
Indirect Genetic Effects and the Spread of Infectious
Disease: Are We Capturing the Full Heritable Variation
Underlying Disease Prevalence?
Debby Lipschutz-Powell1*, John A. Woolliams1, Piter Bijma2, Andrea B. Doeschl-Wilson1

1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom, 2 Animal Breeding and Genomics

Centre, Wageningen University, Wageningen, Netherlands

Abstract

Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment.
Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be
caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not
taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact
with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination
of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic
Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance
from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from
simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional
and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in
populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity.
Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that
potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of
estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future
disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity
substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce
disease prevalence.
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Introduction

Infectious diseases in livestock constitute a major threat to the

sustainability of livestock production. Moreover, the need to

contain epidemics has been further emphasized by the threat of

transmission to other species – in particular humans – as illustrated

in the recent swine flu epidemic [1]. Reducing disease prevalence

through selection for host resistance offers a desirable alternative

to chemical treatment which is a potential environmental concern

due to run-off, and sometimes only offers limited protection due to

pathogen resistance [2,3]. However, control of infectious diseases

through selection has proven difficult as genetic analyses of

resistance to infectious disease from field data tend to report low

heritabilities [4]. But is this a reflection of true genetic variance?

Current genetic analyses of disease data tend to focus on

individual susceptibility to infectious disease, ignoring information

from group members. However, using a stochastic epidemiological

model, Nath et al. [5] identified the transmission rate, latent period

and recovery period as critical parameters for the risk and severity

of infectious disease. In other terms, Nath et al. [5] identified the

impact that individuals have on each other as critical parameters

for the risk and severity of infectious disease. Moreover,

evolutionary theory would suggest that more genetic variation

may be found in an individual’s impact on its groupmates than in

susceptibility. Since an individual’s susceptibility is a component of

its own fitness, natural selection works to exhaust heritable

variation in susceptibility. An individual’s impact on its group-

mates, in contrast, is not a component of its fitness, and may

therefore accumulate greater heritable variation [6]. As demon-

strated by Van Dyken et al. [7] this would occur even when kin-

selection is acting, as populations in kin selection-mutation balance

contain a stable frequency of ‘cheaters’. In the context of disease,

‘cheaters’ correspond to hosts with increased shedding of infectious

pathogens which has no damage to their own fitness but a

potentially high cost to the herd. For example, assuming that

animals with a greater parasite burden will also shed more, Raberg

et al. [8] found genetic variation in anaemia and weight loss

corresponding to increasing parasite burden of rodent malaria in
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laboratory mice. These arguments suggest that there is an

opportunity in capturing genetic variation in host infectivity,

which is the propensity of transmitting infection upon contact with

a susceptible individual. Especially as, there is abundant evidence

that heterogeneity in infectivity can profoundly impact upon

disease prevalence in the population, with super-shedders being an

extreme example [9–12].

Over the last forty years, the theory of Indirect Genetic Effects

(IGE) has been developed to investigate the impact of interactions

among individuals on the expression and evolution of traits [13–

16]. An indirect genetic effect, also known as an associative or

social genetic effect, is a heritable effect of an individual on the

trait value of another individual [14]. Indeed, if an individual’s

trait value is affected by the genotypes of its population members

(indirect genetic effect), then response to selection will be affected

by these IGEs. It has been shown both theoretically [13,14,17] and

experimentally [18] that IGEs can drastically affect the rate and

direction of response to selection. In this context, host infectivity

can be regarded as an indirect effect to disease status. Thus an

individual’s disease status and infectious disease prevalence in a

population is likely to be affected by host genetic variation in both

susceptibility and infectivity. To date, however, no work has been

published examining the prospects of IGE models for infectious

diseases, suggesting that part of the heritable variation underlying

disease prevalence is overlooked.

Genetic variation in infectivity is difficult to measure directly

and may need to be inferred from more readily available

information such as binary disease data (infected/non-infected).

Our hypothesis is that current genetic models applied to binary

disease data do not capture the full genetic variation underlying

disease prevalence and that a model including IGEs is more

appropriate. This study, therefore, examines to what extent

genetic variance in infectivity/susceptibility is captured by a

conventional model versus an IGE model in populations with

simulated genetic variation in infectivity, and whether selection on

breeding values estimated with IGE models offer greater potential

for reducing disease prevalence. In order to address this question,

we modelled disease progression in populations with different

genetic architectures for infectivity/susceptibility and estimated

the genetic variance in the simulated binary disease data with a

conventional animal model and a model including IGEs. Finally,

we evaluated selection response in susceptibility and infectivity,

and its impact on future disease risk, using the estimated breeding

values (EBV) derived from both models.

