and then, 200 cells were added manually (with a calcu-

lated pipetting error of 10%) to a total of 7.5 mL of

blood from healthy donors collected in CellSave tubes

(Menarini, Silicon Biosystems). The samples were anal-

ysed using the CellSearch� and Parsortix systems, and

two tubes of the same sample were analysed with both

technologies. All spiked samples were enriched within

48 h of collection.

2.6. Analysis of PD-L1 expression on CTCs

isolated using CellSearch�

A total of 7.5 mL of peripheral whole blood samples

was collected in CellSave tubes (Menarini, Silicon

Biosystems) for CTC enumeration using the Cell-

Search� system (Menarini, Silicon Biosystems). A Cell-

Search� CXC Kit (Menarini, Silicon Biosystems) was

used for these specific experiments, including ferroflu-

ids coated with epithelial cell-specific anti-EpCAM

antibodies to immunomagnetically enrich epithelial

cells; a mixture of antibodies against cytokeratins

(CKs) 8, 18 and 19 conjugated to fluorescein (FLU);

an anti-CD45 mAb conjugated to allophycocyanin

(APC); and nuclear dye 40,6-diamidino-2-phenylindole

(DAPI) to fluorescently label the cells. The open 4th

antibody position of the CellSearch� system was used

to evaluate PD-L1 expression according to the ‘Guide-

line for the Use and Optimization of User Defined

Markers: CellSearch� Epithelial Cell Kit and Cell-

Search� CXC Kit, version 1.0’ for its optimization.

We employed the anti-human B7-H1/PD-L1 phycoery-

thrin (PE)-conjugated antibody (Cat N° FAB1561P;

R&D Systems, Minneapolis, MN, USA) at a final con-

centration of 20 lg�mL�1, as described previously [19].

CTCs were identified as EpCAM+, CK+, CD45� and

DAPI+, and PD-L1 expression was recorded for each

CTC (presence or absence) by comparison with the

PD-L1 expression levels in the cell lines. The specificity

of the staining was confirmed by the lack of signals

detected with our negative cell line, A549. As positive

control, we employed the cell line NCI-H460 stimu-

lated with IFN-c.

2.7. Analysis of PD-L1 expression on CTCs

isolated using the Parsortix system

A total of 7.5 mL of peripheral whole blood was col-

lected in CellSave tubes (Menarini, Silicon Biosystems)

and loaded into a Parsortix microfluidic device (Angle

Inc., Guildford, UK), as described previously [12].

Briefly, CTCs were then enriched from blood samples

in disposable Parsortix cassettes with a size of 6.5 lm
(GEN3D6.5; Angle Inc., Guildford, UK) and at

99 mbar of pressure, according to the manufacturer’s

guidelines. CTCs were trapped in the Parsortix cassette

due to their large size and lower compressibility than

the remaining blood cells. After separation, we fixed

the sample with 4% paraformaldehyde and carried out
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on-cassette staining with selected antibodies according

to the manufacturer’s guidelines, followed by fluores-

cence microscopy detection (Leica DMI8; Leica

Microsystems, Wetzlar, Germany). The selected anti-

bodies included Alexa Fluor 647-conjugated CD45

(35-Z6, sc-1178; Santa Cruz, CA, USA) at a final con-

centration of 4 lg�mL�1 to detect white blood cells;

the same anti-human B7-H1/PD-L1 PE-conjugated

antibody (R&D Systems) used in CellSearch� systems

at a final concentration of 20 lg�mL�1 to detect PD-

L1 expression; Alexa Fluor 488-conjugated pan-CK

(A4-108-C100; EXBIO Praha, Vestec, Czech Republic)

at a concentration of 1.33 lg�mL�1; and DAPI to fluo-

rescently label the cells. CTCs were identified as CK+,
CD45- and DAPI+, and PD-L1 expression on CTCs

was determined (presence or absence) according to the

results obtained from cell line-spiked samples. We

employed Leica Application Suite X (LAS X) (Leica

Microsystems) to identify the fluorescence intensity in

each single cell, and PD-L1 expression on CTCs was

determined (presence or absence) according to the

results obtained from cell line-spiked samples. The

specificity of the staining was confirmed by the lack of

signals detected with our negative cell line, A549. As

positive control, we employed the cell line NCI-H460

stimulated with IFN-c.

2.8. PD-L1 immunohistochemistry and scoring

PD-L1 IHC was carried out on 4-lm sections of FFPE

tumour tissue samples using Dako PD-L1 IHC 28-8

PharmaDx (Agilent). The test was performed using the

EnVision FLEX visualization system on the Dako

Autostainer Link 48 and Dako PT Link Pretreatment

Module (Agilent). A minimum of 100 viable tumour

cells must be present for evaluation. PD-L1 expression

was evaluated only in tumour cells. Scoring was deter-

mined according to the tumour proportion score (TPS),

which is defined as the percentage of positive viable

tumour cells among all viable tumour cells evaluated. A

tumour cell was defined as positive for PD-L1 staining

whenever any partial or complete membranous staining

was detected. The percentage of PD-L1-positive tumour

cells was assessed as previously described [20]. Slides

were assessed independently by two pathologists.

