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Abstract

Background: Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/
chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the
‘bush-meat’ trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform.
CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior
CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes.

Methodology/Principal Findings: We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV
antigens may be ideally suited for use in inaccessible wildlife populations. To establish a ‘proof-of-concept’ for CMV-based
vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the
nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-
lasting (.8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against
lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to
ZEBOV challenge suggesting a role, at least in part, for T cells in protection.

Conclusions/Significance: This study demonstrates the ability of a CMV-based vaccine approach to protect against an
highly virulent human pathogen, and supports the potential for ‘disseminating’ CMV-based EBOV vaccines to prevent EBOV
transmission in wildlife populations.
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Introduction

Ebola virus (EBOV), a member of the Filoviridae family, causes

rapidly progressing viral hemorrhagic fever culminating in multi-

organ failure, shock and death [1]. EBOV can be subdivided into

four distinct and a fifth putative species [2,3]. EBOV species differ in

level of virulence, with Zaire ebolavirus (ZEBOV) being the most

virulent (80–90% case fatality) [4]. The unpredictable nature of

EBOV outbreaks in endemic areas of Africa, combined with the

potential for accidental and deliberate introduction into non-

endemic nations ensures that EBOV will most likely remain a global

health concern well into the future. Potential for rapid dissemination

to non-endemic countries was demonstrated in 2008 by importation

of Marburg virus (a filovirus closely related to EBOV) to the US [5]

and Netherlands [6] by tourists infected in Uganda.

Animal species involved in EBOV transmission to humans are

not completely defined [7]. Asymptomatically infected fruit bats

have been identified during EBOV outbreaks, suggesting that bats

may be a reservoir [8]. EBOV infection is also observed in great

apes (chimpanzees/gorillas), where it is highly pathogenic with a

similar disease course to humans [9–11]. Handling and butchering

of EBOV-infected wildlife and carcasses including great apes is an

important mode of transmission to humans [7,9,12,13]. In the

eighteen outbreaks of EBOV in Africa since its discovery in 1976,

three were associated with exposure to environments inhabited by

bats, and seven resulted from contact with great ape carcasses (the

source of the remaining outbreaks was not established) [3,7].

Although EBOV was identified in fruit bats in the EBOV

outbreaks of 2001 and 2003, all known transmissions to humans

resulted from handling great ape carcasses [9]. Due to its high

pathogenicity in great apes, EBOV infection is also regarded as a

major threat to the survival of great ape species in the wild [9–11].

Given the threat by EBOV for the extinction of great apes and

the role of great apes in EBOV transmission to humans,
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vaccination of these animals in the wild has been proposed to save

these endangered wildlife species and to reduce the incidence of

human EBOV outbreaks [7,14]. A number of candidate EBOV

vaccines have been developed that are protective against infection

in animal models [15,16]. Replication-defective adenovirus (Ad)

expressing EBOV glycoprotein (GP) alone [17] or in combination

with nucleoprotein (NP) [18], virus-like particles comprised of

virus matrix protein (VP40) and GP with or without NP [19,20],

and replication-competent human parainfluenza virus type 3

(HPIV3) [21], and vesicular stomatitis virus (VSV) expressing GP

[22,23] are all able to consistently induce protective immunity in

small animal and non-human primate (NHP) models. Oral

immunization with the VSV-based vaccine has been shown to

induce protection in mice and NHPs [24,25], leading to the

suggestion of its use for food baiting [7,14]. However, all of these

EBOV vaccine approaches induce immunity only in the

vaccinated individual as they are unable to disseminate through

the population.

A ‘disseminating’ cytomegalovirus (CMV)-based vaccine offers

an alternative approach whereby high coverage would be achieved

by vaccine spread from initial vaccinees through the target

population by animal-to-animal contact. CMV is an ubiquitous,

but benign b-herpesvirus that establishes life-long, latent/low level

persistent infection within the host [26]. During latent infection

the virus is believed to be maintained as an extrachromosomal

chromatin-complexed episome [27]. After initial infection, CMV

is shed from epithelial surfaces into body fluids (saliva, urine,

genital secretions and breast milk), and transmission generally

involves mucosal exposure to such fluids, most commonly in early

childhood or adolescence [28,29]. CMV possesses the remarkable

ability to reinfect and establish a persistent infection regardless of

host CMV immunity [30–33]. CMV is also one of the most

immunogenic viruses known [34], inducing a characteristic

immune response that is highly enriched for ‘effector’ memory

(TEM) T cells [33]. TEM cell localization is shifted toward non-

lymphoid, mucosal sites, and TEM cells are functionally primed for

immediate anti-pathogen effector function [35]. Due to this high

immunogenicity, interest in developing CMV as a vaccine vector is

increasing [36–38]. The recent capacity to manipulate the CMV

genome using bacterial artificial chromosome (BAC)-based

technology has facilitated development of CMV as a vaccine

vector [39]. To date, target antigens have been expressed in CMV

either as single T cell epitopes fused to a non-essential CMV gene

[36], or as single full-length proteins under the control of

heterologous promoters [33,40]. CMVs are host-specific, with

each mammalian host being infected with its own distinct CMV

[41,42]. The high efficacy of CMV-based vaccines was recently

demonstrated by the ability of a panel of rhesus CMV (RhCMV)-

based vectors each expressing a distinct simian immunodeficiency

virus (SIV) antigen to prevent systemic SIV infection of rhesus

macaques (a NHP model for HIV), which is the first vaccine to

prevent acquisition of fully pathogenic SIV [33,43].