Methods

The epidemiological model
An epidemic was simulated to describe disease progression in

the population and provide as output the disease status of each

individual at given time points. To avoid overburdening the results

with unnecessary complexity we chose a simple compartmental

stochastic SIR model of disease spread modified from [19]. In an

SIR model it is assumed that individuals start as being susceptible

(S) but may then become infected (I), upon contact with an

infected individual, eventually recover (R) and are then no longer

susceptible. The speed of transition between the epidemiological

compartments S, I, R is determined by the transmission parameter

b (S-.I) and by the recovery rate c (I-.R). It was also assumed

that infected individuals become immediately infectious. The

contact between individuals within a group was constant and

uniform (contact rate = 1) and no transmission was allowed

between groups.

To allow for individual genetic variation in the epidemiological

parameters b and c, each individual j was assigned its own level of

susceptibility gj, infectivity fj and speed of recovery cj . The pairwise

transmission parameter bjk was then defined as

bjk~{ln(1{Xg,jgjXf ,kfk): ð1Þ

We refer to Text S1 for the derivation of equation (1). For ease

of reading a comprehensive list of symbols and notation is given in

Table 1. Thus bjk is a function of the product of the susceptibility g

of individual j and the infectivity f of individual k. To reflect wether

susceptibility is expressed by individual j, it is scaled by Xg,j which

equals one if j is susceptible and zero otherwise. Similarly,

infectivity is scaled by Xf,k which equals one if k is infected and zero

otherwise. For simplicity, it was assumed that infectivity and

susceptibility are independent, and that all individual speeds of

recovery cj were assumed to be equal to a constant c~0:1 if the

individual was infected and zero otherwise.

The epidemic was simulated as a Poisson process, i.e. as a series

of random independent events occurring at given average rates in

continuous time. In this model the possible events were infection of

a susceptible individual and recovery of an infected individual.

The average infection rate rI within a group was estimated as the

sum of the pairwise transmission parameters bjk of the group

members and the average recovery rate rR as the sum of the

individual speeds of recovery cj .

The simulated epidemic was started by a single randomly

chosen infected individual within each group of size n in an

otherwise naı̈ve population. The time to the next event (inter-event

times) and the corresponding event type (infection of a susceptible

individual or recovery of an infected individual) were then

estimated using Gillespie’s direct algorithm [20] which is a

commonly used algorithm in stochastic epidemiological models

[21]. Specifically, the inter-event times for each group were

sampled from an exponential distribution with parameter

r~rIzrR. In other words, the time between each event was

estimated as { ln (x1)=r where x1 , U(0,1). The specific event

type v (i.e. infection or recovery) which then occurs was obtained

by drawing a random variate from a discrete distribution with

probability p(v)~rv=r. Hence, the event was an infection if

x2vrI=r where x2 , U(0,1) and a recovery otherwise. The

individual involved in each event was then chosen randomly

weighted by the individuals’ susceptibility or recovery rate. No

transmission was assumed between groups.

Simulated Populations
In order to ensure a high power to detect genetic variation, large

populations with a relatively large family size and a family

structure following e.g. dairy cattle were simulated. In particular,

populations of size N = 100,000 were created with a paternal half-

sib structure and no full sibs. All parents were assumed to be

unrelated. The half sib family size was 100 individuals. Similarly,

in order to ensure a high power to detect genetic variation, each

population was divided into 10,000 groups of size 10 chosen at

random without reference to pedigree.

Breeding values for susceptibility and infectivity were assigned

to the individuals in the parental generation using different

distributions to account for different underlying genetic architec-

tures. For the first architecture it was assumed that genetic

variation in susceptibility was controlled by a single bi-allelic locus

and genetic variation in infectivity by another bi-allelic locus. Both

loci were assumed to segregate independently. This architecture

Indirect Genetic Effects of Infectious Disease
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was used to encompass diseases affected by a major gene. For

example, Houston et al. [22] found that a single quantitative trait

locus (QTL) explained 98% of the additive genetic variation in

susceptibility to infectious pancreatic necrosis (IPN) in Salmon. For

the second architecture it was assumed that genetic variation in

these traits is influenced by many alleles conferring a continuous

distribution of effect sizes (possibly stemming from several loci).

Parametric statistical analyses usually assume normality. How-

ever, as shown by Lloyd-Smith et al. [11], the distribution of

infectivity is often right-skewed. Moreover, skewed distributions

allow for larger variation when the distribution is confined to

positive values. Both types of genetic architectures were, therefore,

considered with either a symmetrical or a right-skewed frequency

distribution. In all four combinations (two alleles- symmetric, two

alleles- skewed, multiple alleles – symmetric, multiple alleles –

skewed) mean susceptibility and infectivity were fixed at m = 0.22,

as different population means would lead to different prevalence

profiles. Fixing the means does however imply that populations

with different genetic architectures have different input variances,

and may thus not be directly comparable. However the focus of

the study is comparison of animal models vs. IGE models within a

genetic architecture.