2.9. Statistical analysis

Statistical analyses were performed using R version

4.0.2. The Spearman correlation coefficients were calcu-

lated to assess the correlation between the PD-L1 TPS

and PD-L1 status of CTCs. The kappa test was used to

determine the concordance with a 95% confidence

interval (CI). We dichotomized the CTC PD-L1 counts

as positive and negative and categorized PD-L1 expres-

sion (PD-L1 tissue expression, 80–100% vs < 80%) to

calculate the kappa coefficients. Receiver operating

characteristic (ROC) curves were constructed, and the

area under the ROC curve (AUC) with 95% CIs was

obtained to evaluate the thresholds of baseline hTERT

cfDNA levels for OS and PFS analyses. The AUC and

the 95% CIs for the sensitivity and specificity were esti-

mated using the pROC package in R software [21]. Uni-

variate and multivariate Cox regression analyses were

performed using the survival package in R [22], and a

Kaplan–Meier analysis was then performed. The associ-

ations between CTCs and hTERT cfDNA with the best

response were estimated using Fisher’s exact test. We

also used Fisher’s exact test to compare the association

between CTC counts and the response to therapy.

3. Results

3.1. Study population

The characteristics of the patients enrolled in the study

are summarized in Table 1. The median age was

63.3 years (range: 45–79), and the majority of patients

were males (74%), and current or former smokers (86%)

and had tumours with an adenocarcinoma histology

(72%). Eighty per cent of patients had an Eastern Coop-

erative Oncology Group Performance Status (ECOG PS)

of 1–2, and 30% of patients had more than two metas-

tases. Thirty-four per cent of patients exhibited PD-L1

expression in the tissue at a level ≥ 80%, and the median

number of pembrolizumab treatment cycles was 6 (range

1–35 cycles). The median PFS and OS were 10.47 and

19.13 months, respectively, in the 50 patients with

NSCLC. The objective response rate (ORR: complete

response or partial response during ≥ 6 cycles) was

46.0%, with 1 complete and 22 partial responses.

3.2. Circulating free DNA analyses

3.2.1. Prognostic and predictive value of cfDNA levels

at baseline

We next evaluated the role of cfDNA levels as a prognos-

tic biomarker for pembrolizumab treatment outcomes in

our cohort of patients with NSCLC. We employed the

hTERT qPCR assay to determine the cfDNA levels. The

cohort was dichotomized into two groups (high and low

levels) according to a threshold calculated based on the

baseline hTERT cfDNA levels observed in our cohort
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(Table S1). These levels were log10-transformed by

choosing 7.665 (2132.39 in genome equivalents�mL�1,

GE�mL�1 plasma) and 7.638 (2075.59 in genome equiva-

lents�mL�1, GE�mL�1 plasma) for PFS and OS analyses,

respectively, after considering sensitivity and specificity

based on ROC curve analyses (Table S1). Patients with

high baseline hTERT cfDNA levels had a significantly

shorter PFS (P-value < 0.01; hazard ratio, 2.89; 95% CI,

1.30–6.45) and OS (P-value = 0.005; hazard ratio, 3.26;

95% CI, 1.43–7.47) than those with low baseline levels

(Fig. 2A,B and Table 2).

The median OS was 28.4 months in the low baseline

hTERT cfDNA group and 4.9 months in the high base-

line hTERT cfDNA group, whereas the median PFS

was 14.6 and 5.1 months in the two cfDNA categories

(low vs. high baseline levels, respectively) (Fig. 2A,B).

Considering various clinical and demographic variables

(ECOG PS, sex, age, PD-L1 expression in the tissue,

number of metastases and smoking status), univariate

and multivariate Cox regression analyses of PFS and

OS were performed (Table 2). In this analysis, hTERT

cfDNA levels did not show value as an independent

predictive biomarker of PFS and OS, with the number

of metastases representing the main independent factor

explaining the PFS rates.

3.2.2. Monitoring hTERT cfDNA levels and the

response to therapy

We next investigated the value of hTERT cfDNA kinetics

as a prognostic biomarker during pembrolizumab treat-

ment (Figs 3 and 4). Blood samples were collected longi-

tudinally, before the initiation of therapy, and at 6 and

12 weeks after the onset of pembrolizumab therapy

(Fig. 1). No significant differences were observed in the

global cfDNA levels between any group (Fig. S1A). We

monitored and investigated the relationship between

hTERT cfDNA levels and the response to therapy in our

patient cohort (Fig. 3). We did not find any association

between the cfDNA levels at baseline and the response to

pembrolizumab therapy (Fig. S1B). However, after con-

sidering the changes from baseline to 12 weeks, we found

an association with treatment response (Fig. 4A). We

observed two patterns: an increase in hTERT cfDNA

levels at 12 weeks (n = 14) and a decrease in hTERT

cfDNA levels at 12 weeks (n = 12), with a median PFS

of 6.8 and 4.6 months, respectively (Fig. 4B).