Our long-term goal is to develop a ‘disseminating’ vaccine

against EBOV based on chimpanzee/gorilla-specific CMV vectors

that will prevent EBOV infection in gorillas and chimpanzees. We

hypothesize that protection of these animals from EBOV will

interfere with the transmission of EBOV from these species to

humans. In the present report we have constructed a mouse CMV

(MCMV)-based EBOV vector expressing a single CTL epitope

from NP of ZEBOV (MCMV/ZEBOV-NPCTL) as a prototype

vector to establish ‘proof-of-concept’ for this approach. MCMV/

ZEBOV-NPCTL was shown to be highly immunogenic, inducing

durable CD8+ CTL responses (IFNc+/TNFa+) against ZEBOV

NP in multiple strains of mice. Importantly, MCMV/ZEBOV-

NPCTL conferred protection against lethal challenge with a mouse-

adapted ZEBOV variant. The general absence of antibodies

against ZEBOV in protected animals prior to ZEBOV challenge,

and lack of protection in controls receiving wild-type (WT) ‘empty’

MCMV vector were consistent with protection being, at least in

part, T cell-mediated. This is the first study to demonstrate the

ability of a CMV-based vaccine to protect against an human

pathogen, and supports the concept of ‘disseminating’ CMV-based

EBOV vaccines to prevent EBOV transmission in wild animal

populations.

Materials and Methods

Ethics statement
All animal use complied with the Guide for the Use and Care of

Laboratory Animals, USDA Animal Welfare Regulations, PHS

Policy on Humane Care and Use of Laboratory Animals and

other relevant regulations. All procedures were approved by the

respective IACUC committees at Rocky Mountain Laboratories,

Division of Intramural Research, National Institute of Allergy and

Infectious Diseases, National Institutes of Health (RML, DIR,

NIAID, NIH), and Oregon Health and Science University

(OHSU).

Construction and characterization of MCMV vectors
MCMV-based vectors were constructed by lambda-phage

based linear recombination using a strategy identical to that used

for construction of other CMV recombinants [33]. MCMV (Smith

strain) BAC pSMfr3 [44,45] in which the natural killer (NK) cell

activating m157 MCMV gene has been deleted (pSMfr3Dm157)

was used as the genetic background for these vectors. Deletion of

m157 was necessary to avoid attenuation of CMV replication by

inadvertent high NK cell control in the C57BL/6 mouse strain

that expresses the corresponding Ly49H NK receptor [46]. For

construction of MCMV/ZEBOV-NPCTL an H2b-restricted T cell

epitope from NP of ZEBOV (43-VYQVNNLEEIC-54) [47,48]

was fused ‘in-frame’ to the carboxyl terminus of MCMV IE2 (ie2)

generating the recombinant MCMV BAC, pMCMV/ZEBOV-

Author Summary

Human outbreaks of hemorrhagic disease caused by Ebola
virus (EBOV) are a serious health concern in Central Africa.
Great apes (gorillas/chimpanzees) are an important source
of EBOV transmission to humans. Candidate EBOV vaccines
do not spread from the initial vaccinee. In addition to
being highly immunogenic, vaccines based on the
cytomegalovirus (CMV) platform have the unique potential
to re-infect and disseminate through target populations.
To explore the utility of CMV-based vaccines against EBOV,
we constructed a mouse CMV (MCMV) vector expressing a
region of nucleoprotein (NP) of Zaire ebolavirus (ZEBOV)
(MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high
levels of long-lasting CD8+ T cells against ZEBOV NP in
mice. Importantly, all vaccinated animals were protected
against lethal ZEBOV challenge. The absence of ZEBOV
neutralizing and only low, sporadic levels of total anti-
ZEBOV IgG antibodies in protected animals prior to ZEBOV
challenge indicate a role, albeit perhaps not exclusive, for
CD8+ T cells in mediating protection. This study demon-
strates the ability of a CMV-based vaccine approach to
protect against ZEBOV, and provides a ‘proof-of-concept’
for the potential for a ‘disseminating’ CMV-based EBOV
vaccine to prevent EBOV transmission in wild animal
populations.
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NPCTL. IE2 is a nonessential MCMV protein to which we and