Two alleles genetic architecture. For the bi-allelic archi-

tecture, it was assumed that the locus influencing susceptibility has

two alleles each inferring a value of G1 or G2 and the locus

influencing infectivity has two alleles each inferring a value of F1

or F2. We also assumed additivity of allelic effects without

dominance and that the population is in Hardy-Weinberg

equilibrium. In other words, the genetic values for susceptibility

(or infectivity) in the parental population were sampled from a

discrete distribution with three possible values G1+G1 (or F1+F1),

G1+G2 (or F1+F2) and G2+G2 (or F2+F2). The shape of the

distribution was defined through the minor allele frequency (MAF)

which applied to the allele with a large effect (F2, G2). The values

corresponding to each of the alleles were then chosen such that the

population mean and the allele substitution effect a were kept

constant. The same parameters were used for both infectivity and

susceptibility to facilitate comparison of estimated genetic param-

eters. Table 2 shows the parameter values for the bi-allelic genetic

architecture. The offspring’s’ breeding values were then generated

Table 1. Symbols and Notations.

gj Susceptibility of individual j

fj Infectivity of individual j

cj Speed of recovery of individual j

c Speed of recovery constant

bjk Pairwise transmission parameter from individual k to individual j

rI Average rate of infection

rR Average rate of recovery

X1,x2 Random variates

U(0,1) Uniform distribution between zero and one

N Population size

N Group size

m Fixed mean of susceptibility and infectivity

G1 Effect of allele with small effect on susceptibility, in bi-allelic architecture

G2 Effect of allele with large effect on susceptibility, in bi-allelic architecture

F1 Effect of allele with small effect on infectivity, in bi-allelic architecture

F2 Effect of allele with large effect on infectivity, in bi-allelic architecture

MAF Minor allele frequency (right-skewed distribution, applies to allele with large effect)

A Allele substitution effect

N(m,s2) Normal distribution with mean m and variance s2

G(a,h) Gamma distribution with shape a and scale h

s2
A

Genetic variance from conventional model

s2
D

Direct genetic variance from IGE model

s2
S

Indirect genetic variance from IGE model

s2
e

Residual variance

B1, b2 Regression coefficients

�pp Mean number of infected groupmates

EBVA Estimated Breeding Values from the conventional model

EBVD Estimated Breeding Values for the direct effect from the IGE model

EBVS EBV for the indirect effect from the IGE model

Ix Index of Estimated Breeding Values

R0 Basic reproduction number: expected number of secondary infections caused by an individual in its lifetime.

doi:10.1371/journal.pone.0039551.t001
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by randomly allocating dams to sires and randomly choosing one

allele from each parent.

Multiple alleles genetic architecture. For the multiple

alleles architecture, it was assumed that there would be sufficient

alleles contributing to the additive genetic values of susceptibility

and infectivity in the parental population to be adequately

approximated by a continuous probability density function.

For the symmetric frequency distribution, the breeding values

for the parental population were sampled from the normal

distribution N(m, s2). The parameter values were taken as m = 0.22

(i.e. the same as for the bi-allelic architecture) and s2 = 0.005 to

avoid frequent negative values of susceptibility/infectivity

(Table 2). If a negative value was sampled, it was discarded and

re-sampled. Each offspring was allocated a breeding value equal to

the mean of its parents plus a Mendelian sampling term.

For the skewed frequency distribution, the breeding values of

the parental population for susceptibility and infectivity were

assumed to be distributed according to the gamma distribution

G(a,h). It is not possible to represent Mendelian inheritance by

adding a Mendelian sampling term with a gamma distribution,

however, as the offspring generation would no longer follow the

same distribution as the parental generation. It was therefore

assumed that the parental breeding values stem from ten additive

loci with a large number of alleles each, whose values follow the

gamma distribution G(a/20,h). The offspring were then randomly

assigned one allele from each parent for each locus. The breeding

values of the offspring are therefore distributed following G(a,h).

Specifically, the parameters were taken as a = 1.1 and h = 0.2 such

that the mean ah = m = 0.22, i.e. the same as for the bi-allelic

architecture, the variance ah2 = 0.044 (Table 2) and the distribu-

tion is right-skewed (skewness 2/!a = 1.9).

For all populations, it was assumed that susceptibility and

infectivity are fully heritable and that the outcome, i.e. whether an

individual becomes infected or not, depends on both, the genetics

and environment. The environmental contribution to the pheno-

typic variance was represented through the stochastic events

(infection, recovery) in the epidemiological model. Thus, the

model assumes genetic predisposition whilst maintaining full

environmental stochasticity of the epidemics. Moreover, adding

additional environmental noise would not provide further useful

information to this study and would make it harder to interpret the

results. Each architecture was run with variation introduced in

susceptibility only, infectivity only, both or neither. When no

variation in susceptibility/infectivity was introduced, all individu-

als were given a fixed breeding value of m = 0.22 for that

underlying trait. As each simulated population is divided into

10,000 groups, i.e. 10,000 independent epidemics, each simulation

was replicated ten times.

Estimating genetic variance. Genetic variation between

individuals was estimated from binary records which were

obtained by recording the disease state of simulated individuals.

The binary disease trait, disease presence, was one if an individual

had become infected prior to a considered time-point and zero

otherwise. The data were analysed at the same timepoint for all

groups, which was the time at which 50% of individuals would

have become infected in a homogeneous population with the same

mean values for the input parameters. All analyses were carried

out using ASRem [23].