We also analysed the risk of disease progression at

each time point. According to the ROC curve analysis,

the thresholds of cfDNA levels at baseline, 6 weeks

and at 12 weeks were chosen for the PFS analysis

(Table S1). High levels of hTERT cfDNA at 12 weeks

were a strong predictor of the risk of disease progres-

sion (P-value < 0.005, odds ratio = 18, 95% CI 2.5–
131.3) (Fig. 4C). Fifteen patients showed high levels at

12 weeks, and 12 of them (80%) developed progressive

disease compared with 2 of the 11 patients (18.2%)

with low levels. Moreover, at each time point, patients

were divided into favourable and unfavourable risk

groups after considering their changes in hTERT

cfDNA levels. The median PFS was 7.07 months for

the unfavourable risk group based on the changes

between baseline and 12 weeks, whereas median PFS

was not reached for the favourable risk group (P-value

< 0.01; hazard ratio, 6.8; 95% CI, 1.5–30.5) (Fig. 4D).

3.3. Circulating tumour cell analyses

3.3.1. EpCAM-dependent versus antigen-independent

CTC isolation to quantify CTCs and characterize the

PD-L1 status

In addition to monitoring hTERT cfDNA levels, we

analysed CTC levels, as they represent a more

Table 1. Demographics and clinical characteristics of the patients

at baseline. SD, standard deviation; NSCLC-NOS, non-small-cell

lung cancer-not otherwise specified.

Baseline characteristics

Patients

na (%)

Mean age (years) � SD, range 63.3 � 8.3, 45–79

Sex

Female 13 (26)

Male 37 (74)

Smoking

Smoker 31 (62)

Former smoker 12 (24)

Never 7 (14)

Histology

Adenocarcinoma 44 (88)

Squamous cell carcinoma 4 (8)

NSCLC-NOS 2 (4)

ECOG PS

0 10 (20)

1 34 (68)

2 6 (12)

PD-L1 expression in the tissue

< 80% 33 (66)

≥ 80% 17 (34)

Number of metastatic sites

≤ 2 35 (70)

> 2 15 (30)

Pembrolizumab treatment

Monotherapy 37 (74)

In combination with chemotherapy 13 (26)

a

n = 50 at baseline.
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biological feature of the tumour. Therefore, we evalu-

ated two different technologies, the EpCAM-based

CellSearch� system and the label-independent

microfluidic Parsortix system, to quantify CTCs and

assess the expression of PD-L1 and to determine the

advantages of the non-EpCAM-dependent isolation

method. First, we categorized the presence or absence

of PD-L1 on single CTCs to grade its expression in

each cell line (with known gradual increases in PD-L1

protein expression) using both approaches (Fig. 5A,B).

We used preserved blood samples from healthy con-

trols spiked with three lung cancer cell lines (A549, no

expression; NCI-H322, low-medium expression; and

NCI-H460, medium-high expression) representative of

the variability of PD-L1 expression (Fig. S2).

Next, peripheral blood samples were collected from

patients prior to treatment to analyse the presence of

CTCs and their PD-L1 expression (Fig. 5C,D) as

potentially valuable prognostic and predictive

biomarkers. In 20 samples from patients, we compared

CTC enumeration using both strategies (CellSearch�

and Parsortix systems) and evaluated the performance

and concordance between them (Fig. S3A,B and

Table S2). Using the CellSearch� system, we detected

≥ 1 CTC in 50% (10/20) of samples (range 1–168;
mean = 9.8), while using the Parsortix system, 35% (7/

20) of samples had ≥ 1 CTC (range 1–56; mean = 4.7).

Regarding the capacity to detect PD-L1 expression in

CTCs, we detected PD-L1-positive CTCs in 2 of 17

samples (in 2/10 samples with CTCs) using the Cell-

Search� system. Compared with the label-independent

system, we observed PD-L1-positive CTCs in 7 of 20

samples (in 7/7 samples with CTCs) using the Parsor-

tix system. When we compared the concordance of

both technologies, we found that kappa scores for the

number of CTCs and PD-L1-positive CTCs presented

negative values for both technologies (�0.1 and 0.14,

respectively), showing no correlation between them.

3.3.2. Correlation of the PD-L1 status in CTCs and

tissue samples

We also compared the PD-L1 status of CTCs using

CellSearch� and Parsortix systems with PD-L1 expres-

sion in the primary tumour biopsy obtained at the ini-

tial diagnosis (Fig. S4). The PD-L1 TPS in biopsies

did not correlate with the percentage of PD-L1-

positive CTCs at the initial diagnosis (P-value = 0.59

and P-value = 0.71 for the CellSearch� and Parsortix

systems, respectively). The mean time between tissue

biopsy and liquid biopsy sample collection was

38.6 days (range 9–78). Kappa scores for the PD-L1

status in CTCs and PD-L1 expression in tissue were

low for both technologies. Thus, using the CellSearch�

system, the concordance rate was 26.7% with Cohen’s

kappa of 0.04, while with the Parsortix system, the

concordance rate was higher, 47.1% with Cohen’s

kappa of 0.14.