others have fused defined T cell epitopes as a strategy for induction

of T cell responses following infection of mice with the

corresponding recombinant MCMV [36]. A contiguous frt-flanked

kanamycin resistance marker (KanR) was inserted into the MCMV

BAC genome at the same time as the NP epitope to enable

selection of recombinant BACs on the basis of kanamycin

resistance. Following selection of recombinant BACs on the basis

of KanR, the frt-flanked KanR marker was removed by arabinose

induction of Flp-recombinase and screening for kanamycin

sensitivity. Virus was reconstituted from BACs by transfection

into murine embryo fibroblasts (MEFs). Presence of the BAC

cassette within the MCMV genome decreases in vivo replication,

and serial in vitro passage of the BAC-derived virus was performed

to remove the BAC cassette [45]. Absence of the BAC cassette

from reconstituted MCMV vectors was confirmed by PCR using

BAC cassette-specific primers. MCMV/ZEBOV-NPCTL viruses

were assessed for growth in vitro on MEFs. To avoid effects of

inadvertent second site mutations, two independently derived

MCMV/ZEBOV-NPCTL clones (5A1 and 5D1) were selected,

and growth was compared to WT MCMV (MCMVDm157). For

assessment of virus growth kinetics, cells were infected at a

multiplicity of infection (MOI) of 0.1 and media was harvested for

quantitation of virus at increasing times post-infection by standard

plaque assay. DNA sequencing of BAC and reconstituted viral

DNA was used to confirm integrity of the NP epitope within the

MCMV genome.

Animal models, vaccination and challenge
Mice were purchased from NCI at Frederick, MD. All

experiments were performed with age-matched female 129S1/

SvlmJ/Cr and C57BL/6 mice. Mice were provided food and

water ad libitum. For analysis of the kinetics of the peripheral blood

anti-NP T cell response, mice received a single intraperitoneal

(i.p.) inoculum of MCMV/ZEBOV-NPCTL (16105 pfu), and were

then bled over a 33 week period at times indicated. In all other

cases, MCMV-vaccinated mice were inoculated i.p. with

56105 pfu of MCMV recombinants followed by an identical i.p.

‘boost’ after 4 weeks. After 10 weeks, C57BL/6 mice were

challenged i.p. with 103 LD50 of mouse-adapted ZEBOV (ma-

ZEBOV) as previously described [24]. For these studies, VSVDG/

ZEBOVGP (given as a single i.p. dose of 56105 pfu) served as a

positive control for vaccine protection. The VSVDG/ZEBOVGP

is a recombinant VSV, in which the native glycoprotein G has

been exchanged for GP ZEBOV (Mayinga strain), and has been

shown to induce protective immunity against ma-ZEBOV [24].

Following challenge, disease severity was monitored on the basis of

clinical signs using an approved scoring index, and mortality rate

was recorded over the 28 day post-challenge period. ZEBOV in

vivo replication was also directly determined by quantification of

ma-ZEBOV viremia levels at time of peak viremia in mice (day 4

post-challenge) by virus titration using a focus forming unit

immunodetection assay with titre expressed as focus forming units

(FFU/ml). All BSL-4 level infectious work was performed at RML.

Intracellular cytokine staining analysis of T cells
Frequencies of CD8+ T cells directed against the ZEBOV NP

CTL epitope, or MCMV-encoded M38 and M45 proteins in

pooled peripheral blood or spleen were determined by intracel-

lular cytokine staining (ICS). Cells were stimulated in the presence

of brefeldin A (BFA) (10 mg/ml) with peptides representing defined

H2b-restricted epitopes of ZEBOV NP (VYQVNNLEEIC) [47],

MCMV M38 (SSPPMFRV) or M45 (HGIRNASFI) [49], or

prostate-specific antigen (PSA) (HCIRNKSVI) [50]. PSA was used

as an irrelevant antigen control, and the peptides representing the

well-characterized H2b-restricted epitopes in MCMV-encoded

M45 and/or M38 [49] served as an indicator of MCMV vector

infection. Incubation without antigen served as a background

control. After 6 hours of stimulation, cells were stained using the

following monoclonal antibodies (Mabs) in designated combina-

tions: a) from BD Biosciences, RM4-5 (CD4; Pacific Blue), 53-6.7

(CD8a; PerCP-Cy5.5), MP6-XT22 (TNFa; PE), XMG1.2 (IFNc;

APC), and b) from eBioscience 17A2 (CD3e, APC-eFluor780).

After surface and intracellular staining with conjugated Mabs,

polychromatic flow cytometric analysis was performed on a LSR

II (BD Biosciences), and data was analyzed by using FlowJo

software (version 9.1; Tree Star, Inc.). Samples were performed in

triplicate. Response frequencies were determined by subtracting

background and then averaging background subtracted responses.

Neutralization assay
Sera was collected from vaccinated mice at times indicated, and

analyzed for ability to neutralize ZEBOV infection in an in vitro

neutralization assay [51]. Briefly, heat inactivated sera (56uC for

45 minutes) was serially diluted in DMEM, and then mixed 1:1

with ZEBOV expressing the EGFP reporter (ZEBOV-EGFP)

(200 FFU/well). After incubation at 37uC for 60 minutes, 20 ml of

the mixture was transferred onto subconfluent Vero cells in a 96-

well plate format and incubated for 30 minute at 37uC. Following

addition of 180 ml of DMEM supplemented with 1.5% carbox-

ymethyl cellulose and 5% FBS, cells were cultured for 4 days at

37uC. Cells were washed by PBS and fixed in 10% neutral

buffered formalin overnight under BSL-4 conditions. Prior to

removal from the BSL-4 conditions, formalin was changed and

plates were processed under BSL-2 conditions by conventional

methods. Values shown are the sera dilutions resulting in 50%

reduction in EGFP-positive cells following infection of Vero cells

with ZEBOV-EGFP. Mab#226 is a neutralizing mouse mono-

clonal antibody made against ZEBOV GP [52].