To reflect current practise, genetic variance in disease presence

was first estimated with a mixed model including a single genetic

variance. In order to be in line with the indirect genetic effect

model, this was achieved with an animal model for disease

presence y observed in offspring j of sire i,

yjh*meanz(animal effect)jzejh: ð2Þ

The group effect is absorbed by allowing for a correlation

between the residuals of group members, this is equivalent to

fitting a random group effect [24]. The animal variance is denoted

as sA
2. Hereafter this model is referred to as the conventional

model.

To estimate the genetic variance in the indirect effect, the data

were analysed using the model developed by Muir et al. [16]. Thus

for disease presence y observed in offspring j with this individual

living in group h of size n with groupmates m,

yjh*meanz(direct effect)jz
Xn{1

m~1

(associative effect)mhzejh: ð3Þ

Similarly to the conventional model, the group effect is

absorbed by allowing for a correlation between the residuals of

group members [24]. Note that this model does not take account

of the disease status of individuals j and their group members m, in

other words, it is assumed that all individuals express the direct

effect (susceptibility) and the associative effect (infectivity) at all

times, regardless of their infection status. The variance of the

direct and indirect genetic effects are denoted sD
2 and sS

2

respectively. Hereafter this model is referred to as the Indirect

Genetic Effects (IGE) model.

Association between variation in susceptibility/

infectivity and variation in binary disease presence. In

order to assess to what extent the available genetic variation is

being captured by the different statistical models, an estimate of

expected output variance as a function of the input variance in

infectivity/susceptibility is required. Following Dempster and

Lerner [25] a linear relationship was assumed between input

and output traits to provide an approximation. In particular, it was

Table 2. Parameters for Breeding Values Generation.

M.A.F. Allele values a Population mean m Variance

Distribution F1,G1 F2,G2

Two alleles Symmetric 0.5 0.02 0.2 0.18 0.22 0.0162

Skewed 0.2 0.074 0.254 0.18 0.22 0.0104

Multiple alleles Symmetric - - - - 0.22 0.0049

Skewed - - - - 0.22 0.0440

MAF applied to the alleles with a large effect (F2, G2).
doi:10.1371/journal.pone.0039551.t002
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assumed that there is a linear relationship between disease

presence in an individual j and that individual’s susceptibility gj

and the sum of the infectivities f of the p infected groupmates of

that individual,

yjh*meanzb1gjzb2

Xp

m~1

fmhzejh: ð4Þ

The regression mean and coefficients b1 and b2, were estimated

using this linear model in the statistical package R [26] with the

known input (i.e. true f and g values) and output (y) data from the

simulations. Hence the model in Equation 4 was used to estimate

the true linear effects of infectivity and susceptibility to the

observed binary disease presence.

The number of groupmates that have been infected (p) is a

variable which depends on the group h and status of individual j.

Indeed, if in a given group x individuals have been infected,

individual j will have x groupmates which have been infected if it is

susceptible and x21 if it is one of the infected individuals. The

variance of disease presence s2 may therefore be expressed as

follows (cf. derivation in Text S2):

s2~b2
1s2

gzb2
2�pps2

f zb2
2
�ff 2s2

pzs2
e : ð5Þ

This expression can be compared with the estimated variance of

disease presence ŝs2 that is obtained from the IGE model in

equation (3),

ŝs2~s2
Dz(n{1)s2

Szs2
e’: ð6Þ

The first term in equation (5) is a function of the input variance

in susceptibility s2
g and should be approximately comparable to s2

D

from the IGE model and to s2
A from the conventional model. The

second term in equation (5) is a function of the input variance in

infectivity s2
f and mean number of infected groupmates �pp over all

groups, and should be approximately comparable to (n{1)s2
S , i.e.

the second term in equation (6). The third term is a function of the

squared input mean infectivity �ff 2 and the variance in number of

infected groupmates s2
p It is not directly comparable with any

ASReml output as this term includes both between group

variation and interaction between infectivity and susceptibility.

Note that the expression of infectivity depends on the individual

being infected, which in turn depends on the individuals’ own

susceptibility, and s2
p can be said to be the variation in numbers of

individuals expressing infectivity. The interdependence in this

model between infectivity and susceptibility is likely to be partly

captured through a non-zero covariance estimate between direct

and indirect genetic effects in ASReml [23].

Estimated response to selection
In order to estimate response to selection based on Estimated

Breeding Values (EBVs) derived from the conventional and IGE

models, the impact of selection on true mean susceptibility/

infectivity was examined. Here the population mean susceptibil-

ity/infectivity was compared to the mean susceptibility/infectivity

after selection of 10% of the individuals with the lowest EBVs

obtained from each model. For the conventional model, selection

used the only available EBV (EBVA). For the IGE model, selection

was based on the EBVs for direct (EBVD) and indirect (EBVS)

genetic effect separately as well as for the index Ix = EBVD +
(n21) �pp EBVS. The weight of the index was selected to take the

mean level of exposure i.e. (n21) �pp into account.