3.3.3. Prognostic and predictive values of CTC

enumeration at baseline

We evaluated the role of CTC enumeration in prognos-

ticating disease progression in response to pem-

brolizumab treatment in our cohort of patients with

advanced NSCLC. For this purpose, we performed

CTC enumeration at baseline in 30 patients using the

CellSearch� system and 20 patients using Parsortix.

Patients with CTCs identified using the CellSearch� sys-

tem had significantly shorter PFS and OS than patients

who had no CTCs (P-value < 0.05) (Fig. 6A,B). The

median PFS was 12.6 and 3 months in the two groups

Fig. 2. Kaplan–Meier survival analysis of hTERT cfDNA levels at baseline. Kaplan–Meier plots of PFS (A) and OS (B).

2929Molecular Oncology 15 (2021) 2923–2940 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

P. Mondelo-Mac�ıa et al. Liquid biopsy as biomarker for immunotherapy



(0 vs. ≥ 1 CTC, respectively). The median OS of the

CTC-positive group was 4.9 months, whereas the med-

ian OS was 21.13 months for the CTC-negative group.

In the multivariate regression analysis (Table 2), we

confirmed that CTC positivity using the CellSearch�

system was an independent predictive biomarker of PFS

and OS (hazard ratio, 5.75; 95% CI, 1.35–24.5, P-value
< 0.05 and hazard ratio, 4.59; 95% CI, 1.32–16.0, P-
value < 0.05, respectively). We observed no significant

results for PFS or OS when analysing CTC counts with

the Parsortix system and evaluating PD-L1-positive

CTCs, regardless of the technology employed (Cell-

Search� and Parsortix systems).

We also investigated the relationship between the

CTC counts detected using both approaches and the

response to pembrolizumab therapy in our patient

cohort. Significant differences were observed between

the CTC count detected with the CellSearch� system

and the achievement of a complete or partial response

and disease progression (P-value < 0.05) (Fig. 6C).

Table 2. Univariate and multivariate Cox regression analyses of cfDNA levels, CTC counts and clinical parameters. ECOG, Eastern

Cooperative Oncology Group Performance Score. The levels of cfDNA were determined as low (< cut-off) or high (≥ cut-off) based on the

cut-off obtained from the ROC curve analyses.

Variable

Univariate Multivariate

P-value Hazard ratio (95% CI) P-value Hazard ratio (95% CI)

PFS

Baseline log cfDNA (high vs. low cfDNA, n = 50) 0.009 2.89 (1.30–6.45) 0.80 1.18 (0.28–5.01)

Baseline CTC count, CellSearch (≥ 1 vs. 0, n = 30) 0.04 2.97 (1.04–8.45) 0.006 9.36 (1.88–46.6)

ECOG (≥ 1 vs. 0, n = 50) 0.20 2.09 (0.72–6.08) 0.70 1.40 (0.24–8.15)

PD-L1 expression in the tissue (≥ 80 vs. < 80, n = 50) 0.40 0.68 (0.27–1.76) 0.13 0.37 (0.10–1.36)

Sex (male vs. female, n = 50) 0.40 0.71 (0.32–1.57) 0.04 0.23 (0.05–0.97)

Age (years, n = 50) 0.60 0.99 (0.93–1.04) 0.30 1.05 (0.96–1.16)

Number of metastasis (> 2 vs. ≤ 2, n = 50) 0.04 2.39 (1.03–5.55) 0.006 9.21 (1.87–45.3)

Smoking (yes vs. no, n = 50) 0.40 0.68 (0.25–1.82) 0.03 11.4 (1.25–104)

Combined changes in CTC and cfDNA levelsa

Group 1 (CTCs < 1 and a low cfDNA level, n = 12) – Reference – –

Group 2 (CTCs < 1 and a high cfDNA level or CTCs ≥ 1 and

a low cfDNA level, n = 10)

0.005 5.37 (1.66–17.4) 0.009 13.1 (1.91–90.1)

Group 3 (CTCs ≥ 1 and a high cfDNA level, n = 8) 0.05 4.12 (0.98–17.4) 0.01 14.5 (1.76–119)

Combined changes in CTC and cfDNA levelsa

Group A (CTCs < 1 and a low cfDNA level, n = 12) – Reference – –

Group B (CTCs < 1 and a high cfDNA level or CTCs ≥ 1 and

a low cfDNA level or CTCs ≥ 1 and a high cfDNA level,

n = 18)

0.006 4.99 (1.60–15.6) 0.005 13.6 (2.17–85.3)