Virus-like particle (VLP)-based enzyme-linked
immunosorbent assay (ELISA)

Total IgG antibody responses to ZEBOV NP, GP and VP40

were quantified by ELISA using ZEBOV VLPs (VP40/NP/GP) as

an antigen source [25]. Generation of VLPs has been previously

described [53]. Briefly, 96 well microtiter plates (NUNC,

Rochester, NY) were coated with ZEBOV VLPs (2 mg/ml) in

PBS at 4uC overnight, and then blocked with 5% skim milk in PBS

containing 0.05% Tween 20 (PBST) for 2 hours at room

temperature. After three washes with PBST, 50 ml of diluted

heat-inactivated serum sample was added and the plates were

incubated for 1 hour at 37uC. After an additional three washes

with PBST, secondary antibody conjugated with horseradish

peroxidase (HRP) was added and plates were incubated for an

additional 1 hour at 37uC. Bound antibodies were quantified using

the ABTS Peroxidase Substrate System (KPL, Gaithersburg, MD)

by measuring absorbance at 405 nm on a microplate spectropho-

tometer. Values shown are the end-point dilution titre (using a 4-

fold dilution series). Samples were deemed positive when the value

was higher than the mean plus 4 standard deviations of negative

(Mock) mouse sera [25].

Statistical analysis
Statistical analyses were performed using GraphPad version

5.0 d for Mac OS X, GraphPad Software, San Diego CA, USA,

www.graphpad.com. An unpaired Student’s two-tailed t-test was used

to compare treatment groups. A Kaplan-Meier estimator and a

CMV-Based Vaccine Protects against Ebola Virus
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log-rank test were used to compare survival rates between

treatment groups in ma-ZEBOV challenge studies.

Results and Discussion

To assess the potential of CMV for development as a vaccine

against EBOV, we designed a prototype murine cytomegalovirus

(MCMV)-based EBOV vaccine (MCMV/ZEBOV-NPCTL) ex-

pressing a CD8+ CTL epitope from ZEBOV NP (43-VYQVNN-

LEEIC-53; NP43) [47,48,54] fused to a non-essential MCMV

protein, IE2 (Figure 1a). MCMV/ZEBOV-NPCTL was construct-

ed by lambda-based linear recombination using a BAC containing

the MCMV genome (pSM3fr) [33,45]. Independent pMCMV/

ZEBOV-NPCTL clones (5A1 and 5D1) were selected for

characterization. Restriction enzyme digestion followed by

electrophoresis showed no gross genomic rearrangements com-

pared to WT parental BAC (Figure S1). Viruses were reconstituted

by transfection of BAC DNA into MEFs. In vitro growth analysis of

reconstituted viruses showed replication kinetics comparable to

WT MCMV (Figure S2).

CMV induces high levels of T cells against both endogenous

and heterologously expressed proteins [33,34,36]. To assess the

level of NP-specific CD8+ CTL responses induced by MCMV/

ZEBOV-NPCTL, we performed immunogenicity studies in H2b-

restricted 129S1/SvlmJ/Cr mice. Mice (n = 5/group) were

immunized intraperitoneally (56105 pfu; i.p.) with MCMV/

ZEBOV-NPCTL (clone 5A1 or 5D1), MCMV/PSA (clone 3-1),

WT MCMV or diluent (Mock). MCMV/PSA (clone 3-1) is a

Figure 1. T cell responses following immunization with MCMV/ZEBOV-NPCTL. (a) Schematic representation of MCMV/ZEBOV-NPCTL. An H2b-
restricted T cell epitope from ZEBOV NP (VYQVNNLEEIC) was fused ‘in-frame’ to the carboxyl terminus of MCMV IE2 (ie2) generating the recombinant
MCMV, MCMV/ZEBOV-NPCTL. MCMV IE2 is a non-essential protein. (b) 129S1/SvlmJ/Cr (H2b-restricted) mice (n = 5/group) were immunized i.p. using
56105 pfu of the following: one of two independent clones of MCMV/ZEBOV-NPCTL (5A1 and 5D1), MCMV/PSA (clone 3-1) (a comparable MCMV
vector expressing IE2 fused to an H2b-restricted epitope from PSA), WT MCMV, or diluent (Mock control). Mice were boosted after 4 weeks. After 8
weeks splenocytes were harvested for analysis of T cell responses. T cells were analyzed by using ICS with a 6 hour incubation in the presence of BFA
with peptide (or anti-CD3 Mab, for total T cell response). Levels of responding (IFNc and TNFa double-positives) CD8+ (top) and CD4+ (bottom) cells in
individual mice are shown. All MCMV/ZEBOV-NPCTL immunized mice (n = 10) showed significant CD8-restricted T cell responses against the NP target
antigen. (c) Typical responses from MCMV/ZEBOV-NPCTL vaccinated mice. The majority of ZEBOV NP-responding T cells expressed both IFNc and
TNFa and are specific for the NP epitope (not observed following incubation with the PSA peptide or unstimulated controls). Consistent with MCMV
infection, all mice demonstrate T cell responses to MCMV M45. T cell responses directed against M45 are known to be ‘non-inflationary’, generally
representing ,1% of total CD8+ T cells during chronic MCMV infection. Error bars show the standard deviation (s.d.).
doi:10.1371/journal.pntd.0001275.g001
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control MCMV expressing an irrelevant H2b-restricted epitope