To quantify response to selection in terms of risk and severity of

the epidemic, the basic reproduction number R0 was estimated for

the whole population and for each selected subpopulation using

the true values of susceptibility and infectivity. R0 is the mean

number of secondary infections an infected individual will cause in

its lifetime and is commonly used as a measure of disease risk and

severity in epidemiology [27]. By definition, an epidemic will die

out if R0,1. Following a SIR model for a closed population,

R0~bS0=c, with S0 = (n21) being the initial number of suscep-

tible individuals in a group [19]. Incorporating equation (1) and

taking a Taylor series expansion we obtain,

R0~ { ln (1{�gg�ff )S0

� �
=c: ð7Þ

The symmetry of susceptibility and infectivity in equation (7)

implies that a decrease in mean susceptibility or infectivity will

decrease mean R0 equally (cf. Figure S1, Text S3).

Results

Estimated genetic variance in disease presence using a
conventional model

The estimated variances in disease presence obtained for each

population using a conventional model, along with the mean

presence over all groups in all replicates, are displayed in Table 3.

Overall the variance estimates depend on input variance and on

mean presence at time of evaluation. As input parameters were the

same for susceptibility and infectivity, variance estimates along the

rows of Table 3, where mean presence is the same, are directly

comparable. Note that values in rows are not directly comparable,

on the other hand, across columns with different mean presence.

The results indicate that, if there is variation in infectivity only,

the conventional model fails to pick up the heritable variation in

binary disease presence present in the data. Only in the

populations with a skewed multiple allele genetic architecture

(i.e. large variance in infectivity) a small amount of genetic

variation is captured when there is variation in infectivity only.

However, the resulting variance estimate was only 3.5% of that

compared to populations with the same variance introduced in

susceptibility.

Estimated genetic variances using an IGE model
Given that the prevalence profiles were similar between genetic

architectures (cf. Figures S2 & S3, Text S3) and the skewed

multiple alleles population had the largest input variance, analyses

using the IGE model were only performed on populations with

skewed distributions for susceptibility and infectivity.

The genetic parameters obtained by analysis with the IGE

model along with relevant statistics are displayed in Tables 4 & 5.

Note that following equation (6) the contribution of the indirect

genetic effect to the phenotypic variance is (n21) times greater

than the values in Tables 4 & 5. Variance in infectivity is captured

by the sS
2, in populations with both genetic architectures (cf.

Tables 4 & 5). A log-likelihood test was performed to evaluate the

statistical significance of the indirect genetic effects term. As would

be expected, the indirect genetic effects term was significant

(P,0.05) in populations with variation in infectivity (cf. Table 5).

The analysis of the skewed multiple alleles population also implies

that there is a statistically significant positive genetic covariance

Indirect Genetic Effects of Infectious Disease
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between the direct and the indirect effect when there is variance in

susceptibility (cf. Tables 4 & 5), despite susceptibility and infectivity

being independent in our simulation. This is probably due to the

fact that the model fitted assumes constant expression of effects by

all group members whereas an individual will only express

infectivity if infected, which will depend on the individual’s

susceptibility. Note that the values in Tables 4 & 5 were obtained

from the same data as those in Table 3, so the values in Table 3

can be compared to those in Tables 4 & 5.

Table 3. Estimated Genetic Variance in Disease Presence (Binary) Using a Conventional Animal Model.

Variation introduced in:

Distribution None Infectivity Susceptibility Both

Two alleles Symmetric Variance 0.32#60.08 0.63#60.09 25.3560.27 18.7460.45

Mean presence 0.56 0.50 0.51 0.46

Skewed Variance 0.32#60.08 0.37#60.10 8.2860.14 7.9660.13

Mean presence 0.56 0.53 0.53 0.51

Multiple alleles Symmetric Variance 0.13#60.04 0.09#60.08 0.12#60.09 0.10#60.03

Mean presence 0.51 0.48 0.49 0.50

Skewed Variance 0.24#60.08 0.7460.09 31.0260.53 18.5660.45

Mean presence 0.51 0.42 0.42 0.35

All parameters as in table 2. 10000 groups of size 10, ‘#’ means not significantly different from zero (P.0.05), values scaled by 103.
doi:10.1371/journal.pone.0039551.t003

Table 4. Estimated Genetic Variance in Disease Presence (Binary), in Populations with a Skewed Bi-Allelic Genetic Architecture
Underlying Susceptibility/Infectivity, Using the Indirect Genetic Effects Model.