OS

Baseline log cfDNA (high vs. low cfDNA levels, n = 50) 0.005 3.26 (1.43–7.47) 0.90 1.13 (0.29–4.46)

Baseline CTC count, CellSearch (≥ 1 vs. 0, n = 30) 0.03 2.71 (1.11–6.64) 0.01 5.41(1.42–20.6)

ECOG (≥ 1 vs. 0, n = 42) 0.06 4.05 (0.95–17.2) 0.70 1.51 (0.25–8.99)

PD-L1 expression in the tissue (≥ 80 vs. < 80, n = 50) 0.50 1.36 (0.60–3.10) 0.50 0.64 (0.20–2.04)

Sex (male vs. female, n = 42) 0.70 1.18 (0.49–2.86) 0.20 0.42 (0.10–1.76)

Age (years, n = 42) 0.80 1.01 (0.95–1.07) 0.20 1.07 (0.98–1.17)

Number of metastasis (>2 vs. ≤2, n = 42) 0.005 3.12 (1.41–6.87) 0.001 9.08 (2.35–35.1)

Smoking (yes vs. no, n = 42) 0.60 0.77 (0.29–2.05) 0.02 20.5 (1.54–273)

Combined changes in CTC and cfDNA levelsa

Group 1 (CTCs < 1 and a low cfDNA level, n = 12) – Reference

Group 2 (CTCs < 1 and a high cfDNA level or CTCs ≥ 1 and

a low cfDNA, n = 10)

0.14 2.33 (0.76–7.15) 0.50 1.90 (0.33–11.0)

Group 3 (CTCs ≥ 1 and a high cfDNA level, n = 8) 0.02 4.24 (1.29–14.0) 0.01 6.39 (1.37–29.8)

Combined changes in CTC and cfDNA levelsa

Group A (CTCs < 1 and a low cfDNA level, n = 12) – Reference – –

Group B (CTCs < 1 and a high cfDNA level or CTCs ≥ 1 and a

low cfDNA level or CTCs ≥ 1 and a high cfDNA level, n = 18)

0.04 2.91 (1.05–8.07) 0.05 4.02 (0.97–16.6)

a

Multivariate Cox regression model including sex, age, Eastern Cooperative Oncology Group Performance Score, PD-L1 expression in the tis-

sue, number of metastases and smoking status.
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The ORR was similar between patients with unde-

tectable CTCs compared with patients with detectable

PD-L1-positive or PD-L1-negative CTCs using Cell-

Search� and Parsortix technologies (Table S3).

3.4. Clinical potential of combined CTC and

cfDNA analyses

We also evaluated the joint effect of baseline CTC counts

using the CellSearch� system and hTERT cfDNA levels.

First, we considered three risk subgroups: (a) CTCs < 1

and low cfDNA baseline levels; (b) CTCs < 1 and high

cfDNA baseline levels or CTCs ≥ 1 and low cfDNA

baseline levels; and (c) CTCs ≥ 1 and high cfDNA base-

line levels. Multivariate Cox analyses confirmed that the

combined analyses of CTCs using the CellSearch� sys-

tem and hTERT cfDNA levels were independent predic-

tive biomarkers of PFS (P-value < 0.01; hazard ratio,

11.6; 95% CI, 2.04–66.1; P-value < 0.05; hazard ratio,

14.3; 95% CI, 1.7–117) (Table 2).

Fig. 3. Clinical course for patients during pembrolizumab treatment. Swimmer plots for each patient (n = 50) showing the levels of hTERT

cfDNA at baseline (red colour indicates high hTERT cfDNA levels, and blue colour indicates low hTERT cfDNA levels). The total length of

each bar indicates the duration of survival from start of pembrolizumab treatment. Left, squares are coloured according to the response

based on RECIST1.1 criteria.
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Subsequently, we considered only two risk sub-

groups to simplify the analysis: (A) CTCs < 1 and low

cfDNA baseline levels; and (B) CTCs < 1 and high

cfDNA baseline levels or CTCs ≥ 1 and low cfDNA

baseline levels or CTCs ≥ 1 and high cfDNA baseline

levels. Patients from subgroup A (undetectable CTCs

using CellSearch� and low cfDNA levels) had signifi-

cantly shorter PFS (P-value < 0.01; hazard ratio, 4.99;

95% CI, 1.6–15.6) and OS (P-value < 0.05; hazard

ratio, 2.9; 95% CI, 1.1–8.1) than patients from sub-

group B (Table 2). The median PFS was not reached

in group A (low cfDNA levels and undetectable CTCs

at baseline), whereas the median PFS was 4.0 months

in group B. Similarly, the median OS was not reached

in group A, whereas the median OS was 4.9 months in

group B (Fig. 7A,B). Overall, the hazard ratios and P-

values that emerged from the univariate and multivari-

ate Cox analyses suggest a combinatory effect of both

markers as early predictors of disease progression

(Table 2).