from PSA [50]. After 4 weeks, mice were ‘boosted’ using an

identical inoculum. After 8 weeks, splenocytes were harvested for

analysis of T cell responses (Figure 1b). Antigen-specific T cells

were analyzed by ICS following a 6 hour in vitro incubation with

EBOV and MCMV peptides representing different H2b-restricted

epitopes. All MCMV/ZEBOV-NPCTL vaccinated mice exhibited

significant CD8+ CTL responses against ZEBOV NP (Figure 1b).

The level of NP responses elicited by 5A1 and 5D1 were not

significantly different, and were considered together as a single

data set. The ZEBOV NP-specific T cell responses induced were

substantial (mean = 2.83% of total CD8+ T cells; range = 0.32 to

5.99%), CD8+ phenotype (no response in CD4+ cell compart-

ment), and specific (directed against ZEBOV NP, but not PSA

control). CD8+ CTLs induced against ZEBOV NP primarily

expressed both IFNc and TNFa effector cytokines (Figure 1c). All

mice except mock-vaccinated controls had CD8+ CTLs directed

against the MCMV-encoded M45 protein.

A unique characteristic of CMV-induced immune responses is

their ‘inflation’ over time with maturation into stable ‘effector’ T

cell (TEM) memory that persists for life [55]. Compared to classical

‘central’ memory (TCM) cells, TEM are biased toward localization

at mucosal epithelial effector sites, and have more immediate

effector function [56,57]. To determine the durability of ZEBOV

NP-specific T cell responses from a single MCMV/ZEBOV-

NPCTL inoculation, mice (n = 14) were vaccinated (16105 pfu; i.p.)

with MCMV/ZEBOV-NPCTL, and peripheral T cell responses

were followed longitudinally. NP-specific CD8+ T cell responses

gradually accumulated to high levels and persisted (increasing

from 0.79% after 8 weeks, to 3.08% after 33 weeks following the

single inoculation) (Figure 2). Although delayed, the NP-specific

CTL response was comparable in kinetics of induction and

magnitude to the TEM-biased ‘inflationary’ response directed

against MCMV M38 [49,58]. Importantly, these results show that

a CMV-based EBOV vaccine can induce high levels of CD8+ T

cells against an EBOV antigen that increase with time and are

durable.

To determine whether MCMV/ZEBOV-NPCTL was able to

induce protective immunity against lethal ZEBOV challenge, we

performed challenge studies in C57BL/6 mice using ma-ZEBOV

[24,59]. The ma-ZEBOV is lethal in unvaccinated mice, which

succumb 5–7 days post-challenge [24,59]. Four groups of mice

(n = 20/group) were immunized (56105 pfu; i.p.) with MCMV/

ZEBOV-NPCTL 5A1 or 5D1, MCMV WT or diluent, and

Figure 2. Kinetic analysis of CD8+ T cell response to MCMV/ZEBOV-NPCTL. 129S1/SvlmJ/Cr H2b-restricted mice (n = 14) were immunized (i.p.)
with a single dose (16105 pfu) of MCMV/ZEBOV-NPCTL (clone 5D1). At times indicated, mice were bled and peripheral T cell responses were measured
in pooled blood by using ICS with a 6 hour incubation in the presence of BFA with peptides. All responses were normalized against cells stimulated in
the absence of peptide. Responses are against ZEBOV NP (black), or MCMV M38 (grey) and M45 (white). Error bars show the s.d.
doi:10.1371/journal.pntd.0001275.g002
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boosted after 4 weeks (Figure 3). After 8 weeks (4 weeks following

the boost), splenocytes from 6 mice/group were analyzed for T cell

responses. 5A1 and 5D1 induced comparable responses against

NP, enabling mice receiving either clone to be considered as a

single data set. MCMV/ZEBOV-NPCTL induced considerable

levels of CD8+ T cells against ZEBOV NP (mean = 1.34% of total

CD8+ T cells; range = 0.05 to 2.68%). These results also show that

the ability of MCMV/ZEBOV-NPCTL to induce NP-specific T

cells is independent of the mouse strain (Figures 1b and 3). All

mice except mock-vaccinated controls had CD8+ CTLs directed

against MCMV-encoded M38 and M45.