Variation introduced in:

Estimated genetic variance/covariance in: None Infectivity Susceptibility Both

Direct effect s2
D

0.32#60.09 0.22#60.11 9.1960.30 8.6360.16

Indirect effect s2
S

0.14#60.04 0.5160.04 0.16#60.03 0.4360.05

Direct/indirect effect sDS 0.06#60.04 0.08#60.08 0.45#60.14 0.59#60.13

Log likelihood test P-value 0.4 0.3*1022 0.5 0.04

Mean presence 0.56 0.53 0.53 0.51

Values scaled by 103, ‘#’ means not significantly different from zero (P.0.05). Values along the rows are directly comparable to each other where mean presence is the
same. Estimates averaged over ten iterations. Parameter values as in Table 2, 10000 groups of size 10. The log-likelihood P-value refers to the significance of the indirect
genetic effect.
doi:10.1371/journal.pone.0039551.t004

Table 5. Estimated Genetic Variance in Disease Presence (Binary), in Populations with a Skewed Multiple Alleles Genetic
Architecture Underlying Susceptibility/Infectivity, Using the Indirect Genetic Effects Model.

Variation introduced in:

Estimated genetic variance/covariance in: None Infectivity Susceptibility Both

Direct effect s2
D

0.26#60.09 0.36#60.11 28.0761.97 19.5560.47

Indirect effect s2
S

0.16#60.03 1.0060.09 0.11#60.04 0.4360.04

Direct and indirect effect sDS 0.08#60.05 0.13#60.09 1.0560.29 0.8660.09

Log likelihood test P-value 0.5 0.2*1025 0.5 0.3*1022

Mean presence 0.51 0.42 0.42 0.35

Values scaled by103, ‘#’ means not significantly different from zero (P.0.05). Values along the rows are directly comparable to each other where mean presence is the
same. Estimates averaged over ten replicates. Parameters as in Table 2, 10000 groups of size 10. The log-likelihood P-value refers to the significance of the indirect
genetic effect.
doi:10.1371/journal.pone.0039551.t005
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Comparison of input and estimated variances
Input variance in susceptibility and infectivity and estimated

variances were brought to a comparable scale using equations (5)

and (6) and are displayed in Table 6. From Table 6 it is evident

that the first term in equation (5), sD
2, and sA

2 are approximately

similar. However, the second term in equation (5) appears to be

consistently larger than (n21)sS
2, suggesting that the IGE model

underestimates variation in infectivity. This could be due to the

fact that the IGE model assumes constant expression of infectivity

by all group-members, whereas in equation (5) expression of

infectivity is limited to infected individuals. In this way the indirect

effect is distributed between (n21) individuals, in the genetic

analysis with the IGE model, compared to �pp in equation (5) with

�ppƒn{1. The discrepancy in these variance estimates suggests that

there is some scope for improvement.

Impact of selection on mean susceptibility/infectivity and
future disease risk

Mean susceptibility and infectivity, of the whole population and

selected sub-populations, together with their respective average R0

values are displayed in Table 7. In line with our previous results,

selection on the breeding values derived from the conventional

model or on EBVD alone, only reduces mean susceptibility (cf.

Table 7). Less predictably, however, selection on EBVS reduced

both mean infectivity and susceptibility (cf. Table 7). This may be

due to expression of infectivity being dependent on being infected,

which in turn depends on susceptibility as mentioned above. This

suggests that, when status isn’t taken into account, selection

targeting infectivity would indirectly also select for lower

susceptibility. However, the resulting average R0 values displayed

in Table 7 suggest that an index with both direct and indirect

breeding values would create the greatest impact for the reduction

of disease in future generation.

Discussion

The hypothesis of this study was that low heritability estimates

of disease traits may not reflect the true additive genetic variation

inherent in a population, but rather a deficiency in the philosophy

underpinning the models that are currently fitted. The aim of this

study was therefore to assess whether it is possible to capture

genetic variation in infectivity, when it is inherent in the data, with

current statistical methods (animal/sire and IGE model). This was

assessed for a variety of genetic architectures underlying suscep-

tibility and infectivity. Our results show that, unlike a conventional

model, which does not capture the variation in infectivity when it

is presesnt in the data, a model which takes indirect genetic effects

(IGE) into account captures some, though not all, of the inherent

genetic variation in infectivity. This implies that, failing to include

indirect genetic effects when analysing disease data from field

studies may result in substantial genetic variation being missed.

For example had the QTL, explaining 98% of the additive genetic

variation in susceptibility to pancreatic necrosis in Salmon, found

by Houston et al. [22] affected infectivity rather than susceptibility

Table 6. A Comparison of Expected and Observed Variance Components for the Skewed ‘Multiple Alleles’ and ‘Two Alleles’
Architectures When Genetic Variance Is Introduced INTO Infectivity, or Susceptibility, or Both.

Expected: IGE: Conventional: Expected: IGE:

Variation introduced in: Susceptibility Direct Infectivity Indirect

b2
1s2

g s2
D s2

A b2
2�pps2

f (n{1)s2
S

Multiple Alleles Infectivity 0.00 0.36# 0.74 15.46 9.04

Susceptibility 36.46 28.07 31.02 0.00 0.99#

Both 20.39 19.55 18.56 9.20 3.87

Two Alleles Infectivity 0.00 0.22# 0.37# 6.34 4.59

Susceptibility 8.86 9.19 8.60 0.00 1.44#

Both 7.92 8.63 7.96 5.34 3.87

Observed components are taken from results of analyses of data with either a conventional model (Eqn 2) or IGE model (Eqn 3), whilst expected components are
obtained from the true simulated values and Eqn 5. ‘#’ means not significantly different from zero (P.0.05), values scaled by 103.
doi:10.1371/journal.pone.0039551.t006

Table 7. Mean Susceptibility and Infectivity following Selection Using the Conventional Animal Model or the Indirect Genetic
Effects Model.