Additionally, patients with CTCs identified using the

CellSearch� system and high cfDNA levels at baseline

showed a trend towards a poorer response to pem-

brolizumab therapy (Fig. S5).

4. Discussion

Liquid biopsy represents a promising tool for the diag-

nosis, selection and monitoring of response to ICI

treatment in the context of NSCLC. Currently, PD-L1

Fig. 4. hTERT cfDNA changes from baseline to 12 weeks. (A) hTERT cfDNA concentrations for the two cfDNA patterns (increase/decrease

at 12 weeks) and showing the response to therapy. (B) Percentage of patients and median PFS for each cfDNA pattern; (C) Proportion of

patients with high and low levels baseline, 6 and 12 weeks. P-value was calculated by Fisher’s exact test. (D) Kaplan–Meier plot of PFS of

the favourable/unfavourable changes at 12 weeks. Groups are composed of patients with unfavourable changes: both high hTERT cfDNA

levels at baseline (cut-off ≥ 7.665) and at 12 weeks (cut-off ≥ 7.026), or low levels at baseline (cut-off < 7.665) and high levels at 12 weeks

(cut-off ≥ 7.026). The low-risk group (patients with favourable changes) is composed of patients with low hTERT cfDNA levels at baseline

(cut-off < 7.665) and low levels at 12 weeks (cut-off < 7.026) or high levels at baseline (cut-off ≥ 7.665) and low levels at 12 weeks (cut-off

< 7.026). CR/PR, complete response/partial response; SD/PD, stable disease/progression disease.
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is the best studied biomarker for ICI treatment selec-

tion, exhibiting a higher probability of response with

higher expression of PD-L1 [13]. In patients with

advanced NSCLC and PD-L1 expression on at least

50% of tumour cells, pembrolizumab results in signifi-

cantly longer PFS and OS [4], and thus, the determina-

tion of PD-L1 expression in tissue samples is the

reference factor for the selection of ICI treatments.

However, in clinical practice, patients with high levels

of PD-L1 may not respond to ICI treatment; in con-

trast, in the absence of PD-L1, a clinical benefit may

be obtained from the use of PD-1 or PD-L1 check-

point inhibitors [13]. A high tumour mutational bur-

den (TMB), which is associated with high levels of

neoantigens, represents another potential candidate

biomarker that would drive the choice of treatment

[4], although this biomarker has not been translated

into the clinic due to conflicting results among studies

[23–28]. Notably, these two markers have been mainly

examined in tissue samples.

In the present study, we analysed the value of

hTERT cfDNA and CTC analyses as potential prog-

nostic and predictive noninvasive biomarkers to dis-

criminate patients who will benefit from ICIs. We

explored the clinical value of monitoring hTERT

cfDNA levels and detected the presence of CTCs,

including PD-L1 characterization, in a homogeneous

cohort of patients with metastatic NSCLC receiving

first-line treatment with pembrolizumab as a

monotherapy or in combination with chemotherapy.

Circulating free DNA has already been proposed as

a prognostic and predictive biomarker in NSCLC [29–
31], but few studies have reported the cfDNA concen-

tration as a predictive marker of the immunotherapy

response. Although cfDNA represents promising mate-

rial, standardized protocols for the processing and total

quantification are still missing [32]. In our work, we

propose the qPCR method to quantify hTERT cfDNA

because it is a sensitivity and cost-effective assay and

based on previous results obtained in lung cancer

patients [15,18,33]. Alama et al. [15] reported that

patients with NSCLC who were treated with a 2nd or

higher line of nivolumab and with cfDNA level below

their cohort median values survived significantly longer

than those with a cfDNA level above this threshold. In

another study, patients with NSCLC treated mainly

with second-line therapy with nivolumab and with low

ctDNA concentrations at the first evaluation showed a

Fig. 5. (A, B) Detection of PD-L1 expression after spiking cancer cell lines in healthy blood and analysis of them with the CellSearch� and

Parsortix systems, respectively, and representative images of different grades of PD-L1 expression. (C) Representative images of CTCs

detected with the CellSearch� system in patients with NSCLC. Samples were subjected to immunostaining with DAPI, CD45 (APC),

cytokeratins (FLU) and PD-L1 (PE). (D) Representative images of CTCs detected with the Parsortix system in patients with NSCLC. Samples

were subjected to immunostaining with DAPI, CD45 (AF647), cytokeratins (AF488) and PD-L1 (PE). NCI-H460 stimulated with IFN-c shown

high expression, NCI-H460, medium expression, NCI-H322, low–medium expression, and A549, no expression.
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long-term benefit [16]. Notably, numerous studies have

described the presence of somatic mutations in plasma

cfDNA and their association with tumour response and

survival [34–36]. Recently, an early decrease or total

clearance of ctDNA levels after pembrolizumab admin-

istration identified subsets of patients with advanced

solid tumours who had a good prognosis [37,38],

regardless of the tumour type, PD-L1 status or TMB.