After 10 weeks (6 weeks following the boost), the remaining mice

(n = 14/group) were challenged i.p. with 103 LD50 of ma-ZEBOV.

An additional group (n = 14) that had received VSVDG/

ZEBOVGP (56105 pfu; i.p.), which confers high levels of

protection against ma-ZEBOV, was included as a control for

vaccine protection [24]. ZEBOV disease was then monitored on

the basis of survival, morbidity based on clinical signs (ruffled fur,

hunched posture, paralysis and weight loss) and viremia. Mock

and MCMV WT vaccinated controls exhibited ZEBOV disease

and significant morbidity (Figure 4b) with 90% of mice

succumbing between days 5–7 post-challenge (Figure 4a). In

contrast, MCMV/ZEBOV-NPCTL vaccinated mice showed no

evidence of ZEBOV disease, with 100% survival and no signs of

morbidity (Figures 4a and 4b). As a quantitative analysis of vaccine

efficacy, viremia at day 4 post-challenge (peak of ZEBOV viremia

in the mouse model) was measured in a subset of mice (n = 3–4/

group) harvested at this time (Figure 4c). MCMV/ZEBOV-

NPCTL vaccination resulted in a significant level of control of

ZEBOV replication. Specifically, 5 of 8 mice showed no detectable

levels of viremia; the remaining 3 mice showed a 2.8-log reduction

in viremia compared to WT MCMV vaccinated controls. Given

the expression of a single CTL epitope from NP it was highly

unlikely that anti-ZEBOV antibodies (either neutralizing or total)

would be induced by vaccination. However, it was possible that a

low-level of ZEBOV replication in vaccinated animals would

result in induction of anti-ZEBOV antibodies. To investigate the

possibility that neutralizing antibodies induced by the challenge

virus were positively impacting protection, we waited a sufficient

period of time (28 days) for any antibodies induced by challenge to

have risen to detectable levels. At 28 days post-challenge ma-

ZEBOV neutralizing activity in sera from a randomly selected

subset (n = 6) of protected MCMV/ZEBOV-NPCTL mice was

measured. VSVDG/ZEBOVGP control mice had low, but

detectable levels of neutralizing activity following challenge as

previously observed [24]. In contrast, neutralizing activity was not

Figure 3. MCMV/ZEBOV-NPCTL induces a ZEBOV-specific T cell response in C57BL/6 mice. C57BL/6 H2b-restricted mice (n = 6/group) were
vaccinated (i.p.) using 56105 pfu of MCMV/ZEBOV-NPCTL clone 5A1 or 5D1. Control groups received either MCMV WT, or diluent (Mock). After 4
weeks mice were boosted as before. After 8 weeks (4 weeks post-boost) mice were harvested for analysis of splenocyte T cell responses by ICS using
a 6 hour incubation in the presence of BFA with indicated peptide. MCMV-specific CD8+ T-cell responses against MCMV M45 and M38 were used as
markers of MCMV infection. PSA peptide served as an H2b-restricted epitope specificity control. Responding CD8+ cells shown are IFNc and TNFa
double-positives. Mice groups presented in this figure were vaccinated in parallel with mice groups (n = 14/group) used to ascertain protective
efficacy of vaccination regimen shown in Figure 4. Error bars show the s.d.
doi:10.1371/journal.pntd.0001275.g003
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detected in any convalescent serum from MCMV/ZEBOV-

NPCTL vaccinated mice demonstrating that the role of neutralizing

antibodies in mediating protection in these mice was minimal

(Table S1).

Vaccination of either NHPs [22] or mice [24] with VSVDG/

ZEBOVGP is known to induce a total IgG anti-ZEBOV response

(presumably directed against ZEBOV GP). Although VSVDG/

ZEBOVGP confers a level of protection that results in the

complete lack of detectable ZEBOV viremia [22], the anti-

ZEBOV antibody response induced by VSVDG/ZEBOVGP is

subsequently boosted by ZEBOV challenge. An antibody-capture

ELISA (using VLPs comprised of VP40, NP and GP as a source of

antigen) [53] was used to measure levels of total anti-ZEBOV IgG

antibodies in MCMV/ZEBOV-NPCTL vaccinated mice, both

prior to challenge and at day 28 post-challenge (Table S2).