Selection
Mean
susceptibility

Mean
infectivity R0

None 0.22 0.22 4.46

Conventional animal effect EBV 0.10 0.22 1.9960.04

Direct effect EBVD 0.10 0.22 1.9660.04

Indirect effect EBVs 0.15 0.17 2.3860.11

Index Ix = EBVD+�pp (n21) EBVs 0.11 0.19 1.9160.03

Population with variation in both infectivity and susceptibility following a skewed multiple allele genetic architecture. 10000 groups of size 10. Proportion selected was
0.10. Values 6 standard error when greater than 0.005.
doi:10.1371/journal.pone.0039551.t007
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it would probably have been overlooked. Moreover, this additional

genetic variance does not come at the expense of obtaining reliable

estimates for genetic variance in susceptibility.

Our results show further that the ability of IGE models to detect

genetic variance in infectivity can impact on response to

subsequent artificial selection. From the mean susceptibility/

infectivity and R0 values of the selected subsets of the population it

is evident, that even with BVs estimated with the current IGE

model based on binary data from a single time point, a greater

impact on disease risk and severity could be achieved than by

using BVs estimated with a conventional model. This is

particularly true in populations with variation in infectivity only,

as no selection would have been possible based on breeding values

derived from a conventional model. At present, it is unknown

whether infectivity harbours substantial genetic variation, or

whether populations with genetic variation in infectivity only are

common. This work, however, provides the first tools to address

these questions.

Comparison with expected genetic variance from an alternative

model using linear approximations suggests that there is still scope

for improvement in applying IGE models to disease data. The

apparent underestimation of genetic variance in infectivity may be

due to the fact that the current methodology does not allow for

status dependence. This could potentially cause an underestima-

tion of the variance in infectivity as the indirect genetic effect is

attributed to all individuals in a group when in reality it will have

been expressed by only a subset of group members. Furthermore,

our analysis revealed that the statistical model applied here is likely

to yield a positive covariance estimate despite susceptibility and

infectivity being independent. This is probably because expression

of infectivity is state dependent and thus partly depends on the

individual’s susceptibility. Allowing for status dependency should

therefore improve the accuracy of the estimated genetic param-

eters, suggesting that responses to selection may be greater than

values presented here when methods are further improved.

The data of this study were generated using a standard

epidemiological SIR model, assuming only host genetic variation

in susceptibility and infectivity and full independence and

heritability for both traits, in order to reduce unnecessary noise.

Moreover, potential host-pathogen interactions were not consid-

ered. Although these assumptions may be representative for a

variety of infectious diseases and populations, one would expect

that the different sources of variances for diseases with more

complex epidemiological patterns and in populations with more

complex variance and co-variance structure would be more

difficult to capture. This enhances the need for further investiga-

tions of IGE models with regards to requirements for data

collection and experimental design for obtaining reliable genetic

parameter estimates corresponding to host susceptibility and

infectivity.

In addition to susceptibility and infectivity investigated here,

there may be other sources of host genetic variation contributing

to genetic variance of disease data and thus amenable for selection.

For example, in addition to variation in infectivity, i.e. the

propensity of individuals to infect others upon contact, genetic

differences in transmission patterns may be caused by heritable

variation in contact rate due to behavioural traits such as

aggression or promiscuity. Previous studies have demonstrated

[24] that IGE models are able to provide reliable estimates for

these social interactions. Moreover, additional heritable variation

in disease presence may come from genetic differences in recovery

time among individuals, which affects their infective period.

Analyses accounting for genetic differences in the length of the

infective period may contribute to achieving greater response to

selection, and emphasizes the scope for additional work in this

area. We achieved a first step in understanding and extending the

range of epidemiological parameters under potential host genetic

influence that can be estimated with current quantitative genetic

models. Further work is required to increase our understanding

and improve the statistical models through the use of simulations

and the application to field data.

Bishop and Woolliams [4] have shown that accuracy of genetic

parameters for disease data obtained from field studies depends

largely on exposure, and thus on time of measurement. Disease

records obtained at a time corresponding to high disease

prevalence are expected to give higher heritability estimates than

disease records obtained at times when prevalence was low. It is

expected that similar relationships also apply for the estimation of

genetic parameters associated with indirect genetic effects.

Further, Bijma [28] has shown that substantial improvement in

accuracy of indirect genetic variance components can be achieved

by optimising group size and composition. Since group size has a

strong effect on disease progression between individuals and thus

on prevalence patterns (cf. Text S3, Figures S2 & S3), it is

expected that much improvement in the estimation of indirect

genetic effects could be obtained by choosing the correct

combination of group size and time at which records are collected.