In a previous study, changes in the ctDNA concentra-

tion were reported as a predictor of a durable response

in patients treated with anti-PD-1 drugs [39], where the

persistence of ctDNA exerted a detrimental effect.

Goldberg et al. [40] also suggested that cfDNA levels

may be an early marker of therapeutic efficacy, predict-

ing prolonged survival in patients treated with ICIs for

NSCLC. Based on these findings, serial ctDNA

analyses could serve as a generalizable monitoring strat-

egy for patients treated with ICIs, but researchers have

not clearly determined whether this approach is trans-

ferable to cfDNA, which is clearly easier to analyse.

Regarding the on-treatment cfDNA levels, data are

scarce, although cfDNA levels appear to be decreased

in response to effective treatments [41–43]. Our study

prospectively evaluated the value of hTERT cfDNA

kinetics as a prognostic biomarker during pem-

brolizumab treatment. Patients with NSCLC present-

ing high hTERT cfDNA levels at baseline or

unfavourable changes from baseline to 12 weeks had a

significantly greater risk of disease progression. Impor-

tantly, although the concentration of cfDNA can vary

among individuals, depending on physiological factors

and tumour characteristics [44,45], the cfDNA analysis

Fig. 6. Kaplan–Meier survival analysis of CTCs at baseline. Kaplan–Meier plots of PFS (A) and OS (B). (C) Comparison of the response to

pembrolizumab based on CTC detection using CellSearch�. P-value was calculated by Fisher’s exact test.
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has clear advantages compared with the ctDNA deter-

mination, such as its feasibility, low detection cost and

reproducibility. Therefore, our results reinforced the

potential to monitor hTERT cfDNA dynamics in

patients with NSCLC treated with ICIs, providing a

simple tool to better anticipate the response to treat-

ment.

We also investigated CTC levels using two CTC

enrichment technologies, the EpCAM-based Cell-

Search� system (approved by the Food and Drug

Administration (FDA) for the prognostic assessment

of CTCs in patients with metastatic breast, colon and

prostate cancer [46–48]) and the microfluidic epitope-

independent-based method Parsortix system to com-

plete our liquid biopsy approach. The CellSearch� sys-

tem is the only FDA-approved device for CTC

enumeration in some cancer types, although other

immunomagnetic-based strategies have been developed

for CTC enrichment [49,50]. The Parsortix system uses

a combination of size-based and microfluidic-based

enrichment approaches to separate CTCs from blood

samples and solve the dependence on a single biomar-

ker, EpCAM, in this case, allowing the detection of

CTCs with a more mesenchymal phenotype. In our

study, the detection rate using the CellSearch� system

(50%) was higher than that using the Parsortix system

(35%), and many differences at the individual level

were observed when comparing the results of both

strategies for the same patient, reinforcing the isolation

of different CTC types with both technologies.

In a previous comparative study of patients with

NSCLC, Janning et al. [51] reported a higher detection

rate using the Parsortix than the CellSearch� system in

patients with NSCLC receiving different therapy

regimens, attributing the difference to the heterogene-

ity and low EpCAM expression of some CTCs and

therefore to the inability of EpCAM-based Cell-

Search� to detect certain subpopulations. Our cohort

was a more homogeneous cohort, with patients naive

to previous treatments. This last factor can favour the

epithelial characteristics of CTCs, since the EMT is

induced as a result of drug resistance in NSCLC [52–
55]. However, we analysed only CK-positive CTCs in

combination with PD-L1; therefore, we were unable to

make a firm statement in this regard. Although previ-

ous works showed good recovery rates in cell lines and

patients using Parsortix system [12,51,56], some

methodological aspects can be impacting on the CTC

enumeration in our cohort. For instance, we used Cell-

Save Preservative tubes, which contain fixative

reagents that can modify the deformability properties

of the cells. Besides the staining protocol differs from

previous publications [51] that described a higher

detection rate using the Parsortix system in NSCLC.

Among the CTC population, we focused our atten-

tion on the PD-L1-positive subpopulation, which rep-

resents treatment targets. Although our data show

that the determination of the PD-L1 status is feasible

in CTCs from patients with NSCLC, we found that

the PD-L1 status of CTCs does not correlate with the

PD-L1 expression characterized in tissue samples or

with the response to the treatment, regardless of the

method employed. Despite the lack of prognostic

value of PD-L1 expression on CTCs obtained using

both approaches, most of the CTCs isolated using the

Parsortix system were PD-L1-positive (100% of

patients with CTCs), while only 20% of samples with

CTCs contained PD-L1-positive CTCs using the

Fig. 7. CTCs and hTERT cfDNA correlate with the prognosis of patients with NSCLC treated with pembrolizumab. (A) Kaplan–Meier survival

plot of PFS based on the combination of cfDNA and CTC levels at baseline. (B) Kaplan–Meier survival plot of OS based on the combination

of cfDNA and CTC levels at baseline.
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CellSearch� system. Thus, the epitope-independent-

based Parsortix system showed a high recovery rate of

PD-L1-positive CTCs, probably associated with a

more mesenchymal phenotype of CTCs isolated with

this EpCAM independent strategy. The use of CTCs

and their potential to analyse PD-L1 expression has

already been reported in patients with NSCLC [51,57–
63], including the study by Janning, but their signifi-

cance is not yet clear [64]. The lack of concordance

and contradictory results between the presence of PD-

L1 in tissue and the percentage of PD-L1-positive

CTCs have also been reported [51,57,58,61,63,65].