Consistent with expression of the single NP CTL epitope, anti-

ZEBOV antibodies were not detected, or present sporadically at

only low levels (in one of three mice tested) in MCMV/ZEBOV-

NPCTL vaccinated mice prior to ma-ZEBOV challenge. In

contrast, convalescent sera from protected mice in this treatment

group had high levels of total IgG directed against ZEBOV (at 28

days post-challenge). VSVDG/ZEBOVGP-vaccinated mice re-

sponded as previously described with anti-ZEBOV IgG antibodies

being induced by vaccination, which were then boosted by ma-

ZEBOV challenge (Table S2). Whether the anti-ZEBOV antibody

response in either of these treatment groups is induced by active

ZEBOV replication or represents exposure to the initial antigen

bolus received at the time of challenge is unclear. The relatively

greater anti-ZEBOV IgG response observed in MCMV/ZEBOV-

NPCTL compared to VSVDG/ZEBOVGP vaccinated mice

following challenge may indicate an higher level of ongoing

ZEBOV replication in the MCMV/ZEBOV-NPCTL vaccinated

mice following challenge. The absence of neutralizing antibodies

and barely detectable and sporadic levels of total IgG against

ZEBOV in MCMV/ZEBOV-NPCTL vaccinated mice prior to

ma-ZEBOV challenge suggests that NP-specific CTL, and not

antibodies, are playing a greater role in protection. These results

do not exclude other mechanisms being involved in protection,

such as neutralizing or non-neutralizing antibodies below the level

of detection in our assay, as well as non-specific innate responses

induced by the CMV vector itself. Although the inability of WT

MCMV to afford any level of protection would presumably

suggest minor involvement of non-adaptive, innate responses. De

novo ZEBOV-specific CTL responses directed against ZEBOV-

encoded antigens other than NP induced by the challenge virus

can also not be excluded.

Great apes are an important source of EBOV transmission to

humans [7,8,9,12,13]. Vaccination campaigns for rabies in

European and US wildlife [60] have shown the effectiveness of

targeting animal species involved in transmission. Vaccination of

great apes to interrupt EBOV transmission may therefore be an

effective strategy to decrease human EBOV outbreaks. In the

current study, we demonstrate that a prototype CMV-based

vaccine expressing a single CTL NP epitope can induce a

considerable level of protection against ZEBOV. The present

study therefore establishes a ‘proof-of-concept’ for a CMV-based

EBOV vaccine in the C57BL/6 mouse challenge model prior to

moving forward with more complex CMV-based vectors (species-

specific) expressing full-length EBOV proteins in more robust

Figure 4. Protective efficacy of MCMV/ZEBOV-NPCTL. Groups of
C57BL/6 mice (n = 14) were vaccinated by i.p. administration of
56105 pfu of either MCMV/ZEBOV-NPCTL (clones 5A1 or 5D1), MCMV
WT, or diluent (Mock), followed by an identical boost at week 4. An
additional group received VSVDG/ZEBOVGP as a positive control for
vaccine efficacy. After 10 weeks (6 weeks after the boost), mice were
challenged with 103 LD50 ma-ZEBOV (i.p.). Data represent (a) Percent
survival. (b) Body weight change over time post-challenge (error bars
show the s.d.). (c) Viremia levels in 3–4 mice harvested at time of peak
viremia (day 4) (mean viremia levels for each group are shown in
parentheses). For body weight, groups were weighed daily until 14 days
post-EBOV challenge, or until all animals in a group had succumb to
ZEBOV disease. MCMV/ZEBOV-NPCTL vaccination had a significant
impact on survival from ma-ZEBOV challenge compared to MCMV WT
controls (p,0.0001) using a log-rank test. Analysis of ma-ZEBOV viremia

shows a comparable level in control of viremia between 5A1 and 5D1
MCMV/ZEBOV-NPCTL vaccinated groups, compared to MCMV WT
controls (p,0.0001).
doi:10.1371/journal.pntd.0001275.g004

CMV-Based Vaccine Protects against Ebola Virus

www.plosntds.org 7 August 2011 | Volume 5 | Issue 8 | e1275



NHP challenge models. Given the outbred nature of primates with

their expression of a diverse repertoire of MHC I alleles, a final

CMV based vaccine will assuredly need to encode single or

perhaps multiple full-length EBOV proteins.

In addition to being highly immunogenic, CMV has evolved a

remarkable ability to spread between individuals, and therefore

may be suited for development as a ‘disseminating’ vaccine

platform to target geographically inaccessible wild animal

populations like great apes at relatively low cost. In this strategy,

vaccination of ‘founder vaccine recipients’ would be used to

initiate spread of the CMV-based EBOV vaccine through animal

populations eliminating the need for immunization of each

individual. An important characteristic of CMV that makes this

vector ideally suited to development as a ‘disseminating’ vaccine is

its remarkable ability to reinfect and establish a persistent infection

regardless of host CMV immunity [29,31,32,61]. Recent studies in

rhesus macaques show that immunogenicity and capacity to re-

infect the CMV immune host is relatively independent of CMV

dose, as inoculums as low as 100 pfu of rhesus CMV (RhCMV)

were able to reinfect and induce immunity in RhCMV sero-

positive animals [62]. As CMV is transmitted through breast milk

from mothers to offspring, a CMV-based vaccine could also afford

a more permanent solution to the EBOV problem. Although

vertical transmission of superantigens encoded by endogenous

mammary tumour viruses (MMTV) can cause clonal deletion of

reactive T cell subsets [63], vertical transmission of CMV appears

to be distinctly different to MMTV, with mature and functional

human CMV specific T cells being consistently observed in

congenitally infected neonates (and one aborted foetus of 28 weeks

gestation) [64,65].