This could be combined with groups composed of members of two

families, which yields much better accuracy of estimated genetic

parameters than groups composed at random, particularly when

groups are large [28]. Moreover, different weightings for the direct

and indirect effects EBVs in the index might offer further

improvements depending on the context.

One of the remaining challenges of analysing binary disease

data with an IGE model is to establish the relationship between

underlying susceptibility/infectivity and direct/indirect genetic

effects. There are two standard ways of estimating genetic

parameters from a binary trait, either using a linear mixed model,

which treats the data as continuous and includes random factors,

or a generalised linear model (GLM). The use of a GLM in

combination with random factors (GLMM) is an area that is open

to question. In fact, ASReml [23], the software used to fit the

models in this paper, provides a warning not to use a GLM in

combination with random factors. The relationship between the

underlying traits, susceptibility and infectivity, and the observed

trait disease presence is complex and stochastic. It is therefore

questionable whether canonical link functions relating underlying

parameters (e.g. susceptibility, infectivity) with the probability of

observing an event (e.g. becoming infected), such as probit or

logistic functions, would be appropriate in our case. In fact

variance estimates obtained using a logistic model are not on the

same scale as susceptibility and infectivity (cf. Text S4, Table S2).

Moreover, should we use non-standard distributions and link

functions, further statistical issues would arise, e.g. decomposing

the phenotypic variance into genetic and environmental compo-

nents may no longer be valid. Hence there is no theoretical

apparent benefit in applying specific link functions with a GLM.

Moreover, variance estimates obtained with a logistic model are

qualitatively the same as those obtained with the linear models (cf.

Text S4, Table S2). Besides, selection on the EBVs obtained with

a logistic model provided no better results with regards to R0 (cf.

Text S4, Table S3). We therefore decided to use a linear mixed

model, which have been shown to provide estimates of genetic

parameters of sufficient accuracy to generate selection response

(e.g. [29,30]).

Better understanding of the factors involved in indirect genetic

effects to disease presence could open up further potential for

disease control through selection. For example, it has been shown

Indirect Genetic Effects of Infectious Disease
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that, when indirect genetic effects occur, response to selection

depends on the covariance between the direct and indirect genetic

effects [14], which correspond to susceptibility and infectivity in

our study. In this study we assumed that infectivity and

susceptibility are independent. However, should they be positively

correlated, the expected response to selection would be greater

than indicated here. Doeschl-Wilson et al. [31] demonstrate for

gastro-intestinal parasitism in sheep that correlation between

underlying disease traits can have profound impact on heritabil-

ities of observable disease traits and thus on response to selection.

Moreover, a recent study showed molecular evidence for a positive

correlation between susceptibility and infectivity as the known

immunosuppressant stress hormone norepinephrine was shown to

cause increase shedding of Salmonella [32]. It is therefore

reasonable to believe that being able to estimate variance in

indirect genetic effects for disease may open up new avenues for

the control of infectious diseases through selection. In conclusion,

this is the first work on the relevance of indirect genetic effects for

the spread of infectious disease and it indicates that their relevance

extends beyond behavioural interactions among individuals, which

is the current focus of such research (e.g. [33]).

Supporting Information

Figure S1 Predicted disease prevalence over time.
Homogeneous population for suceptibility (high g = 0.4, low g

= 0.04) and infectivity (high f = 0.4, low f = 0.04). Population

consists of 500 groups of size 40 as in Table S1. Prevalence was

averaged over all groups over three iterations. Probability of

disease emerging in a group was 0.38 in the population with low

susceptibility and infectivity and 1 for the other populations. The

expected course of the epidemic is identical for high infectivity/

low susceptibility and low infectivity/high susceptibility.

(TIF)

Figure S2 Disease prevalence over time assuming many
underlying alleles of varying effect coding for suscepti-
bility or infectivity and a skewed distribution. Parameters

as in Table 2. Population structure parameters as in Table S1. A)

groupsize of 10 B) groupsize of 40 C) groupsize of 400.

(TIF)

Figure S3 Disease prevalence over time assuming two
alleles code for susceptibility or infectivity and a
symmetrical distribution. Parameters as in Table 2. Popu-

lation structure parameters as in Table S1. A) groupsize of 10 B)

groupsize of 40 C) groupsize of 400.

(TIF)

Table S1 Population structure parameters.
(DOCX)

Table S2 Variance estimates using a logistic link
function.
(DOCX)

Table S3 Mean susceptibility and infectivity following
selection using the conventional animal model or the
Indirect Genetic Effects model with a logistic link
function.
(DOCX)

Text S1 Derivation of transmission parameter from
first principles.
(DOC)

Text S2 Derivation of variance in disease presence.
(DOC)

Text S3 Impact of model parameters on prevalence
profiles.
(DOC)

Text S4 Impact of a logistic regression on variance
estimates and selection response.
(DOC)
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