Importantly, in most studies assessing PD-L1 expres-

sion in CTCs, different antibodies and CTC enrich-

ment technologies have been used, which might

partially explain the discrepancy.

Another important point is that CTCs originate

from different tumour locations with different PD-L1

patterns [66], and tissue comparisons have been per-

formed mainly with the primary tumour. Importantly,

in our study, no association of PD-L1 expression on

CTCs, such as prognostic or predictive biomarkers,

was found. Despite the lack of clinical impact found

for PD-L1-positive CTCs, the global CTC count at

baseline determined using the CellSearch� system was

significantly associated with PFS and OS, as previously

described in patients treated with chemotherapy [67]

and in patients receiving ICI treatment using the Cell-

Search� system or other technologies [13]. Our results

revealed a greater effect of the main epithelial circulat-

ing population in patients with NSCLC, since the

CTC count determined using a non-EpCAM-

dependent strategy failed to show any association with

the patients’ outcomes.

Finally, our study represents a pioneering approach

combining CTC count and cfDNA levels to predict

the response of patients with NSCLC to first-line pem-

brolizumab treatment. We observed that patients with

NSCLC presenting ≥ 1 CTC detected with the Cell-

Search� system and high levels of hTERT cfDNA at

baseline had a significantly higher risk of disease pro-

gression during pembrolizumab treatment. Our results

are consistent with a previous report focused on the

prognostic role of these two easy-to-measure biomark-

ers in patients with metastatic NSCLC receiving nivo-

lumab [15]. These results confirmed the value of

combining different circulating biomarkers to reach a

higher prognostic and predictive accuracy and better

discriminate the patients who will benefit most from

ICI treatment, in addition to PD-L1 status.

On the other hand, several limitations in our design

should be considered, which precludes us from drawing

solid conclusions. First, we used different antibodies to

analyse PD-L1 expression in CTCs and tumours, since

the standard procedure was applied in tissue samples,

while we used another antibody with CellSearch� and

Parsortix. Second, we did not perform CTC monitoring

during therapy in our NSCLC cohort, which could pro-

vide more valuable information. Third, hTERT amplifi-

cation has been reported in different cancer types,

including lung cancer [68,69]. Although the percentage

of NSCLC patients with this alteration is very low

(around 5–10% of lung cancer patients), we cannot

exclude an overestimation of the cfDNA content in a

low percentage of the cases analysed due to a potential

amplification. In addition, the sample size of the com-

bined cohort was relatively small.

5. Conclusions

In summary, the study served to establish the best strat-

egy to monitor PD-L1 expression on CTCs from patients

with advanced NSCLC. In addition, our results revealed

that the combination of baseline CTCs and hTERT

cfDNA levels is significantly associated with PFS and the

response to pembrolizumab therapy in patients with

metastatic NSCLC. Notably, using our approach, we

were able to identify a subgroup of patients who were

negative for CTCs, who presented low levels of hTERT

cfDNA and who particularly benefited from the treat-

ment. Early evaluation of the response to immunother-

apy might enable clinicians to decide whether the clinical

benefit is sufficient to continue treatment, avoiding

unnecessary toxicities and costs.
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Fig. S1. hTERT cfDNA changes during Pem-

brolizumab therapy and their association with disease

progression. (A) cfDNA levels at different time-points

(baseline, 6 and 12 weeks); (B) cfDNA levels according

the response to therapy. cfDNA, circulating-free

DNA.

Fig. S2. Immunofluorescence characterization of PD-

L1 in cancer cell lines.

Fig. S3. Concordance analysis between the detection

of CTCs (A) and CTCs PD-L1-positive (B) using the

CellSearch� and Parsortix systems (Kappa test).

Fig. S4. Correlation of PD-L1 positivity between

tumor tissues (by tumor proportion scores) and

CTCs with the CellSearch� (A) and Parsortix systems

(B).

Fig. S5. Objective response rate in patients with low

cfDNA levels and undetectable CTCs (n = 12) versus

patients with high cfDNA levels and undetectable

CTCs or low cfDNA levels and detectable CTCs or

high cfDNA levels and detectable CTCs (n = 18).

Table S1. ROC analysis to determine the value of

hTERT cfDNA levels to discriminate progression or

death.

Table S2. Circulating tumor cells enumeration and

PD-L1 analysed using CellSearch� and Parsortix sys-

tems.

Table S3. Comparison of the CTCs levels according to

the response to therapy.
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