There are clearly some potential risks associated with use of

such a ‘disseminating’ vaccine approach targeting wildlife

populations. However, in addition to the impact of EBOV on

human health, EBOV is regarded as a major threat to survival of

great apes [11]. With potential for achieving high levels of

coverage in inaccessible and environmentally harsh regions, a

‘disseminating’ CMV-based EBOV approach may not only

benefit humans, but may also positively impact survival of these

great ape species in the wild. Concerns regarding the possible

environmental impact of releasing a recombinant vaccine vector

that can spread within the target population, especially a

population that is endangered, cannot be overstated. However

a number of additional characteristics of this vaccine approach

help to allay these concerns. First, CMV has been shown to be

ubiquitous within its respective host population in all NHP

species studied [66–69]. Therefore, a CMV-based vaccine for use

in great ape species represents infection with a benign virus

(either gorilla or chimpanzee CMV) that is already present within

the population, differing only by expression of EBOV antigens.

Second, CMVs are believed to be highly host-specific with each

mammalian host studied carrying its own species-specific CMV

[70]. This host-specificity is recapitulated to a certain level in vitro,

with only CMVs from closely related species being able to

replicate in cells from other closely related species. For example,

human CMV (HCMV) was able to replicate, but at a 10-fold

lower level, in primary chimpanzee compared to human

fibroblasts [71]. However, HCMV is unable to replicate in

mouse fibroblasts [72], and MCMV is reciprocally unable to

replicate or is severely compromised for replication in human

fibroblasts [72,73]. For rodent CMVs, the block in cross-species

infection has been shown to be due to an inability to control

apoptosis following infection of the cross-species cell type [73].

The responsible mechanism for species restriction in primate

CMVs is not known.

CMV is ubiquitous in all NHP species studied (baboons, drill

monkeys and rhesus macaques) [66–68]. A chimpanzee CMV

strain (CCMV, Panine herpesvirus 2) has been isolated from a

chimpanzee in captivity and the genome fully sequenced. The

CCMV genome was largely co-linear with that of HCMV, but

with a moderate level of divergence [74]. Leendertz et al [75] have

subsequently detected multiple additional CMV species in samples

from captive and wild gorillas (Western Lowland), chimpanzees

(West and East African), as well as orangutans using a degenerate

PCR-based assay targeting conserved genes. Together with

HCMV, as well as the earlier isolated CCMV and old world

and new world monkey CMVs, Leendertz et al [75] separated

primate CMVs into six major clades on the basis of partial

sequence of a conserved essential protein, gB. HCMV strains

localized within their own clade (93–95% amino acid identity),

whilst gorilla and chimpanzee CMVs were contained within two

clades [CG1 clade: CCMV, Pan troglodytes CMV genogroup 1, and

Gorilla gorilla CMV genogroup 1 (76–77% amino acid identity with

HCMV gB); and CG2 clade: Pan troglodytes CMV genogroup 2,

and Gorilla gorilla CMV genogroup 2 (81–82% amino acid identity

with HCMV gB) [75]. Consistent with earlier studies, most of the

primate CMVs were found only in their respective host species

with which they had co-evolved. However, the presence of

chimpanzee and gorilla CMVs together within the same clade

raises the possibility of horizontal bi-directional transmission of

CMV between chimpanzees and gorillas. CMV detection was

based solely on the presence of subgenomic fragments of viral

DNA within tissue samples by PCR and not isolation of infectious

virus. However, any possibility for transmission between closely

related primate species clearly indicates a need for empirical

studies to confirm the high species-specificity of CMV between

closely related primate species.

In summary, using the mouse ma-ZEBOV challenge model, we

have established ‘proof-of-concept’ for CMV as a potential

‘disseminating’ vaccine for EBOV. Future and ongoing studies

are focused on the design of CMV vectors expressing full-length

EBOV proteins, as well as assessment of efficacy in the NHP

model using RhCMV-based vectors. The high immunogenicity,

combined with the ability of CMV to spread regardless of prior

CMV immunity and host-specificity, make ‘disseminating’ CMV-

based vaccines a novel vaccine platform that may be ideal for

targeting EBOV, as well as other pathogens, in animal populations

that are inaccessible due to geography or vaccination cost.

Supporting Information

Figure S1 Genomic characterization of MCMV/ZEBOV-

NPCTL. BAC DNA from two independent clones of MCMV/

ZEBOV-NPCTL (5A1 and 5D1) were digested with EcoRI

followed by electrophoresis. The comparable digest pattern

between MCMV/ZEBOV-NPCTL BAC clones and the MCMV

WT BAC shows the lack of any gross genomic rearrangement.

(EPS)

Figure S2 Multi-step growth analysis of MCMV/ZEBOV-

NPCTL. MEFs were infected at a MOI of 0.1 with either 5A1,

5D1 or WT MCMV. Supernatant was collected at days indicated

post-infection and titered by standard plaque assay. The assay was

performed in triplicate and standard deviation is shown.

(EPS)

Table S1

(DOC)

Table S2

(DOC)
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